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One fundamental question in vision research is how the
retinal input is segmented into perceptually relevant
variables. A striking example of this segmentation
process is transparency perception, in which luminance
information in one location contributes to two
perceptual variables: the properties of the transparent
medium itself and of what is being seen in the
background. Previous work by Robilotto et al. (2002,
2004) suggested that perceived transparency is closely
related to perceived contrast, but how these two relate
to retinal luminance has not been established. Here we
studied the relationship between perceived
transparency, perceived contrast, and image luminance
using maximum likelihood conjoint measurement
(MLCM). Stimuli were rendered images of variegated
checkerboards that were composed of multiple
reflectances and partially covered by a transparent
overlay. We systematically varied the transmittance and
reflectance of the transparent medium and measured
perceptual scales of perceived transparency. We also
measured scales of perceived contrast using cut-outs of
the transparency stimuli that did not contain any
geometrical cues to transparency. Perceptual scales for
perceived transparency and contrast followed a
remarkably similar pattern across observers. We tested
the empirically observed scales against predictions from
various contrast metrics and found that perceived
transparency and perceived contrast were equally well
predicted by a metric based on the logarithm of
Michelson or Whittle contrast. We conclude that
judgments of perceived transparency and perceived
contrast are likely to be supported by a common
mechanism, which can be computationally captured as a
logarithmic contrast.

Introduction
The human visual system senses light and processes

the sensory input such that the owner of the visual

system, the human observer, perceives meaningful
information about the environment. Considering a
single fixation, the sensory input to the retina is often
likened to a static image of the world, which is highly
ambiguous with respect to the elements in the viewed
scene. For example, when part of the scene is covered
by a transparent medium (Figure 1A), the stimulation
at one retinal location results from two sources, the
light reflected from the transparent medium and the
light reflected from the surface behind the transparency.
Phenomenologically, human observers clearly perceive
both sources separately. The perceptual process that
assigns meaningful perceptual categories to the sensory
input is called perceptual segmentation. To date, there is
no model that would take an image as input and predict
the corresponding percepts as output.

Prior work suggests that it is the (perceived) contrast
in the regions of transparency and in plain view that
provides the crucial link between image intensity and
perceived transparency1 (Singh & Anderson, 2002,
2006; Robilotto et al., 2002; Anderson et al., 2006;
Anderson, 2008; Wiebel et al., 2017). The dependency
of perceived transparency on contrast is illustrated
in Figure 1A. Most observers perceive the light
transparent medium as less transparent than the dark
one, although both of them have the same physical
transmittance.

The dependency of perceived transparency on the
reflectance of the transparent medium is at odds with
physical models of transparency. For example, in the
episcotister model by Metelli (Figure 1B) (Metelli,
1970, 1974), transparency exclusively depends on
the transmittance of the medium. We introduce
the episcotister model to illustrate this issue and to
introduce the terms that we will use in this article. The
episcotister is a disc with a sector that rotates in front
of a background. At appropriate rotation speed, the
disc appears transparent and the degree of perceived
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Figure 1. (A) Two transparencies rendered with different
reflectance, otherwise identical in transmittance (α) and
luminance range in transparency. (B) Two episcotisters with
equal opening α that, when rotated at high speed, will have
equal physical transmittance. To an observer, the black one (low
t) appears more transparent than the white one (high t).

transparency depends on the sector size α. The model
predicts the luminances of the surfaces seen through
the transparency T as follows:

T = α · P + (1 − α) · t (1)

whereby P is the luminance of the surface seen in plain
view, t is the luminance reflected from the rotating disk
of a given reflectance, and α is the sector. Formulating
two such equations, one for the surfaces with the
highest (max) and one for the surfaces with the lowest
reflectance (min), one can solve them for α. In the
model, transmittance depends on the ratio of the
luminance range in transparency to the luminance
range in plain view:

α = Tmax − Tmin

Pmax − Pmin
(2)

However, as illustrated in Figure 1, perceived
transmittance also depends on the reflectance of the
transparent medium that is not captured by the ratio of
luminance ranges.

Singh and Anderson (2002, 2006; Anderson et
al., 2006; Anderson, 2008) showed that in simple
stimuli, which consisted of only two surfaces, perceived
transparency was well predicted by a ratio of contrasts:

αc = CTRANSP

CPLAIN
(3)

where CTRANSP is the contrast of the region in
transparency and CPLAIN is the contrast in plain

view (Singh & Anderson, 2006, 2002). Contrast was
calculated as a Michelson contrast, defined as

C = lmax − lmin

lmax + lmin
(4)

with lmin and lmax being the minimum and maximum
luminances in each region, respectively.

Similarly to Singh and Anderson (2002, 2006),
Kasrai and Kingdom (2001) also reported that
observers’ adjustments of perceived transparency could
be predicted by the ratio of Michelson contrasts. Using
a stimulus array of six instead of only four different
luminance values in plain view and the region of
transparency, they could derive distinct predictions
for the episcotister and the ratio of contrast model.
Practically, however, given the luminance values for
their set of stimuli, the differences between model
predictions were rather small and thus limited the power
to perform model selection (Kasrai & Kingdom, 2001).

Natural scenes are composed of multiple surfaces,
which raises the question of whether the perception
of transparency can still be captured by a contrast
metric that takes only the minimum and maximum,
or a limited number of luminances of the scene into
account. To address that question, Robilotto and
colleagues (Robilotto et al., 2002; Robilotto & Zaidi,
2004) measured perceived transparency for achromatic
stimuli consisting of randomly oriented, randomly
sized, and partially overlapping ellipses of varying
luminances (“dead leaves”). Observers were shown two
transparent overlays that moved in front of the ellipses.
They adjusted the test so that it matched the perceived
transmittance of the target. Observers also matched
the apparent contrast of the overlay regions when all
cues to transparency were removed. The settings for
perceived transparency and perceived contrast were
very similar, so the authors concluded that perceived
contrast is the sensory determinant of perceived
transparency also for scenes with multiple surfaces. In
the next step, the authors used various contrast metrics
(Michelson contrast, root mean square [RMS] contrast,
and Whittle contrast) to predict perceived transparency
and perceived contrast. None of these metrics predicted
appearance for the dead leaves stimuli.

Robilotto et al. (2002) used an asymmetric matching
task to measure perceived contrast and perceived
transparency as a function of physical transparency
parameters. While adjustment procedures are very
efficient and thus widely used in the assessment of
appearance, they probe the perceptual dimension
of interest only indirectly (Kingdom & Prins, 2010;
Wiebel et al., 2017; Aguilar & Maertens, 2020). Hence,
matching procedures are insufficient to differentiate
between potentially different transducer functions
relating sensory to perceived variables (we discuss the
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linking assumptions in matching procedures in detail
below).

New scaling methods such as maximum likelihood
conjoint measurement (MLCM; Knoblauch &
Maloney, 2012) require more trials but offer a number
of advantages compared to the matching procedure
when measuring appearance. MLCM provides an
estimate of the entire perceptual scale. It does so by
modeling observers’ appearance judgments within a
statistical framework. MLCM finds the estimates of
perceptual scales by maximizing the likelihood for a set
of scale values given the responses of observers across
all trials. Analogous to classical signal detection theory,
MLCM has a stochastic component to explicitly model
that observer responses can be noisy. Furthermore,
MLCM allows straightforward model comparison
using statistical tests (a detailed review of MLCM can
be found in Maloney & Knoblauch, 2020). Here we
used MLCM to measure perceptual scales of perceived
transparency and perceived contrast and evaluated
them against the quantitative predictions from different
contrast metrics.

To anticipate, we found that perceptual scales for
perceived transparency and for perceived contrast
depend on both the transmittance and reflectance of
the transparent medium. Consistent with previous
reports (e.g., Singh & Anderson, 2002; Robilotto et
al., 2002), both perceptual attributes decrease with
increasing luminance in a similar way. Different from
prior reports (Robilotto et al., 2002), we found that
perceived transparency and perceived contrast scales

were reasonably well predicted by the space-averaged
logarithm of Michelson or Whittle contrasts (Moulden
et al., 1990). Our results suggest that these metrics
computationally characterize the internal dimension
that is relevant for judgments of perceived transparency
and contrast.

Method
Observers

Seven observers participated in the study; two were
the authors (O1, O5), one was an experienced observer
(O2), and the other four were volunteers naive to the
purpose of the experiment. All observers had normal or
corrected to normal visual ability. Naive observers were
reimbursed for participation. Informed written consent
was given by all observers prior to the experiment.

Stimuli

Variegated checkerboards. We used povray (Persistence
of Vision Raytracer Pty. Ltd., Williamstown, Victoria,
Australia, 2004) to render images of variegated
checkerboards that were composed of 8 × 8 checks
(Figure 2A). The positions of the checkerboard, the
light source, and the camera were kept constant across
all images. Each check had one out of 13 possible
reflectance values that were randomly assigned except

Figure 2. (A) Example set of stimuli and experimental task. The transparency’s transmittance (α) and luminance when opaque (t) were
varied in 4 × 9 possible combinations. (B) In Experiment 1, the observer judged which of two transparencies look more transparent.
(C) In Experiment 2, the observer judged which of the two cut-outs had higher contrast.
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that no two adjacent checks had the same reflectance.
The luminances in “plain view”—the region without
transparency—ranged from 12 to 412 cd/m2.

A transparent layer was placed between the
checkerboard and the camera (Figure 2A). We
varied two parameters of the transparent layer—its
transmittance α and its luminance t that would result
for a transmittance value of zero (i.e., an opaque
surface). The latter was manipulated by varying the
transparent layer’s reflectance in the rendering software.

We rendered all possible combinations of four values
of α (0.05, 0.1, 0.2, 0.4) and nine values of t (ranging
from 60 to 360 cd/m2). The background luminance
was 140 cd/m2. A complete listing of luminance values
and ranges separated for each condition can be found
in Supplementary Table S1. The transparency was
rendered using alpha blending, which implements
the episcotister model (see Equation 1). A different
checkerboard was rendered for each trial and for each
observer.
Cut-out stimuli. To create stimuli without cues to depth
or transparency but identical to the original stimuli
with respect to luminance, we cut out the regions of
transparency from the variegated checkerboards and
presented them in isolation (Figure 2C). Luminance,
contrast, and background luminance values were
thus identical to those in the transparency region of
variegated checkerboards.

Apparatus

Stimuli were presented on a 21-in. Siemens
SMM2106LS monitor (400 × 300 mm, 1,024 × 768 px,
130 Hz). Monitor calibration was conducted using a
Minolta LS-100 photometer (Konica Minolta, Tokyo,
Japan). The monitor’s gamma function was measured
along its input range at 8-bit precision. With these
measurements, we linearized the monitor luminance
response over its entire output range (up to 480
cd/m2). The accuracy of linearization was estimated by
repeating the luminance measurement three times and
computing the standard deviation of the three samples
measured at the same nominal input divided by their
mean. The maximum was 0.9%.

Observers were seated 130 cm away from the screen in
a dark experimental cabin. Presentation was controlled
by a DataPixx toolbox (Vpixx Technologies, Inc., Saint-
Bruno, QC, Canada) and custom presentation software
(http://github.com/computational-psychology/hrl).
Observers’ responses were registered with a
ResponsePixx button-box (VPixxTechnologies, Inc.).

Design and procedure

We measured perceptual scales for perceived
transparency (Experiment 1) and for perceived contrast

(Experiment 2) using MLCM and the method of paired
comparisons (Knoblauch & Maloney, 2012).

In each trial, two stimuli were presented
simultaneously (Figures 2B and C). In Experiment 1,
observers judged which of two transparent overlays
looked more transparent (Figure 2B). In Experiment
2, observers judged which of the two cut-out stimuli
had higher contrast (Figure 2C). To indicate their
response, observers pressed the left or right button on
the response box. There was no time limit.

We used 36 stimulus combinations (four levels of
transparency’s transmittance α and nine levels of its
luminance t), which resulted in 630 (36 · (36 − 1)/2)
unique paired comparisons excluding pairs with
identical stimuli. We repeated each comparison 10
times, resulting in a total of 6,300 trials per observer
and experiment. The stimulus placement (left or right)
and trial order were randomized in Experiment 1. Trials
were divided in 10 blocks of 630 trials, which lasted
approximately 30 min each. Experiment 2 used the
same trial sequence as in Experiment 1.

Observers completed both experiments in multiple
sessions of 1 to 2 h, including breaks. They were free to
choose how many blocks they wanted to complete per
session. The order of experiments was fixed: First they
completed Experiment 1 and then Experiment 2.

Scale estimation

MLCM allows one to estimate scales for a perceptual
dimension as a function of two or more stimulus
dimensions (Knoblauch & Maloney, 2012). In our
design, the stimulus dimensions were the transparency’s
transmittance (α) and its luminance (t, Equation 1). The
perceptual dimensions were perceived transparency in
Experiment 1 and perceived contrast in Experiment 2.

MLCM provides three decision models that can be
fitted to observers’ data; we considered all of them
(as suggested in Knoblauch & Maloney, 2012). The
first is the “independent” model, in which observer
responses are modeled to depend only on one of the
stimulus dimensions, α (or t). It is the most constrained
model, and for our design, it had three (or eight) free
parameters. The second model is the “additive” model,
which models observer responses to depend on a sum
of the effects from each stimulus dimension. This
model is the stochastic analogy to classical additive
conjoint measurement (Luce & Tukey, 1964). In our
design, this model had 11 free parameters. Finally,
the “saturated” model is the most general model and
fits every combination of α and t as a separate effect.
The model had the maximum number of possible free
parameters, that is, 35 (and thus the name “saturated”).
The three models were nested: The saturated was the
most general one, followed by the additive model, and
finally the independent model. Here we fitted all three
models to our observers’ data and tested which one

http://github.com/computational-psychology/hrl
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explains the data best by means of a nested likelihood
ratio test (Knoblauch & Maloney, 2012).

We used the MLCM implementation available for
the R programming language (R Core Team, 2017;
Knoblauch & Maloney, 2014). This implementation
uses a generalized linear model (GLM) to estimate
the scale parameters, and it readily provides routines
for the calculation of confidence intervals by means
of bootstrap techniques and for the evaluation of
goodness of fit by means of Monte Carlo simulations.
Knoblauch and Maloney (2012, 2014) provide detailed
information about these statistical procedures; a
summary can be found in the Supplementary Material.

Results
Perceptual scales

Figure 3A shows perceptual scales of perceived
transparency as a function of transmittance α (x-axis)
and luminance t (color-coded) for one observer.
Data were fitted with MLCM’s “additive” model to
capture the contributions of the two variables (see
Method). Although the more general, “saturated”
model provided a better fit in almost all cases (except for
O1 in Experiment 2), the differences in perceptual scales
were minimal and did not affect the pattern of results
(see Supplementary Material for a detailed discussion
of this point).

We observe two main effects. First, perceived
transparency increases with increasing physical
transmittance (positive slope), and second, perceived
transparency decreases with increasing luminance
(orderly color scale between functions). The second
effect quantifies the phenomenological observation that

Figure 3. Perceptual scales obtained by MLCM for perceived
transparency (A) and perceived contrast (B) for one observer
(O1). Markers indicate scale values; their error bars indicate
their 95% confidence intervals. Continuous lines depict the
prediction from the space-averaged logarithm of the Michelson
contrast (SAMLG).

a dark transparent medium looks more transparent
than a light one for identical physical transmittance
(Tudor-Hart, 1928). This is consistent with previous
work (e.g., Singh & Anderson, 2002; Robilotto et al.,
2002), but the scales show that this dependence on the
luminance of the transparent medium is maintained
across the range of transmittances that we tested here.

To better illustrate the effect of the transparency’s
luminance t on perceived transparency, we replot the
perceptual scales from Figure 3 as a function of t and
plot different curves for different α. Figure 4 shows that
the pattern of results is consistent across individual
observers. The scales show that two different stimuli
with different combinations of transmittance and
luminance will be perceived as equally transparent.
The dashed red line in Figure 4 (left top panel)
illustrates such a “trade-off” between transmittance and
luminance for one observer (O1). At a perceptual scale
value of 10, a stimulus with α = 0.1 and luminance
t = 110 cd/m2 would look equally transparent to a
stimulus with α = 0.2 and t = 234 cd/m2.

Figures 3 and 4 also show perceptual scales for
perceived contrast. Comparison of columns A and
B shows that the scales for perceived contrast are
similar to those of perceived transparency. Pearson’s
correlation coefficients between scales for perceived
transparency (Experiment 1) and perceived contrast
(Experiment 2) range from 0.975 to 0.997 (average 0.99)
across observers (Supplementary Figure S2 shows their
comparison).

We evaluated goodness of fit for the perceptual
scales using the routines provided by the MLCM
software package and as suggested by Knoblauch
and Maloney (2012). In both experiments, the initial
goodness of fit was insufficient for all but two cases
(14%, O7 in Experiment 1 and O1 in Experiment
2). We evaluated the influence of “outliers” in the
data (i.e., responses due to lapses of attention or
fingerslips). We define an outlier as a data point
for which the deviance residuals were higher than a
threshold set by visual inspection of their distribution,
as suggested by Knoblauch and Maloney (2012) (see
Supplementary Information for details). The number
of trials classified as outliers ranged from 19 to 32
out of 6,300 trials in individual observers (0.3%
to 0.5%). Removing these trials did not affect the
pattern of results. After outlier removal, all perceptual
scales passed the goodness-of-fit test (Supplementary
Table S2).

Contrast metrics

Following the approach by Robilotto et al. (2002),
we calculated various contrast metrics for our stimuli to
test which metric could quantitatively account for the
empirical scales.
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Figure 4. Perceptual scales obtained by MLCM for perceived
transparency (A) and perceived contrast (B) for all observers
(O1 to O7, rows). Error bars indicate 95% confidence intervals.

→

We evaluated six contrast metrics compiled by
Moulden et al. (1990) and employed by Robilotto et al.
(2002) (see Discussion). In the following definitions, li
are the luminance values in the region of transparency
and l̄ their arithmetic mean; n is the number of
luminance values, which in our stimuli was 13.

(i) Root mean square (RMS) contrast is defined as the
standard deviation (SD) of luminance values with
respect to the global mean, and it is often used to
predict perceived contrast (Peli, 1990).

RMS =
√√√√1

n

n∑
i=1

(li − l̄ )2

(ii) Root mean square of log luminances, defined in the
same way as (i) except that the standard deviation is
computed for the logarithm of the luminances.

SDLG =
√√√√1

n

n∑
i=1

(
log(li) − log(l )

)2

The following metrics are space averages, that
is, the calculation is done for all possible nonequal
combinations of luminances values (∀i �= j).

(iii) Space-averaged Michelson contrast

SAM = 1
n2

n∑
i=1

n∑
j=1

∣∣∣∣
li − l j
li + l j

∣∣∣∣

(iv) Space-averaged logarithm of Michelson contrast

SAMLG = 1
n2

n∑
i=1

n∑
j=1

log
∣∣∣∣
li − l j
li + l j

∣∣∣∣

(v) Space-averaged Whittle contrast

SAW = 1
n2

n∑
i=1

n∑
j=1

∣∣∣∣
li − l j

min(li, l j )

∣∣∣∣

←
Continuous lines depict the prediction from the space-averaged
logarithm of the Michelson contrast (SAMLG). Dashed red line
in O1 illustrates stimuli that would be perceived equally
transparent.
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Figure 5. Contrast metrics and their dependency on the transparency’s luminance (x-axis) and physical transmittance (α). Data plotted
on the same format as Figure 4. Each panel shares the x-axis but not the y-axis, as each metric has a different range. See text for
metrics formulae.

(vi) Space-averaged logarithm of Whittle contrast

SAWLG = 1
n2

n∑
i=1

n∑
j=1

log
∣∣∣∣

li − l j
min(li, l j )

∣∣∣∣

In addition to these six metrics, we also included

(vii) An alternative formulation of RMS contrast in
which the response is normalized with respect to the
mean luminance (as defined by, e.g., Bex et al., 2009;
Pelli & Bex, 2013)

RMSnorm = RMS
l̂

=
√

1
n
∑n

i=1(li − l̄ )2

l̄

(viii) αc as defined in Equation 3.

αc is based on Michelson contrast and hence depends
only on the minimum and maximum luminance in
the regions of transparency and plain view. The other
metrics capture the entire distribution of luminance
values in transparency. Note, however, that all metrics
assume a preceding segmentation of the input.

Figure 5 shows the contrast metrics evaluated for our
stimuli. The plots are analogous in design to those for
the perceptual scales (Figure 4) in order to facilitate the
comparison. By design, RMS contrast was constant
across the mean luminance of the transparent medium.

This is inconsistent with the obtained scales and hence
no adequate model of perceived transparency. All other
metrics produce a similar pattern of results consistent
with a trade-off between physical transmittance (α) and
luminance t. One group of models, including RMSnorm,
αc, SDLG, SAM, and SAW , predicts an interaction
effect between α and t (Figure 5). The remaining
two metrics, SAMLG and SAWLG, which compute
the logarithm of contrast values, predict constant
differences of perceived transparency as a function of t
for different αs. The SAMLG and SAWLG predictions
are closer to the empirical scales.

To quantitatively test the goodness of fit for each
of the tested metrics, we rescaled the prediction from
each metric to each observer’s individual response
range. Different observers have different scale maxima,
because they reflect each person’s decision noise (the
maximum value of an MLCM scale is inversely related
to the amount of decision noise; see Figure 4 for
interobserver variability in scale maxima).

We applied a linear transformation to rescale the
prediction of each contrast metric to each observer’s
individual range. Minimizing the sum of squared errors
(SSE), we used a single factor and intercept to rescale
the four perceptual scales for different αs. We did this
separately for each contrast metric, observer, and
experiment. Linear transformations are valid, because
MLCM provides interval scales that do not change their
numerical representation by linear transformations
(Krantz et al., 1971; Gescheider, 1997). SAMLG was
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SSE
Contrast
metric Exp. Avg. Range r avg.

αc 1 47.68 [20.05, 90.74] 0.94
2 47.87 [27.52, 82.68] 0.95

RMS 1 130.98 [20.48, 286.63] 0.86
2 163.76 [39.23, 388.62] 0.86

RMSnorm 1 55.71 [22.34, 105.85] 0.93
2 56.40 [32.96, 96.90] 0.94

SDLG 1 67.75 [25.65, 128.25] 0.92
2 69.44 [41.17, 118.54] 0.93

SAM 1 57.60 [22.87, 109.30] 0.93
2 58.41 [34.26, 100.15] 0.94

SAMLG 1 8.73 [5.43, 13.48] 0.99
2 15.98 [3.87, 34.50] 0.98

SAW 1 111.11 [36.77, 210.21] 0.86
2 118.33 [70.75, 201.63] 0.88

SAWLG 1 7.15 [3.31, 10.48] 0.99
2 12.34 [2.51, 25.28] 0.99

Table 1. Comparison between contrast metrics predictions and
perceptual scales for both experiments. The sum of squared
errors (SSE) and the Pearson’s correlation coefficient (r) were
calculated between predictions and scales for both experiments
(“exp”). Mean (“avg”) and range across observers.

one of the best-fitting metrics, and its predictions are
shown as solid lines in Figure 4. Table 1 summarizes
the goodness-of-fit evaluations for all contrast metrics.
SAMLG and SAWLG produced the lowest sum of
squared errors for all observers and in both experiments.
The average Pearson’s correlation coefficient between
scales and metric prediction across observers was
highest for SAMLG and SAWLG (r = 0.99). Despite
these relatively high average correlation coefficients,
there was some variability across observers. The best
fits with SAMLG were observed for O3 (r = 0.99,
Experiment 1) and O6 (r = 0.99, Experiment 2), while
the worse fit with SAMLG was observed for O7 in both
experiments (r = 0.97). The pattern was similar for
SAWLG.

Discussion
We studied whether perceived transparency can be

predicted from image contrast. We used stimuli in
which the transparent overlays covered multiple surface
reflectances and contained geometric cues to depth
such as occlusion and linear perspective (variegated
checkerboards, Experiment 1). We used MLCM with
paired comparisons to measure scales for perceived
transparency. We also measured scales for perceived
contrast for cut-out versions of the transparent region

of the same stimuli that did not contain cues to depth
or transparency (Experiment 2).

Perceptual scales for both perceived transparency
and perceived contrast were consistent across observers.
Scales for perceived contrast closely resembled the
scales for perceived transparency. We tested various
contrast metrics to account for the perceptual scales and
found that the space-averaged logarithm of contrasts,
Michelson or Whittle contrast, accounted best for the
data.

Relation to previous work

In line with the pattern of matching results by
Robilotto et al. (2002), the patterns of perceptual scales
for perceived transparency and perceived contrast closely
resembled each other. This similarity suggests that the
two perceptual variables are related, and it is consistent
with the notion of a common underlying mechanism.
Different from Robilotto et al. (2002), our observed
perceptual scales for both transparency and contrast
were consistent with predictions by a space-averaged
contrast metric relying either on log Michelson
(SAMLG) or log Whittle contrast (SAWLG).

The studies were different in a number of ways,
and we will discuss which of those differences might
account for the different results. We used variegated
checkerboards with geometric cues to transparency,
whereas Robilotto et al. (2002) used coplanar “dead
leaves” stimuli where the transparent region was
moving. Both types of stimuli elicit vivid percepts of
transparency, and hence we rule out stimulus differences
as an explanation for the different results.

In the following, we discuss two factors that we
consider most likely to account for the different results:
(1) differences in calculating the contrast metrics and (2)
differences in the experimental method (i.e., difference
scaling vs. matching).

Contrast metrics

We noticed a discrepancy in the definition of
SAMLG and SAWLG between Robilotto et al. (2002)
and Moulden et al. (1990). Robilotto et al. (2002) refer
to Moulden et al. (1990) as the source for the contrast
metrics, but Moulden et al. (1990) calculate SAMLG as
log

∣∣∣ li−l j
li+l j

∣∣∣, whereas Robilotto et al. (2002) calculate it as∣∣∣ log(li )−log(l j )
log(li )+log(l j )

∣∣∣. The two formulations are not equivalent.
The same discrepancy occurred for SAWLG. Using the
original formulation by Moulden et al. (1990), SAMLG
and SAWLG both predicted our data.

Both metrics rely on the logarithm of contrasts
(Michelson or Whittle). Compressive nonlinearities—
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such as the logarithm—have been applied to physical
contrast in order to predict perceived contrast (e.g.,
Cannon & Fullenkamp, 1988, 1991) and it is also
included in models of perceived contrast as the so-called
nonlinear transducer function (e.g., Legge & Foley,
1980; Haun & Peli, 2013). Moulden et al. (1990) and
Kingdom and Moulden (1991) argue that a contrast
metric including a log transform is in agreement with
physiological data that show that retinal ganglion
cell responses are proportional not to their input
(contrast) but to values transformed via a compressive
nonlinearity. Kingdom and Moulden (1991) showed
that a logarithmic contrast metric simultaneously
accounted for brightness discrimination thresholds of
increment and decrement pairs in data from Whittle
(1986).

Kane and Bertalmio (2019) compared Kingdom
and Moulden’s (1991) model with three other models
of brightness and contrast perception (Whittle’s
original formulation, a divisive gain model, and their
own model) with respect to their ability to predict
data from brightness detection, discrimination, and
appearance experiments (Whittle, 1986, 1992). They
showed that all models adequately predicted the data
and that all models consist of conceptually analogous
model components, namely, a monotonically increasing
function and a contrast term. The log contrast term in
Kingdom and Moulden (1991) was required to account
for the asymmetry in discrimination performance
between increments and decrements in Whittle’s data,
and here it is required to account for the dependency
of perceived transparency and perceived contrast on
the mean luminance of the transparent medium. The
present results add to the list of effects that can be
accounted for by such a contrast metric.

The log transform is only one of many possibilities
of a compressive nonlinearity that could be used.
Commonly, the Naka–Rushton function is used as a
nonlinear transducer function in contrast models (e.g.,
Legge & Foley, 1980; Schütt & Wichmann, 2017) and
can be parametrized to be identical to the log transform.
Thus, a Naka–Rushton nonlinearity could also fit our
data as well as the related Michaelis–Menten function,2
which has recently been used to predict color scales
(Knoblauch et al., 2020). The benefit of parametrized
models is that the parameters might have a mechanistic
interpretation. For example, Knoblauch et al. (2020)
interpreted one of the parameters as contrast gain, and
as such, it could be related to putative gain control
mechanisms in spatial filtering models of the visual
system. However, these additional parameters need to
be fitted and sufficiently constrained by the data, and in
order to connect model parameters at different levels of
abstraction (physiological mechanism vs. computational
model), additional “linking assumptions” are required.
Here, we merely show that a log transform of a
particular form seems to be capturing the data.

A potential limitation of the log contrast metrics
occurs for cases where the transparent medium
has low or zero reflectance (Kingdom, 2011). For
a transparency of zero reflectance, SAMLG and
SAWLG compute a value that is independent of the
transparency’s transmittance (Supplementary Fig. S4).
However, Kingdom (2011) demonstrated (we informally
confirm) that this does not correlate with perception.
A zero-reflectance transparency rendered with higher
transmittance looks indeed more transparent than one
rendered with lower transmittance. This point was
brought up by a reviewer, and unfortunately in the
present study, we did not test low values of t. Thus, the
explanatory power of these contrast metrics for low t
remains an open question.

Experimental method

Most previous studies on perceived transparency
used asymmetric matching procedures (e.g., Singh &
Anderson, 2002; Robilotto et al., 2002). Even though
matching tasks are the “industry standard,” they are not
ideal. In particular, when the matching is asymmetric
(i.e., test and match stimulus are presented in different
viewing contexts), observers might minimize perceived
differences rather than produce perceived equality (e.g.,
Brainard et al., 1997; Ekroll et al., 2004; Logvinenko &
Maloney, 2006). A difference scaling experiment avoids
that issue, because observers judge the magnitude
of differences instead of producing equality (when it
might be impossible). In the following, we describe
the putative relationship between perceptual scales
and matches and the potential benefits of perceptual
scales.

Figure 6 illustrates a matching experiment for the
present scenario of measuring perceived transparency.
Observers are presented with a standard stimulus
of given transmittance αst and luminance tst of the
transparent medium. The transmittance of the test
stimulus αtest is also given, and observers adjust the
luminance of the transparent medium ttest such that
it looks equally transparent to that of the standard
(Figure 6A). The output of this procedure is a
perceptual match quantified in physical units, namely,
the luminances of the test and standard transparent
media (Figure 6C). The procedure does not reveal the
function of interest, which is the perceptual scale (or
transducer function; Kingdom & Prins, 2010), which
relates the transparency’s luminance (t) to its perceived
transparency (Figure 6B).

Instead, matching procedures make an (implicit)
linking assumption about how matches relate to the
internal scale (e.g., Maertens & Shapley, 2013; Teller,
1984; Brindley, 1960). Figure 6B depicts a number of
hypothetical internal scales relating the luminance of a
transparent medium, t, to its perceived transmittance
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Figure 6. Linking assumption between (asymmetric) matching and perceptual scales. (A) Experimental design of an asymmetric
matching experiment. The transparent medium of the standard stimulus has one fixed transmittance (αst ) and a fixed number of
luminances (tst ). The observer adjusts the luminance of the transparency of the test stimulus (ttest ) for different levels of
transmittance (αtest ) of the test stimulus to match the perceived transparency of the test to that of the standard. (B) Internal scales
relating luminance of the transparency (x-axis) and transmittance (panel variable) to perceived transmittance (y-axis). Perceived
transmittance is computed as the space-average logarithm of Michelson contrast (SAMLG). The top panel shows a case where a
perceptual match can be obtained between standard (square) and test (star). The bottom panel shows a case where only a partial
match can be obtained (triangle; see text for explanation). (C) Data in a hypothetical matching experiment. The lines are derived as
predictions from the scales in B. The dashed line indicates where the match for that αtest should be if a test stimulus with that
luminance would have been included. Since that luminance is beyond the range of possible test luminances, the observer sets the
test luminance to tmax, the maximum luminance (triangle).

as a function of different physical transmittances, α.
Consider first the upper panel. The standard stimulus,
indicated by the square, has a fixed transmittance
of α = 0.1 and a luminance of l = 200 cd

m2 . The test
stimulus for that trial has a transmittance of α = 0.15.
At the start of a matching trial, the luminance of the
test is set to a random value. To find a perceptual match,
the scale value of the standard is extrapolated (dashed
red line) to the scale that corresponds to the α of the
test stimulus (star symbol). The match luminance of
the test is found by reading out the x-value at that test
scale value (∼ 320 cd

m2 ).
The lower panel in Figure 6B depicts the same

scenario but for a test stimulus with transmittance
α = 0.3. Following the same routine as described above
(i.e., extrapolating the scale value for the standard in
order to find the intersection with the scale of the test),
it is evident that there is no intersection point across
the range of tested luminances. In other words, for an
α of 0.3, the luminance of the transparency would
have to be very light to look equally transparent as

that of the standard. This would be a case in which
an observer might do an as-close-as-possible but not
an actual match. Figure 6C shows the data points for
such a hypothetical matching experiment. The solid
lines indicate matches predicted from the scales in
Figure 6B. The star and square symbols show data
from one matching trial, where the matching was
possible (α = .15). The triangle and the square symbols
demarcate a data point that lies beside the predicted
light blue matching function, because a good match was
not possible. This illustrates that matching data are only
an indirect way to estimate perceptual representations
of physical variables and that they might not be a good
estimate when matching is not possible.

Scaling procedures such as MLCM provide an
empirical estimate for the function that relates the
stimulus and the perceptual dimension of interest.
Difference scaling also avoids the problem of asking for
perceptual equality. Hence, we think that perceptual
scales complement and in some ways extend the data
from standard matching routines.
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Perceived contrast and perceived transparency

Robilotto et al. (2002) suggested that “perceived
image contrast is the sensory determinant of perceived
transparency” because they observed similar reflectivity
and inner transmittance matches for these two
perceptual variables. Our data show that perceived
transparency as well as perceived contrast can be
predicted by a measure that relies on physical image
contrast. This seems to point at least to a common
mechanism that determines both perceived contrast
and perceived transparency.

However, we cannot draw further conclusions
about the relationship between perceived contrast
and transparency with the present data. Scales for
perceived transparency were measured in variegated
checkerboards, whereas those for perceived contrast
were measured in cut-outs. The scales from the two
experiments are independent from each other, and the
scales within each experiment are anchored relative
to one another. By design, MLCM anchors the scale
with the smallest value to zero and the scale with the
highest value to a maximum value, which represents
the inverse of the estimated judgment noise. Thus,
the individual scales from the two experiments cannot
be directly compared as they do not share a common
metric (see Aguilar & Maertens, 2020, for a more
detailed treatment of the issue of comparing scales
across different contexts).

A different experiment would be required to
determine the empirical relationship between perceived
contrast and transparency. In such an experiment,
observers would have to judge perceived contrast in
full variegated checkerboards, in cut-outs and in mixed
comparisons of both types of stimuli. There would
be three dimensions to manipulate (transmittance,
luminance of the transparent medium when opaque,
and stimulus version—full or cut-out). This would
result in more than 25,000 trials in total per observer
(with stimuli otherwise comparable to the current
design). The rapid increase in number of trials for
this type of scaling procedure (Maximum Likelihood
Difference Scaling (MLDS), MLCM) renders the
procedures less attractive from a pragmatic point of
view and might sometimes outweigh the theoretical
benefits discussed above. Alternative strategies such as
subsampling (Knoblauch &Maloney, 2012; Abbatecola
et al., 2021), having a reduced number of stimuli per
dimension (Sun et al., 2021), or the use of so-called
embedded methods from the machine learning
community (see Haghiri et al., 2020, for example)
are currently being explored and might allow more
efficient ways of perceptual scale measurements in the
future.

Open questions

We mentioned above that all contrast metrics
assume a (magical) segmentation step that assigns

which luminance values belong to the transparent
overlay and which belong to regions in “plain view.”
In other words, the tested contrast metrics are not
image-computable. The metric αc takes as input the
values from both regions (Equation 3), whereas all other
metrics considered only the luminance values belonging
to the transparent region. Thus, in the present study,
the segmentation assumption is not crucial because
we could calculate contrast metrics (except αc) based
on the luminance values from the entire stimulus. The
pattern of predictions would be the same because the
luminance values in “plain view” were identical in all
stimuli. Including this region in the computation of
the contrast metrics would only introduce a constant
additive shift without changing the overall pattern seen
in Figure 5.

However, this approach does not generalize to
other types of stimulus manipulations (i.e., variation
of luminance range and contrast in the region of
plain view). Changing the contrast surrounding a
target region affects its perceived contrast (e.g., the
contrast-contrast phenomenon; Chubb et al., 1989), as
well as its perceived transparency (Robilotto & Zaidi,
2004). These “induction” effects cannot be captured
by the type of contrast metrics studied here, as they
presuppose the segmentation of the image into different
regions, and they do not consider spatial relationships
between different regions.

A possible direction of further research would be to
compare perceptual scales against more sophisticated
models of perceived contrast that include spatial
relationships of some kind. For example, Haun and
Peli (2013) have presented a multiscale spatial filtering
model that aims to predict perceived contrast in natural
images. However, relating the output of such a model
(which is in itself an image) to our perceptual scales
would require the formulation of additional linking
assumptions. This is a research endeavor in itself and
clearly beyond the scope of the present study.

Conclusions
We used MLCM to measure perceptual scales

of perceived transparency in images of variegated
checkerboards with multiple reflectances and cues
to transparency. We also measured perceptual scales
for perceived contrast in cut-out versions of the
checkerboards that did not evoke a transparency
percept. We found that both judgments were similar to
each other, suggesting a common mechanism. Taking
advantage of the type of data obtained by the MLCM
method, we could determine that both judgments could
be accounted for by a metric relying on the logarithm of
Michelson or Whittle contrast. These contrast metrics
can be readily calculated from the array of luminance
values known to belong to the transparency region.

Keywords: perceived transparency, perceived contrast,
MLCM, conjoint measurement
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Footnotes
1We use the term “perceived transparency” interchangeably with
“perceived transmittance” to describe the subjective impression of how
much is seen through a transparent medium.
2The Naka–Rushton function reduces to a Michaelis–Menten function
when the exponents are equal to 1.
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