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Abstract: The chemical modification of amino acids plays an important role in the modulation of pro-
teins or peptides and has useful applications in the activation and stabilization of enzymes, chemical
biology, shotgun proteomics, and the production of peptide-based drugs. Although chemoselective
modification of amino acids such as lysine and arginine via the insertion of respective chemical
moieties as citraconic anhydride and phenyl glyoxal is important for achieving desired application
objectives and has been extensively reported, the extent and chemoselectivity of the chemical modifi-
cation of specific amino acids using specific chemical agents (blocking or modifying agents) has yet to
be sufficiently clarified owing to a lack of suitable assay methodologies. In this study, we examined
the utility of a fluorogenic assay method, based on a fluorogenic tripeptide substrate (FP-AA1-AA2-
AA3) and the proteolytic enzyme trypsin, in determinations of the extent and chemoselectivity of the
chemical modification of lysine or arginine. As substrates, we used two fluorogenic tripeptide probes,
MeRho-Lys-Gly-Leu(Ac) (lysine-specific substrate) and MeRho-Arg-Gly-Leu(Ac) (arginine-specific
substrate), which were designed, synthesized, and evaluated for chemoselective modification of
specific amino acids (lysine and arginine) using the fluorogenic assay. The results are summarized in
terms of half-maximal inhibitory concentrations (IC50) for the extent of modification and ratios of IC50

values (IC50arginine/IC50lysine and IC50lysine/IC50arginine) as a measure of the chemoselectivity of
chemical modification for amino acids lysine and arginine. This novel fluorogenic assay was found to
be rapid, precise, and reproducible for determinations of the extent and chemoselectivity of chemical
modification.

Keywords: fluorogenic peptide substrate; trypsin; fluorogenic assay; chemoselective chemical
modification of amino acids

1. Introduction

Protein modification is important in the fields of chemical biology, shotgun proteomics,
and peptide therapeutics [1–5]. Post-translational protein modification (PTM) is a protein
modification process that occurs during protein biosynthesis subsequent to translation [2,6]
and involves chemical transformations that produce chemically and functionally diverse
proteins via the covalent addition of chemical moieties to the amino acid side chains within
proteins [7]. Similar modifications can be achieved experimentally by exploiting the vast
range of chemical reactions to facilitate the conjugation of amino acids including lysine and
arginine with specific chemical moieties [3,8,9]. A large number of studies have been con-
ducted to date, regarding specific modification of lysine with citraconic anhydride [10–13]
and arginine with phenyl glyoxal [14–16]. Shapiro et al. have described the methods of
chemical modification of lysine and arginine with specific chemical reagents and evaluated
the effect of modification on ribonucleolytic activity of angiogenin [17]. Under optimal
reaction conditions, chemical reagents such as citraconic anhydride and phenyl glyoxal
covalently react with nucleophilic amino or guanidine group of lysine and arginine in
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substrates, which interrupts the proteolysis of substrates by trypsin. Reported chemical
reagents for lysine modification belong to the class of anhydrides (citraconic anhydride,
acetic anhydride, and diethylpyrocarbonate) while the arginine modification exploits the
chemistry of 1,2-dicarbonyl compounds (phenyl glyoxal and p-hydroxy phenyl glyoxal).
Although a number of reports have been published regarding the modification of amino
acids including lysine and arginine based on the nature of the side chain groups [8,18,19],
the extent and chemoselectivity of modification are not well documented, owing to a lack of
practical and reliable assay methods. In an attempt to quantify exact extent and chemoselec-
tivity of reported blocking agents for either lysine or arginine, we have planned to design
and develop a highly reliable, fast, and practical assay method. Fluorogenic assays are
highly sensitive, precise, and rapid, can be used for the determination of enzyme-substrate
reactions and fluorogenic peptide substrates are routinely used to determine the activity of
proteases such as endopeptidases, carboxypeptidases, and aminopeptidases [20–22]. The
fluorogenic peptide substrates that have been reported to date consist of a fluorophore-
conjugated peptide with a specific sequence for enzyme recognition. The cleavage of a
specific peptide bond by proteolytic enzymes as trypsin releases the fluorophore, and the
corresponding increase in fluorescence is determined as a measured of protease activity.
We speculated that chemical modification (blocking) of an amino acid including lysine and
arginine at the proteolytic site would render the peptide substrate resistant to proteolysis
by protease enzymes as trypsin and that the fluorescence would decrease corresponding to
the extent of chemical modification (Figure 1).
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Figure 1. A schematic representation of the use of fluorogenic peptide substrates in assays to determine the extent of
chemical modification of endogenous amino acids. (A) An increase in fluorescence on proteolysis of a fluorogenic peptide
substrate by a protease; (B) A reduction in fluorescence following chemical modification of an endogenous amino acid at
the proteolytic site of the fluorogenic peptide substrate.

To test our hypothesis, we designed fluorogenic tripeptide substrates containing a
lysine or arginine, which serves as a site for cleavage by a specific proteolytic enzyme,
trypsin. Within the structure of the fluorogenic peptide substrate, which comprises a
fluorophore (FP) attached to a tripeptide (FP-AA1-AA2-AA3), AA1 represents the site
(lysine or arginine) for cleavage by trypsin (Figure 2). In accordance with our hypothesis,
the reaction of trypsin with the FP-AA1-AA2-AA3 tripeptide would result in an increase
in fluorescence intensity, whereas conversely, selective blocking of AA1 with a suitable
blocking agent (chemical modifying agents) would inhibit trypsin proteolysis, and there
would be a concomitant reduction in fluorescence, depending on the extent of modification.
Trypsin is a serine protease that cleaves peptides or proteins selectively at the carboxyl side



Molecules 2021, 26, 1975 3 of 12

of the lysine or arginine [5,23]. Thus, we selected lysine or arginine as the AA1 residue
attached directly to the fluorophore MeRho, which is a good fluorophore in terms of
fluorescence intensity, biocompatibility, and stability [24]. The AA2-AA3 (Gly-Leu(Ac))
sequence was similarly selected based on trypsin substrate specificity [25].
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Figure 2. Mechanism of action of fluorogenic peptide substrate modification during the fluorogenic assay. Pathway A:
Proteolysis of a fluorogenic peptide substrate by trypsin induces the increase in fluorescence by release of fluorophore.
Pathway B: Blocking of an amino acid at the proteolytic site of the fluorogenic peptide substrate showed a maintained
fluorescence or relatively decreased fluorescence compared Path A owing to inhibition of proteolysis.

In this study, we synthesized two fluorogenic tripeptide substrates, MeRho-Lys-Gly-
Leu(Ac) (lysine-specific substrate) and MeRho-Arg-Gly-Leu(Ac) (arginine-specific sub-
strate), and evaluated the blocking activity of known lysine or arginine blocking agents to
assess the extent and chemoselectivity of chemical modification. Concentration–response
curves were generated based on the concentration-dependent blocking of AA1 by lysine
or arginine blocking agents. As a measure of the extent of chemical modification, we
calculated the half-maximal inhibitory concentrations (IC50) of AA1 blocking agents from
semilogarithmic plots of concentration–response curves. Additionally, the ratios of the IC50
values for lysine and arginine (IC50arginine/IC50lysine and IC50lysine/IC50arginine) were
calculated as a measure of the chemoselectivity of chemical modification.

2. Results and Discussion
2.1. Design and Synthesis of Fluorogenic Peptide Substrates for Fluorogenic Assay

The proteolytic activity of trypsin is measured based on an increase in fluorescence
subsequent to proteolysis of a fluorogenic peptide substrate [26]. The mechanism of action
of all protease-targeted fluorogenic substrates is based on an increase in fluorescence
promoted via the proteolytic site-selective cleavage of peptide bonds, followed by the
release of free fluorophore [27]. We accordingly designed a fluorogenic assay to determine
the extent and chemoselectivity of the chemical modification of amino acids lysine and
arginine. According to our assumption, blocking of lysine or arginine at peptide cleavage
site in the fluorogenic peptide substrate, via the action of a chemical modifying agent
(blocking agent), would inhibit proteolysis by trypsin, and thereby prevent fluorescence
emission. In addition, the intensity of fluorescence upon cleavage by a trypsin following
chemical modification can provide information regarding the extent and chemoselectivity
of the modification. For the practical application of our hypothesis, we performed a study
using trypsin, that cleaves the carboxyl side of lysine or arginine in the peptide sequence
of fluorogenic peptide substrate. As trypsin substrates containing lysine and arginine,
we synthesized the conjugated peptides MeRho-Lys-Gly-Leu(Ac) and MeRho-Arg-Gly-
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Leu(Ac), and evaluated the extent of chemical modification and chemoselectivity for either
lysine or arginine using known lysine or arginine blocking agents [8,17].

The fluorogenic tripeptide substrates were synthesized from methylrhodol (MeRho),
as depicted in Scheme 1, which entailed a series of amide couplings and deprotections.
Initially, compound 1, with an Fmoc-protected lysine, and compound 2, with an Fmoc-
protected arginine, were synthesized via the amide coupling of MeRho with the respective
Fmoc-protected amino acids (Fmoc-Lys(Boc)-OH and Fmoc-Arg(Pbf)-OH) using the amide
coupling reagents EEDQ and EDC/DMAP, respectively. Compounds 5 and 6 were syn-
thesized by deprotection of Fmoc using piperidine followed by amide coupling with
Fmoc-Gly-OH using DIC and HOBt. Repetition of Fmoc deprotection and amide cou-
pling with Ac-Leu-OH under the same reaction conditions provided compounds 9 and 10.
Finally, acid-catalyzed (TFA) deprotection yielded the fluorogenic tripeptide substrates
MeRhO-Lys-Gly-Leu(Ac) 11 and MeRhO-Arg-Gly-Leu(Ac) 12.
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Lysine and Arginine Chemical Modification 
2.2.1. Buffer Selection 

Different buffers have unique and pronounced effects on enzymatic reactions. At pH 
values substantially higher than physiological pH (pH 7.4), most enzymes will undergo 
denaturation or alkaline hydrolysis [28]. It is, thus, necessary to maintain an optimum pH 
at which the side chain amino group of the amino acid will be deprotonated with good 
nucleophilicity that permits a reasonable reaction with the blocking agent [8]. With respect 
to its proteolytic activity, enzyme trypsin has an optimal pH range of between 7.5 and 8.5 
[29]. Buffers used for chemical modification of amino acid side chains should ideally be 

Scheme 1. Synthesis of tripeptide fluorogenic substrates MeRho-Lys-Gly-Leu(Ac) and MeRho-Arg-Gly-Leu(Ac): (i) Fmoc-
Lys(Boc)-OH, EEDQ, Chloroform, rt, or Fmoc-Arg(Pbf)-OH, EDC, DMAP, CH2Cl2, rt, 1 = 82%, 2 = 64%; (ii) (CH2)5NH,
CH3CN, rt, 3 = 96%, 4 = 96%; (iii) Fmoc-Gly-OH, DIC, HOBt, CH2Cl2, rt, 5 = 80%, 6 = 73%; (iv) (CH2)5NH, CH3CN, rt,
7 = 95%, 8 = 97%; (v) Ac-Leu-OH, DIC, HOBt, CH2Cl2, rt, 9 = 76%, 10 = 76%; (vi) 10% TFA, CH2Cl2, rt, 11 = 42%, 12 = 45%.

2.2. Development of a Fluorogenic Assay for Determination of the Extent and Chemoselectivity of
Lysine and Arginine Chemical Modification
2.2.1. Buffer Selection

Different buffers have unique and pronounced effects on enzymatic reactions. At pH
values substantially higher than physiological pH (pH 7.4), most enzymes will undergo
denaturation or alkaline hydrolysis [28]. It is, thus, necessary to maintain an optimum
pH at which the side chain amino group of the amino acid will be deprotonated with
good nucleophilicity that permits a reasonable reaction with the blocking agent [8]. With
respect to its proteolytic activity, enzyme trypsin has an optimal pH range of between
7.5 and 8.5 [29]. Buffers used for chemical modification of amino acid side chains should
ideally be free of the primary amino group to avoid undesirable side reactions. On the



Molecules 2021, 26, 1975 5 of 12

basis of the aforementioned considerations, we performed a buffer selection study on
1 µM of the MeRho-Lys-Gly-Leu(Ac) peptide substrate using the three buffers HEPES
(50 mM), PBS (10 mM), and sodium borate (0.1 mM) at pH 8.3, with the aim of identifying
a buffer facilitating complete cleavage, thereby giving rise to high fluorescence intensity
(MeRho: λex/λem 476/516) (Figure 3). We accordingly found that all buffers worked well,
as evidenced by an increase in fluorescence over time when the peptide substrate was
reacted with trypsin. However, given that compared with the other two buffers, the use of
HEPES buffer gave rise to a higher fluorescence at 30 min, we selected this as the reaction
buffer for further experiments.
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Figure 3. Selection of an optimum buffer for the highest proteolytic activity of trypsin on a peptide
substrate. Trypsin activity was measured with fluorescence emission by the reaction of 1 µM MeRho-
Lys-Gly-Leu(Ac) peptide substrate with trypsin (2 µg/mL) during 30 min in different buffer systems.

2.2.2. Stability of Fluorogenic Peptide Substrates

The stability of a given fluorogenic peptide substrate is a particularly important
consideration with respect to the buffer conditions required for fluorogenic assays, and
thus we assessed the stability of the peptide linkages in the fluorogenic peptide substrates
by measuring the fluorescence intensity under different temperature and pH conditions
(Figure 4). We accordingly found that both fluorogenic peptide substrates showed stable
fluorescence emissions in the pH and temperature ranges between 2 and 10 and 25 ◦C
and 45 ◦C, respectively, thereby indicating that these substrates could be used for the
development of fluorogenic assays with wide pH and temperature ranges.
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2.2.3. Kinetic Study of Trypsin Activity on Fluorogenic Tripeptide Substrates

We went on to determine whether the newly synthesized fluorogenic peptide sub-
strates were sensitive to trypsin concentration, for which we measured the fluorescence
produced by 1µM of peptide substrate (MeRho: 476 nm excitation and 516 nm emission) on
reaction with different concentrations of the trypsin enzyme (Figure 5). Initially, the kinetic
study of proteolytic activity was performed using trypsin concentrations ranging from
0.025 to 25 µg/mL (Figure 5A,C for MeRho-Lys-Gly-Leu(Ac) and MeRho-Arg-Gly-Leu(Ac),
respectively), and we found that trypsin concentrations of 0.25 and 1 µg/mL produced a
kinetically stable fluorescence. Thereafter, we sought to determine the optimum trypsin
concentration within the range of 0.25 to 1 µg/mL required for proteolysis (Figure 5B,D for
MeRho-Lys-Gly-Leu(Ac) and MeRho-Arg-Gly-Leu(Ac), respectively). The concentration of
MeRho released by proteolysis of the fluorogenic peptide substrates was also calculated
from the calibration curve of MeRho standards (Figure 5E,F). We accordingly established
that application of trypsin at a concentration of 1 µg/mL produced the best results with
the highest fluorescence values, corresponding to the release of 61% and 94% of MeRho
from MeRho-Lys-Gly-Leu(Ac) and MeRho-Arg-Gly-Leu(Ac), respectively, and accordingly
used this trypsin concentration in further assays.

2.2.4. Determination of the Extent and Chemoselectivity of Chemical Modification of
Lysine and Arginine Using a Fluorogenic Assay

We subsequently investigated whether our novel fluorogenic peptide substrates are
practically applicable for determining the extent and chemoselectivity of lysine and arginine
chemical modification. For this purpose, we selected lysine blockers (anhydrides and cyclic
anhydride derivatives) and arginine blockers (α-dicarbonyl derivatives) as blocking agents
for side-chain modification [8,17]. These blockers were screened to assess their capacity
to chemoselectively modify an amino acid (AA1) in the fluorogenic peptide substrates.
Chemical modification of AA1 modulated the proteolytic activity of trypsin toward the
substrate, thereby reducing fluorescence, depending on the concentration of the blocker
used in the fluorogenic assay.

Different concentrations of the selected lysine blockers, namely, anhydrides (acetic
anhydride, benzoic anhydride, diethylpyrocarbonate, p-toluene sulfonic anhydride) and
cyclic anhydrides (maleic anhydride, citraconic anhydride, and phthalic anhydride) were
reacted with both fluorogenic substrates for 30 min, after which we assessed the effects
on the proteolytic activity of trypsin for 30 min. Having obtained semilogarithmic plots
of concentration–response curves (see Figure S1 to Figure S16 in ESI), we used these to
calculate IC50 values to quantify the extent of chemical modification. The chemoselectively
of chemical modification for either lysine or arginine was assessed based on the IC50 ratios
IC50arginine/IC50lysine and IC50lysine/IC50arginine, (Tables 1 and 2). In this regard, lysine
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contains an ε-amino group (pKa ~ 10.5) [30] as a side chain, whereas arginine contains a
guanidino group (pKa 12–13.7) [31,32], and on the basis of the reactivities of these side
chains at slightly basic pH, these amino acids are chemically modified by anhydrides and
glyoxals, respectively [8]. The deprotonated primary amine in the side chain of lysine
reacts rapidly and specifically with anhydrides via a nucleophilic acyl substitution reaction
to form amide bonds [8], whereas the addition of α-dicarbonyl to arginine results in the
formation of a hydrolytically unstable imidazolidine, which is stabilized by the addition of
a one more mole of glyoxal [8].
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Table 1. The selectivity of blocking agents for lysine.

Sr No. Blocking Agent
IC50 in µM Selectivity Ratio

MeRho-Lys-Gly-Leu(Ac) MeRho-Arg-Gly-Leu(Ac) (IC50Arg)/(IC50Lys) a

1. Acetic anhydride 162 ND b Lysine selective
2. Benzoic anhydride 4.90 84.59 17.26
3. Diethyl pyrocarbonate 49 2199 45

4. p-Toluene sulfonic
anhydride ND ND ND

5. Maleic anhydride 44 ND Lysine selective
6. Citraconic anhydride 124 ND Lysine selective
7. Phthalic anhydride 98 ND Lysine selective

a = Selectivity ratio for lysine, b = Not detectable.
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Table 2. The selectivity of blocking agents for arginine.

Sr No. Blocking Agent
IC50 in µM Selectivity Ratio

MeRho-Lys-Gly-Leu(Ac) MeRho-Arg-Gy-Leu(Ac) (IC50Lys)/(IC50Arg) a

1. Phenyl glyoxal ND b 2787 Arginine selective

2. 4-(Trifluoromethyl)phenyl
glyoxal ND 705 Arginine selective

3. 2-(Trifluoromethyl)phenyl
glyoxal ND 2030 Arginine selective

4. 4-Nitrophenyl glyoxal ND 671 Arginine selective
5. 4-Methoxyphenyl glyoxal ND 1095 Arginine selective

6. 6-Methoxy-2-naphthyl
glyoxal 900 139 6.47

7. Benzaldehyde ND ND ND
8. 1,2 Cyclohexadione ND ND ND
9. 2,3-Butadione ND ND ND

a = Selectivity ratio forarginine, b = Not detectable.

In the present study, we found that both anhydrides and cyclic anhydrides showed
chemoselective blocking activity for lysine compared with arginine, whereas sulfonic
anhydrides proved to be ineffective in blocking the activity of either of the two amino
acids (Table 1). Among these anhydrides, benzoic anhydride was established to have the
lowest IC50 value of 4.90 µM toward lysine, the chemoselectivity of which was 17 times
higher than that for arginine. Interestingly, cyclic anhydrides were found to be best for
chemoselective lysine chemical modification, with no detectable modification of arginine.

We similarly investigated the reactivity of arginine-specific blockers toward the two
fluorogenic peptide substrates (Table 2), and accordingly found that α-dicarbonyl com-
pounds such as phenyl glyoxal derivatives were highly arginine-selective in our fluorogenic
assay, which is consistent with the findings of previous studies [15]. Substituted phenylgly-
oxal derivatives also showed high arginine selectivity and, with the nature and position
of the substituent in phenylglyoxal determining the extent of modification. Compared
with ortho-substitution (2-CF3), the electron-withdrawing group (4-CF3 or 4-NO2) at para
position favored arginine modification, whereas an electron-donating group (4-OCH3), at
the para position showed relatively less interaction with arginine. However, we found that
benzaldehyde with a single aldehyde group does not interact with arginine, thereby indi-
cating that the dicarbonyl moiety plays a significant role in the interaction with arginine,
as reported previously. Surprisingly, we observed that the introduction of an additional
aromatic ring (naphthyl) showed the most potent inhibition for arginine, although chemos-
electivity was lost. However, vicinal diketones (1,2-cyclohexadione and 2,3-butadione),
previously reported to be arginine-specific blockers, were found to show no reactivity with
arginine in our fluorogenic assay, which could conceivably be attributed to a reversible
reaction resulting in the formation of unstable cis-diol and dihydroxyimidazoline, and
needs to be addressed separately [8,33].

3. Materials and Methods
3.1. Materials and Instrumentation

All starting materials and reagents were purchased from Sigma-Aldrich Chemical
Co. (St. Louis, MO, USA); Tokyo Chemical Industries (Tokyo, Japan); Daejung Chemicals
(Siheung-si, Korea) and Alfa Aesar (Ward Hill, MA, USA), and were used without any
further purification. Solvents were purified using a PureSolv Micro Multi Unit solvent
purification system obtained from Inert Technology (Amesbury, MA, USA) and were used
under a dry nitrogen atmosphere. The progress of reactions was assessed by thin-layer
chromatography on silica gel plates (Kiesegel 60F254; Merck; Darmstadt, Germany), and
the synthesized compounds were purified by flash column chromatography using silica
gel (ZEOprep 60; 40–63 µm; Zeochem, Louisville, KY, USA). 1H-NMR and 13C spectra were
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measured with a JEOL JNM-ECZ400s/L1 (400 MHz) spectrometer (Tokyo, Japan), using
CDCl3 or DMSO-d6 as the NMR solvent (Cambridge Isotope Laboratories, Tewksbury, MA,
USA). 1H-NMR chemical shifts are expressed in terms of parts per million (ppm) based
on the chemical shift of tetramethylsilane (δ = 0 ppm) in CDCl3 as an internal standard.
The chemical shifts in 13C-NMR are reported in ppm relative to the centerline of the triplet
at 77.0 ppm observed for CDCl3 or 39.5 ppm for DMSO-d6. The coupling constant J in
1H-NMR is reported in hertz (Hz). Fluorogenic assays were performed using a Synergy™
H1 microplate reader from BioTek Instruments (Winooski, VT, USA). Trypsin from porcine
pancreas was purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). The
enzyme solution was freshly prepared prior to performing assays by dissolving lyophilized
trypsin powder in assay buffer (50 mM HEPES, pH 8.3). Stock solutions of the fluorogenic
peptide substrate and amino acid blockers were prepared in DMSO.

3.2. General Synthetic Procedure
3.2.1. General Procedure A: Amide Coupling

To a solution of aniline or amine (1.0 eq.) and AA (1.2 eq.) in CH2Cl2, we added DIC
(1.2 eq.) and HOBt (1.2 eq.). The reaction mixture was stirred at room temperature for 2 h,
and on completion of the reaction, the reaction solvent was evaporated. The resulting solid
was purified by column chromatography to obtain the desired product.

3.2.2. General Procedure B: Fmoc Deprotection

To a solution of Fmoc-protected compound (1.0 eq.), we added piperidine (1.2 eq.) in
anhydrous CH3CN (395 eq.). The reaction mixture was stirred at room temperature for
2 h, and on completion of the reaction, the reaction solvent was evaporated. The resulting
residue was purified by column chromatography to obtain the desired Fmoc-deprotected
product.

3.2.3. General Procedure C: Acid-Labile Group Deprotection (Boc/Pbf)

To a solution of Boc/Pbf-protected compound (1.0 eq.), we added TFA (10% solvent)
in anhydrous CH2Cl2. The reaction mixture was stirred at room temperature for 2 h, and
on completion of the reaction, the pH of the reaction mixture was increased with 1N NaOH.
The compound was extracted using an organic solvent mixture (DCM: MeOH, 90:10), and
the organic layer was dried over Na2SO4 and filtered, with the resulting filtrate being
evaporated under vacuum. The resulting residue was purified by column chromatography
to obtain the desired fluorogenic peptide substrate.

3.3. Buffer Selection

Buffer selection was performed by incubating 1 µM of the fluorogenic peptide sub-
strate (MeRho-Lys-Gly-Leu(Ac)) in different buffers (HEPES (50 mM, pH 8.3), PBS (10 mM,
pH 8.3), and sodium borate (0.1 mM, pH 8.3)) at 30 ◦C in presence (2 µg/mL) or absence
of trypsin and recording the fluorescence (λex/λem 476/516) in each buffer in a 96-well
microplate using a Synergy H1 reader.

3.4. Thermal and pH Stability of Fluorogenic Peptide Substrates

We performed a temperature-dependent assay by incubating 1 µM of the fluorogenic
peptide substrate in HEPES buffer (50 mM, pH 8.3) at different temperatures (25, 28, 31, 34,
37, 43, and 45 ◦C) for 20 min, and fluorescence was recorded (λex/λem 476/516) at each
temperature. An assessment of pH dependence was performed by incubating 1 µM of the
fluorogenic peptide substrate in a range of pH buffer solutions (pH 2 to 13, at 30 ◦C) and
recording the fluorescence (λex/λem 476/516) at each pH in a 96-well microplate using a
Synergy H1 reader.
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3.5. Sensitivity of Fluorogenic Peptide Substrates to Trypsin Proteolysis

The sensitivity of the fluorogenic peptide substrate to the proteolytic activity of trypsin
was assessed by incubating 1 µM of substrate in different concentrations of trypsin in
HEPES buffer (50 mM, pH 8.3) at 30 ◦C and recording the fluorescence spectra (λex/λem
476/516) kinetically at each trypsin concentration in a 96-well microplate using a Synergy
H1 reader.

3.6. Determination of Concentration of Fluorophore Released from Fluorogenic Peptide Substrate

Fluorescence of a series of standard solutions of MeRho with concentration range of
0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0 µM was measured in a 96-well microplate using
a Synergy H1 reader at λex/λem 476/516. A first order straight line was fitted in graph
with fluorescence intensity (y-axis) and concentration µM (x-axis). The concentration of
fluorophore released from substrate on trypsin proteolysis was calculated from the slope
of the calibration graph (Figure 5E,F).

3.7. In Vitro Fluorogenic Assay

All spectroscopic readings were recorded with a BioTek SynergyTM H1 instrument
using a 96-well microplate. The proteolytic reaction was performed in a total volume of
200 µL with the addition of 100 µL of HEPES (50 mM, pH 8.3), 10 µL (1 µM) of fluorogenic
peptide substrate stock solution (20 µM in DMSO), and 2 µL (final concentration of blocker
0.01, 0.1, 1, 10, 100, 1000, and 10000 µM) of amino acid blocker stock solution (0.001, 0.01,
0.1, 1, 10, 100, and 1000 mM), with the final volume being adjusted to 190 µL using HEPES
buffer (50 mM, pH 8.3). The plates were incubated at 30 ◦C for 30 min with continuous
shaking. Thereafter, 10 µL (1 µg) of trypsin solution (20 µg/1000 µL in HEPES, 50 mM,
pH 8.3) was added to the assay mixture, and the plate was again incubated at 30 ◦C for
30 min with continuous shaking. For preparation of a kinetic graph, emission spectra were
recorded at λex/λem 476/516 with respect to time. In the case of cyclic anhydrides (i.e.,
citraconic anhydride, maleic anhydride, and phthalic anhydride), 2 µL (final concentrations
of NaOH (0.02, 0.2, 2, 20, 200, 2000, and 20,000 µM) of NaOH stock solution (0.002, 0.02,
0.2, 2, 20, 200, and 2000 mM) was also added to maintain the pH of the assay mixture.
Semilogarithmic plots were constructed using values at 30 min after proteolysis to calculate
the IC50 values of amino acid blocking agents.

4. Conclusions

In conclusion, we developed a highly efficient innovative fluorogenic assay, based
on a fluorogenic peptide substrate containing a lysine and arginine at proteolytic site, to
determine the extent and chemoselectivity of chemical modification of amino acids lysine
and arginine. We designed two fluorogenic tripeptide substrates, MeRho-Lys-Gly-Leu(Ac)
and MeRho-Arg-Gly-Leu(Ac) comprising a MeRho fluorophore conjugated to lysine or
arginine, a site for selective chemical modification, and demonstrated that these substrates
exhibited turn-on fluorescence via release of the fluorophore following cleavage by a trypsin.
Conversely, the chemoselective chemical modification of amino acids lysine or arginine
leads to a decrease in fluorescence based on the extent of modification of the proteolytic
reaction. Using this assay, we also demonstrated that changes in the electronic factor and
position of the substituent in the blocking agents affect the extent and chemoselectivity
of amino acid modification. Most commonly used blocking agents including anhydrides
or 1,2 dicarbonyl derivatives to modify amino acids lysine or arginine during peptide or
protein modification was not well characterized, lacking the detailed study about the extent
and chemoselectivity for a specific amino acid. The findings of this study indicate that
the novel fluorogenic assay will have potential utility in the characterization of blocking
agents and used them more efficiently during peptide or protein modification. In addition,
it is possible to design and development of new more efficient and highly selective amino
acid blockers for lysine or arginine, by performing structure–activity relationship analyses
that assess the substituent effect of amino acid blockers as performed for phenyl glyoxal in
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this study. The amino acid blockers identified using fluorogenic assay in this study can be
applied further for peptide or protein modification to achieve desired objective.

Supplementary Materials: The following are available online. Synthetic procedures; semilogarithmic
plots from concentration-response curves of chemical modification of amino acids: Figures S1–S16.
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