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Abstract. Spinal cord injury (SCI) is a major social problem 
with a heavy burden on patient physiology and psychology. 
Glial scar formation and irreversible neuron loss are the 
two key points during SCI progression. During the acute 
phase of spinal cord injury, glial scars form, limiting the 
progression of inflammation. However, in the subacute or 
chronic phase, glial scarring inhibits axon regeneration. 
Following spinal cord injury, irreversible loss of neurons 
leads to further aggravation of spinal cord injury. Several 
therapies have been developed to improve either glial scar 
or neuron loss; however, few therapies reach the stage of 
clinical trials and there are no mainstream therapies for SCI. 
Exploring the key mechanism of SCI is crucial for finding 
further treatments. Glycogen synthase kinase‑3 (GSK‑3) 
is a widely expressed kinase with important physiological 
and pathophysiological functions in vivo. Dysfunction of 
the GSK‑3 signaling pathway during SCI has been widely 
discussed for controlling neurite growth in vitro and in vivo, 
improving the proliferation and neuronal differentiation 
of endogenous neural stem cells and functional recovery 
from spinal cord injury. SCI can decrease the phosphory‑
lated (p)/total (t)‑GSK‑3β ratio, which leads to an increase 
in apoptosis, whereas treatment with GSK‑3 inhibitors can 
promote neurogenesis. In addition, several therapies for 
the treatment of SCI involve signaling pathways associated 
with GSK‑3. Furthermore, signaling pathways associated 
with GSK‑3 also participate in the pathological process of 
neuropathic pain that remains following SCI. The present 
review summarized the roles of GSK‑3 signaling in SCI 
to aid in the understanding of GSK‑3 signaling during the 
pathological processes of SCI and to provide evidence for 
the development of comprehensive treatments.
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1. Introduction

The CNS contains the brain and spinal cord from which the 
peripheral nerves branch and is safeguarded by the spinal cord, 
which encompasses the meninges, cerebrospinal fluid and 
spine. The spinal cord exerts important functions, including 
the regulation of motor and sensory functions (1,2). Spinal cord 
injury (SCI) is the most common disabling spinal injury; For 
the last 30 years, its global prevalence has increased from 236 
to 1,298 cases per million populations. The estimated global 
rate of SCI falls between 250,000 and 500,000 individuals 
every year.

It can damage the normal anatomy of the spinal cord, 
leading to axonal rupture, neuronal degeneration and necrosis, 
inflammatory response and demyelination, ultimately leading 
to severe neurological dysfunction (3,4). SCI frequently results 
in sensorimotor disorders, autonomic changes and intractable 
pain; Spinal cord injury can also affect respiratory, urinary, 
and gastrointestinal functions and is one of the factors leading 
to the development of infection. After spinal cord injury, a 
large number of inflammatory substances are released into 
the blood and cause inflammation throughout the body. Thus 
seriously affecting the quality of life of patients (5). SCI is 
categorized into two types: Traumatic and non‑traumatic. 
The former is more common and mainly caused by external 
physical impacts, such as vehicle accidents, violence and 
falls (1,6), whereas the latter is usually caused by compression 
of a tumor; the enlargement of some tumors can compress the 
spinal cord tissue, resulting in the destruction of the spinal 
cord tissue, resulting in clinical symptoms, vascular ischemia 
or congenital disease such as Spinal Bifida (7). The current 
review mainly focused on traumatic SCI. Following spinal 
cord injury, axons of the CNS fail to regenerate. By contrast, 
peripheral nervous system axons regenerate after injury and 
show restored function. The lack of CNS regeneration after 
injury may be associated with abnormal expression of specific 
molecules in myelin and glial scars in the CNS, including Nogo, 
oligodendroglia‑myelin glycoproteins and myelin‑associated 
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glycoproteins (8). A previous study reported that these mole‑
cules induce the activity of the Rho‑Rho‑associated protein 
containing kinase 2 (ROCKII) and glycogen synthase 
kinase‑3β (GSK‑3β) signaling pathways, leading to inhibition 
of axonal regeneration in the CNS (9). Thus, the Rho‑ROCKII 
and/or GSK‑3β signaling pathways may be targets for restoring 
axon regeneration.

2. Mechanisms involved in SCI

The CNS is composed of neurons and glial cells; glial cells 
include astrocytes, microglia, oligodendrocytes and Schwann 
cells, and are crucial for proper CNS development and func‑
tion (10). The interaction between neurons and glial cells plays 
an important role in the physiological processes of the central 
nervous system. The dysfunction of neurons and glial cells is 
one of the pathogenesis of neuro developmental disorders (11). 
Glial cells, mainly astrocytes, collaborate with neurons and 
vasculature to harvest nutrients from the bloodstream, thus 
providing metabolic sustenance to neurons (12). The myelina‑
ting glia of the CNS and the peripheral nervous system, 
oligodendrocytes and Schwann cells, respectively, contribute 
to the electrical insulation of axons, thus enabling swift signal 
transmission (13). Microglial cells are innate immune cells 
that reside in the CNS; they dynamically monitor the microen‑
vironment of the CNS and contribute to the CNS homeostasis 
in physiological conditions, and are closely associated with 
neuroinflammation in pathological conditions (14).

The pathophysiological process of SCI is quite complex, 
involving the dysfunction of neurons and glial cells, which 
includes vascular responses, abnormal neuroinflamma‑
tion, neuronal loss and demyelination (15,16). In addition, 
traumatic SCI can be divided into two phases: i) Irreversible 
primary injury, which happens at the moment of injury, and 
ii) secondary injury, which occurs within minutes following 
the primary injury (17). Spinal cord compression is the most 
common pathogenesis of spinal cord injury and persists after 
injury (18). Bleeding can occur in the early stages of an SCI, 
followed by disruption of the blood supply. The most common 
clinical manifestations immediately following injury are 
disruption of the spinal vascular supply and hypotension/hypo‑
perfusion, resulting in hypovolemia, neurogenic shock and 
bradycardia due to spinal cord ischemia (19). Disturbance 
of blood flow following SCI leads to hypoxia and ischemic 
infarction. Specifically, these two conditions damage the 
metabolically higher gray matter; white matter and gray matter 
metabolism show different basic properties, but the responses 
to neuronal activity are qualitatively similar. The neurons in 
the damaged area are physically broken and the thickness 
of the myelin sheath is reduced (20). In addition, edema and 
macrophage accumulation in the damaged tissue exacerbate 
the deterioration of neuronal transmission. Secondary injuries 
can be caused by primary injuries and several pathophysi‑
ological mechanisms can come into play hours or days after an 
SCI occurs (21,22). Energy deficiency caused by ischemia and 
impaired perfusion at the cellular level is the most influential 
factor (23). Key changes have been identified, such as bleeding, 
demyelination, edema, cavity formation with axon and neuron 
necrosis, and a series of pathological changes such as neuron 
death and axon breaking in nerve tissue following SCI can 

further increase infarction (24). Following secondary injury, 
increased free radical damage and lipid peroxidation in the 
cell membrane, as well as secondary injury signal cascade in 
the damaged tissue area, can eventually lead to the death of 
neurons (25). In addition, during the second injury, released 
toxic compounds stimulate the differentiation of neural 
stem/progenitor cells into astrocytes, leading to reactive astro‑
gliosis and the transition from the inflammation phase to glial 
scar formation (Fig. 1) (26).

The poor prognosis of SCI may be, in large part, due to two 
critical factors, including glial scar formation and irrevers‑
ible neuron loss, which work together to interrupt the neural 
pathway and lead to the damage of axon regeneration (27). In 
patients with spinal cord injury and in rodent models, obstruc‑
tion of axon regeneration and its functional recovery has 
been shown to permanently inhibit regeneration of the spinal 
cord (28). The central idea of alleviating SCI is preventing, 
attenuating and reversing secondary injury and improving 
spinal cord neurological functions (1). Common treatments 
used in clinical practice include traditional drug therapy (1), 
surgery (29,30), cell transplantation (31‑34), tissue engi‑
neering (35), cell therapy and nanomedicine (36). However, 
these treatments rarely recover SCIs completely and can only 
improve symptoms and reduce complications.

Glial scar formation. Glial cells of the CNS (mainly astro‑
cytes) are abundant and their roles in sustaining the dynamic 
balance of the neuronal microenvironment and controlling 
blood flow are fundamental. Preservation of the blood‑brain 
barrier and the malleability and purpose of the synapses must 
be regulated (37). Following SCI, the trauma activates resident 
astrocytes and pericytes, and recruits infiltrating fibroblasts 
and Schwann cells from the peripheral nervous system, leading 
to the formation of glial scars in the injured spinal cord (38,39). 
Fibroblasts and Schwann cells migrate into the epicenter of the 
lesion and contribute to the production of extracellular matrix 
(ECM) proteins, such as nestin, glial fibrillary acidic protein 
and proteins transported by the veins (40,41). The deposition 
of ECM components and the accumulation and activation of 
glial cells contribute to the formation of a glial scar around the 
periphery of the lesion. Other cells such as activated microglia 
and NG2 glia form a dense boundary that isolates the damaged 
area (42). The lesion core includes a mixture of mononuclear 
macrophages, activated fibroblasts and ECM proteins (43,44).

For decades, glial scars have been considered the main 
factor against spinal cord regeneration (45). The primary inhib‑
itory ECM molecules that are produced by reactive astrocytes 
during glial scar formation include the chondroitinase enzyme, 
which acts on chondroitin. In animal models, treatment with 
chondroitinase following SCI exhibited axonal regeneration 
and functional recovery (46). In non‑mammalian vertebrates 
such as zebrafish, a restricted amount of glial scarring demon‑
strated the regeneration of the spinal cord, accompanied by a 
considerable restoration of motor function (28,47). However, 
glial scar formation is also an essential event during SCI 
recovery. In the acute phase of SCI, the formation of a glial 
scar serves an important role in restricting the size of the 
primary injury. The glial scar limits excessive inflammation 
from the lesion to normal tissue, clears debris and repairs the 
blood‑spinal cord barrier, which prevents the spread of toxic 
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compounds to the surrounding tissue and the production of 
neurotrophins (48‑50). In the sub‑acute or chronic phase, the 
glial scar inhibits axonal regeneration, which has been shown 
to be harmful to the regeneration of the spinal cord (45). The 
dual role of the glial scar (both harmful and protective) during 
SCI makes it difficult to target the glial scar for therapeutic 
purposes (Fig. 2) (51).

Neuron loss. Irreversible neuron loss is another crucial part 
of SCI recovery. A combination of multiple causes, such as 
direct injury, inflammation, ischemia/reperfusion injury and 
neurotoxic cells, can lead to neuron loss (52,53). The primary 
sites of active neurogenesis in the adult brain are the subven‑
tricular zone of lateral ventricles and the subgranular zone of 
the dentate gyrus, which possess the capacity to generate all 
major neuronal phenotypes (54,55). However, neurons in the 
spinal cord have low regeneration and proliferation potential, 
and the vast majority of the adult spinal cord is composed of 
nerve cells, which mainly produce astrocytes and oligoden‑
drocytes (56). Microglia are resident macrophages of the CNS 
and are essential in the control of damage repair, brain devel‑
opment and the upkeep of neuronal networks (57). Microglia 
activation is strongly associated with delayed neuronal loss 
in the peri‑infarct area (58,59). Microglia are found only in 
the brain, retina and spinal cord (60). They are cells special‑
ized in the phagocytosis and digestion of extracellular matter, 
including other cells. In normal tissues, microglia are highly 
differentiated, with elongated processes capable of engulfing 
smaller objects, such as synapses and fragments, but not larger 
objects such as neurons (61). However, when microglia are acti‑
vated by inflammatory stimuli, they increase the expression of 

opsonins, lysosomes and phagocytic receptors; in addition, the 
microglia process is retracted, thus producing a large moving 
cell body capable of phagocytosing neurons (62).

Insufficient neurogenesis in the adult spinal cord is a key 
challenge in reconstructing original neuronal networks; as 
such, neural repair and neuroregeneration after nerve repair 
is a key step in tissue repair following SCI. Various types 
of stem/progenitor cell therapy have been shown to have 
great development potential (63,64). Transplantation of cells 
is considered to be one of the most promising therapies for 
neuronal regeneration following SCI; this process includes 
direct injection/transplantation of olfactory ensheathing 
cells (65), intramedullary Schwann cell (66), embryonic (67) 
and mesenchymal stem cells (64,68). Although these thera‑
pies have demonstrated good therapeutic effects in several 
preclinical studies, some adverse reactions were found during 
clinical application. For instance, direct injection of olfactory 
ensheathing cells had serious side effects, such as syrinx 
formation, myelomalacia and perioperative morbidity, which 
limited its clinical application (69); in addition, intramedullary 
transplantation of Schwann cells can induce unsatisfactory 
motor and functional improvement (66), and the transplanta‑
tion of embryonic stem cells also had severe risks such as 
the formation of teratomas (67), whereas mesenchymal stem 
cell transplantation could induce tumor formation (70,71). 
Neuronal reprogramming is a novel technology that can 
regenerate functional neurons from glial cells by overex‑
pressing neurogenic transcription factors (such as NeuroD1) 
in several neurodegenerative disorders, including Huntington's 
and Alzheimer's diseases (72‑75). Here, an adeno‑associated 
virus is used to overexpress NeuroD1 to the convert reactive 

Figure 1. Mechanisms involved in SCI. Traumatic SCI can be divided into two phases, irreversible primary injury that happens immediately at the moment of 
injury, and secondary injury that occurs within minutes following the primary injury. Irreversible primary injury induced by mechanical injury will lead to 
the disruption of blood‑spinal cord barrier, vascular injury, swelling and inflammation. Subsequently, the damaged neurons and glial cells will release toxic 
compounds, such as pro‑inflammatory cytokines and chemokines, which in turn leads to the second injury with the death of most of cells. In addition, during 
the second injury, the released toxic compounds will stimulate the differentiation of neural stem/progenitor cells into astrocyte, leading to reactive astrogliosis 
and the transition from the inflammation phase to glial scar formation, resulting in a poor prognosis. SCI, spinal cord injury.
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astrocytes into neurons in the dorsal horn of the injured spinal 
cord, thus providing a novel possibility for the treatment of 
SCI.

3. GSK‑3

GSK‑1, GSK‑2 and GSK‑3 are highly conserved serine/threo‑
nine kinases in the GSK protein family; they were initially 
identified as negative regulators of glycogen metabolism (76). 
Among them, GSK‑3 is the most studied as it has pivotal 
roles in numerous cellular functions, including regulating 
gene expression, cell survival and neuronal polarity (77). 
GSK‑3 has two isoforms, GSK‑3α and GSK‑3β, and one 
splice variant (GSK‑3β2), which is expressed specifically in 
the nervous system (78). These two isoforms share ~95% 
amino acid identity, thus, GSK‑3α and GSK‑3β have unique 
and overlapping functions (79). GSK‑3 has a large number 
of interacting substrates, including CREB (80), the Nfat 
family of proteins (81), neurogenin 2 (82), SMAD1 (83) and 
β‑catenin (84), all of which are part of the cyclic AMP response 
element‑binding protein family. Among the two isoforms, 
GSK‑3β may have more predicted substrates than GSK‑3α, so 
GSK‑3β has traditionally received more attention (85).

GSK‑3 is mainly localized in the cytoplasm where it 
regulates transcription factors by regulating their protein 
concentrations, DNA attachment capabilities and/or nuclear 
positioning (86). Most kinases are inactive in resting cells and 
become active after phosphorylation. In contrast with other 
kinases, GSK‑3 is highly active in unstimulated cells and it 
is rendered inactive after phosphorylation following stimula‑
tion from various sources, including growth factors (87). 
Growth factor‑mediated phosphorylation of GSK‑3 inhibits 

its activation and leads to the activation of its downstream 
substrates.

GSK‑3 is ubiquitously expressed in the human body, and 
its dysfunction has been confirmed in several disorders such 
as cancer, cardiovascular diseases, diabetes and inflammatory 
conditions. GSK‑3 is also expressed in the CNS and partici‑
pates in several physiological and pathological functions (88). 
There is evidence of a close association between the disruption 
of GSK‑3 signaling and the emergence of neuroinflammation, 
neurodegenerative illnesses and psychiatric disorders. For 
example, GSK‑3 is a key role in the pathogenesis of Alzheimer's 
disease, as it participates in the abnormal phosphorylation of τ 
protein and the production of amyloid‑β (89‑92). Dysfunction 
of the GSK‑3β signaling pathway has also been demonstrated 
in neuropsychiatric disorders, such as schizophrenia (93). In 
postmortem tissues of patients with schizophrenia, GSK‑3β 
mRNA expression was reduced in the active frontal cortex and 
dorsolateral prefrontal cortex, although there was no differ‑
ence in occipital cortical protein expression (93,94). GSK‑3 
also regulates rhythms in hippocampal clock gene expres‑
sion and synaptic plasticity (95). During brain development, 
GSK‑3 and its upstream and downstream regulators serve key 
roles in the fundamental processes of neurodevelopment, and 
the disruption of GSK‑3 signaling is associated with several 
neurodevelopmental disorders such as delayed development 
and intellectual disability (78).

Along with its role in neurodegenerative and neurode‑
velopmental diseases, GSK‑3 also serves an important role 
in neurogenesis. Behavioral deficits and neuroprogenitor 
cell proliferation in schizophrenia are regulated by the 
GSK‑3/β‑catenin signaling pathway (96). The hippocampal 
neurons of adults display heightened neurogenesis, as well 

Figure 2. A schematic representation of glial scar formation and its double‑sided effects. Following SCI, trauma activates resident astrocytes and pericytes, 
and recruits infiltrating fibroblasts and Schwann cells from periphery. Fibroblasts and Schwann cells migrate into the lesion epicenter and contribute to the 
deposition of ECM proteins, such as GFAP, nestin and vimentin. The deposition of ECM components and the accumulation and activation of glial cells work 
together in the formation of a glial scar around the periphery of the lesion. The formation of glial scars can limit the spread of inflammation, remove debris 
and repair the blood‑spinal barrier, but can also inhibit axon growth and hinder axon regeneration. ECM, extracellular matrix; GFAP, glial fibrillary acidic 
protein; SCI, spinal cord injury.
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as migration, differentiation, proliferation and neuropheno‑
typic formation, which are linked to the inhibition of GSK‑3 
in rats (97). A correlation between GSK‑3 inhibition and an 
increase in neurogenesis was established in vitro and in vivo 
in adult mouse neural progenitors (97‑99). Neurogenesis in the 
dentate gyrus of the hippocampus of adult rats can be induced 
by the small molecule NP03112 or lithium‑induced inhibition 
of GSK‑3 (97,100). Conditional deletion of GSK‑3 in mouse 
neural progenitors increases proliferation (101). Considering 
the close relationship between GSK‑3 and neurogenesis, the 
role of GSK‑3 signaling pathway in SCI is further discussed 
below.

4. Function and role of GSK‑3 in SCI

SCI decreases the ratio of p‑GSK‑3β/t‑GSK‑3β and increases 
the number of apoptotic cells in the spinal dorsal horn. 
Increasing this ratio may be a useful strategy for reducing 
apoptosis and subsequent neuropathic pain associated with 
SCI (102). PI3K‑mediated activation of GSK‑3β can reduce 
dorsal root ganglia neurite outgrowth associated with excito‑
toxic spinal cord injury dysesthesias (103). The development 
of GSK‑3 signaling pathway in spinal cord injury is shown in 
Fig. 3.

Role of GSK‑3 inhibitors in SCI. The aforementioned hypoth‑
esis, that GSK‑3 regulates SCI, can first be demonstrated 
using GSK‑3 inhibitors. The function of several GSK‑3 
inhibitors in spinal cord injury has been extensively studied. 
For example, GSK‑3 inhibitor Ro3303544 was demonstrated 
to stimulate neurogenesis in cultured multipotent stem cells 
and in SCI rat model (104), as also demonstrated using 
4‑benzyl‑2‑methyl‑1,2,4‑thiadiazolidine‑3 (TDZD‑8). GSK‑3 
is most effectively and precisely inhibited by a 5‑dione non‑ATP 
inhibitor. Treatment with TDZD‑8, one of these inhibitors, 
following SCI could significantly inhibit neuronal apoptosis 
and increases the density of cortical spinal tract fibers around 
the injured area (105). Combination therapy with TDZD‑8 and 
Y27632 (a Rho‑associated coiled‑coil kinase 2 inhibitor) could 
improve the protective effect on axonal regeneration in a rat SCI 
model (106). Lithium, a traditional inhibitor of GSK‑3β, has 
been extensively utilized in the treatment of mood disorders, 
particularly manic depression (107). Neurotrophic factors, such 
as nerve growth factor, neurotrophic factor‑3, brain‑derived 
neurotrophic factor (BDNF) and receptors in the brain are all 
involved in the increase in the concentration and amount of 
lithium in animals (108). Lithium also stimulates stem cells 
proliferation, including neural stem cells in the subventricular 
area, striatum, spinal cord and forebrain (103). Animal models 
of stroke and brain injury, as well as Huntington's, Alzheimer's, 
Parkinson's and amyotrophic lateral sclerosis diseases, show 
that lithium (107) increases the incidence of these diseases. 
Li et al (109) showed that in spinal cord neurons, lithium 
inhibits GSK‑3 activity through two different signaling path‑
ways; lithium activates phosphorylation of AKT in the acute 
phase and upregulates the expression of Na+/K+‑ATPase α1 
in the chronic phase (109). A hypoxic environment is often 
generated around the SCI tissue, so that single therapy with 
gene or stem cells becomes inefficient. Combination treat‑
ment with the GSK‑3 inhibitor, CHIR99021, and a histone 

deacetylase inhibitor, such as valproic acid, can significantly 
boost gene expression through hypoxia/neuron‑inducible gene 
expression system and human‑induced neural therapy such as 
additive stimulus induction. SCI tends to damage nerve tissue 
and create a hypoxic environment (110). A previous study (56) 
confirmed that gene or stem cell therapy alone is inefficient, 
but studies of combination stem cell and gene therapy to treat 
tissue damage have begun to overcome associated limita‑
tions, including inefficient gene delivery and poor treatment 
effectiveness. Therefore, the combination of stem cells, gene 
therapy and hypoxia‑specific systems may contribute to the 
reconstruction of SCI (104). Endoplasmic reticulum (ER) 
stress‑induced apoptosis serves an important role in SCI. The 
AKT/GSK‑3β signaling pathway was demonstrated to be able 
to reduce ER stress‑induced apoptosis in SH‑SY5Y cells when 
valproate, a well‑known medication for treating epilepsy and 
mania in clinics, is administered (111). Table I outlines the 
dosage and effects of GSK‑3 inhibitors.

Treatments through GSK‑3 in SCI. Alongside the inhibitors, 
the therapeutic effects of several other treatments in SCI that 
also target GSK‑3 signaling pathways have been investigated. 
Basic fibroblast growth factor (bFGF) is a potential neuro‑
protective factor that can promote regeneration and repair 
of SCI, especially in the early stage of the injury (112‑114). 
Adrenomedullin (AM) is highly expressed in the spinal cord; 
it can increase p‑AKT, p‑GSK‑3β, p‑CREB and BDNF expres‑
sion levels and promote cAMP accumulation in dorsal root 
ganglion, which indicates the possible beneficial role of AM 
in the protection, survival and regeneration of sensory neurons 
during SCI (115). The potential neuroprotective effects of 
astaxanthin, a powerful antioxidant and anti‑inflammatory 
agent, on spinal cord ischemia‑reperfusion injury may be 
due to activation of the PI3K/Akt/GSK‑3β pathway (116), 
although the mechanism remains to be elucidated. Loureirin 
B is a constituent of Traditional Chinese Medicine that is 
extracted from Dragon's blood tree and has been shown to 

Figure 3. The main lipid substrate of PTEN is PIP3, and PTEN is a nega‑
tive regulator of PI3K/AKT signaling. In the upstream signaling network, 
The activation of mTOR by AKT leads to phospholipid activation of 
GSK‑3, which transduces signals from various growth factors and cytokines 
into intracellular information. PTEN, phosphatase and tensin homolog; 
PIP3, phosphatidylinositol‑3,4,5‑trisphosphate; GSK‑3, glycogen synthase 
kinase‑3.
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affect insulin secretion stimulation, blood glucose reduction 
and immune suppression (117,118). In addition to these func‑
tions, Loureirin B also promotes neuron polarization and 
axon regeneration by regulating the Akt/GSK‑3β pathway 
following SCI (119). Analysis of gene expression profiles can 
reveal several essential pathways and genes linked to neuro‑
pathic pain in those suffering from spinal cord injury. Among 
them, GSK‑3β is identified in human umbilical cord‑derived 
mesenchymal stem cell (HUCMSC) transplantation has been 
confirmed to be an effective therapy to alleviate the symptoms 
of neuropathic pain and to improve motor recovery following 
SCI (120). Stable bFGF‑overexpressing HUCMSC trans‑
plantation exhibited improved therapeutic outcomes, such as 
reduction of glial scar formation, improvement of nerve regen‑
eration and proliferation of endogenous neural stem cells and 
increased locomotion functional recovery of posterior limbs 
in a mouse SCI model (121). In addition, the promotion of the 
proliferation and neuronal differentiation of neural stem cells 
was demonstrated to operate through the PI3K‑Akt‑GSK‑3β 
pathway (116). Neuropathic pain is a common complica‑
tion following SCI experienced by 75‑80% of patients with 
SCI (121,122). GSK‑3B protein is in the protein‑protein inter‑
action network (123). Furthermore, the signaling pathways 
of GSK‑3β have been reported to closely participate in nerve 

injuries, such as neurodegenerative diseases, inflammation and 
neuropathic pain (102). Therefore, GSK‑3 signaling pathways 
may also participate in the pathological process of neuropathic 
pain following SCI.

Relationship between neuropathic pain and GSK‑3 in SCI. 
Intrathecal injection of ghrelin can significantly suppress the 
activation of GSK‑3β in the spinal dorsal horn and alleviate 
neuropathic pain (124). Activation of the GSK‑3 signaling 
pathway significantly enhances motor function, as well as 
reducing SCI‑induced allodynia and hyperalgesia when laser 
treatment and human adipose‑derived stem cell transplanta‑
tion are combined (125). Intrathecal injection of SB216763, 
a selective GSK‑3β inhibitor, has been shown to increase the 
level of p‑GSK‑3β in the dorsal lumbar sections of the spinal 
cord and to completely inhibit the tolerance to morphine 
analgesia in rats (126).

Neuroinflammation has been identified to be crucial 
in the development of neuropathic pain (127). Chemokine 
CXCL5, which participates in the inflammatory process of 
CNS, regulates neuropathic pain after injury by modulating 
GSK‑3β phosphorylation and activity in rats (128). Valproate 
can inhibit pAKT/pGSK‑3β‑mediated neuronal death induced 
by neuropathic pain (129). Spinal nerve ligation could induce 

Table I. A summary of doses and effects of GSK‑3 inhibitors.

First author/s, year GSK‑3 inhibitor Dose  Effects (Refs.)

Rodriguez‑Jimenez et al, 2021 Ro3303544a  1 µM, 24 h Promotes ependymal stem/progenitor (104)
   cells and human embryonic stemcell‑
   derived neural progenitor differentia‑
   tion to mature neurons; enhances
   neurogenesis in ependymal stem/
   progenitor cells.
Lei et al, 2019 TDZD‑8b  1 mg/kg/d, Promotes neuronal cell regeneration (105)
  3 weeks and functional recovery in SCI model
   rats
Zhang et al, 2016 Y27632 + Y27632 Protects against secondary SCI by (106)
 TDZD‑8c  1.6 mg/kg, inhibiting apoptosis in SCI rats
  2 weeks;
  TDZD‑8
  1 mg/kg,
  3 weeks
Burgess et al, 2001 Lithiumd 1 mM, 1‑48 h, Activates phosphorylation of AKT in (107)
  in vitro; 20 mg/ the acute phase, and upregulates the
  kg/d, 3 days, expression of Na+/K+‑ATPase α1 in the
  in vivo chronic phase in primarily cell
   cultured spinal cord neurons

aRo3303544 can promote the neurogenesis in both cultured multipotent stem cells and in SCI model. bTDZD‑8 is the most effective and specific 
non‑ATP‑competitive inhibitor of GSK‑3; treatment with TDZD‑8 following SCI can significantly inhibited neuronal apoptosis and increased 
density of cortical spinal tract fibers around areas of injury. cY27632 + TDZD‑8; a combination therapy of TDZD‑8 and Y27632 (a ROCKII 
inhibitor) can improve the protective effect on axonal regeneration in rats SCI models. dLithium is a traditional inhibitor of GSK‑3β, which has 
been widely used to treat mood disorders, especially manic depression; in animals, lithium upregulates neurotrophins, including brain‑derived 
neurotrophic factor and nerve growth factor, neurotrophin‑3, as well as receptors to these growth factors in brain. Lithium also stimulates 
proliferation of stem cells, including bone marrow and neural stem cells in the subventricular zone, striatum and forebrain. GSK‑3, glycogen 
synthase kinase‑3; SCI, spinal cord injury; TDZD‑8, 4‑benzyl‑2‑methyl‑1,2,4‑thiadiazolidine‑3,5‑dione.
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mechanical allodynia and thermal hyperalgesia (130). The 
administration of GSK‑3β selective inhibitor AR‑014418 
decreased mechanical allodynia by increasing the p‑/t‑GSK‑3β 
ratio and decreasing apoptosis in spinal nerve ligation model 
rats; however, it did not affect thermal hyperalgesia (101). 
However, there are also reports (98) showing that GSK‑3β 
activity was enhanced in the hippocampus but reduced in 
the spinal dorsal horn following spared nerve injury. Induced 
neuropathic pain can cause short‑term memory deficits and 
treatment with selective GSK‑3β inhibitors, such as SB216763 
and AR‑A014418, can prevent short‑term memory deficits but 
does not affect neuropathic pain (131). These discrepancies 
may be due to the use of different animal models, although 
they all lead to neuropathic pain.

5. Conclusion

The pathophysiological process of SCI is quite complex; 
nonetheless, the poor prognosis of patients with SCI may 
mainly be due to glial scar formation and irreversible neuron 
loss. Glial scar formation and concomitant inflammatory 
responses, on the one hand, inhibit the spread of lesions; on 
the other hand, they limit the injury repair. The dual role 
of glial scars makes it difficult to be used as a therapeutic 
target (46). In addition, irreversible neuron loss is another 
critical part of SCI recovery. The importance of neuron loss 
has led researchers to develop corresponding treatments; 
therefore, several stem/progenitor cells therapies have been 
developed (57‑59). Unfortunately, only a few therapies reach 
the clinical trial stage, and their therapeutic effects are 
debatable. Exploring the key mechanism of SCI is crucial for 
finding improved treatments.

The dysfunction of GSK‑3 signaling pathway during 
SCI has been widely investigated. SCI decreases the ratio of 
p‑/t‑GSK‑3β. Treatment with GSK‑3 inhibitors can promote 
neurogenesis; in addition, several therapies for the treat‑
ment of SCI also act through GSK‑3 signaling pathways. In 
addition, GSK‑3 signaling pathways also participate in the 
pathological process of neuropathic pain, which is one of the 
common complications of SCI. Based on the current body 
of evidence, GSK‑3 signaling can be considered a potential 
therapeutic target for SCI. However, the data of GSK‑3 inhibi‑
tors promoting neurogenesis in SCI are mainly generated from 
in vitro experiments. The development of therapies based 
on GSK‑3 still needs further study. Nonetheless, the present 
review summarized the participation of GSK‑3 signaling in 
SCI and may help understand the role GSK‑3 signaling during 
the pathological processes of SCI.
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