
 

www.aging-us.com 13124 AGING 

INTRODUCTION 
 

It has been estimated that 10% of people will suffer 

from depression at some time in their life [1]. 

Appropriate subtyping of depression can help to predict 

whether a patient will respond to antidepressants [2]. 

Major depressive disorder (MDD) is characterized by 

two core symptoms – loss of interest and loss of 

happiness – as well as other symptoms such as hope-

lessness, negative emotions, sleeping problems, 

anorexia and low energy levels, sustained for at least 

two weeks [3, 4]. About 15% of patients with MDD 

eventually die by suicide, although most patients can 

recover if they receive proper treatment [5]. 

 

Another type of depressive disorder, subsyndromal 

symptomatic depression (SSD), may occur before the 

onset of depression. Judd et al. [6] first proposed the 
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ABSTRACT 
 

Subsyndromal symptomatic depression (SSD) and major depressive disorder (MDD) have been classified as 
distinct diseases, due to their dissimilar gene expression profiles and responses to venlafaxine. To identify 
specific biomarkers of these two diseases, we conducted a secondary analysis of the gene expression signatures 
of SSD patients, MDD patients and healthy controls (n=8/group) from the study of Yi et al. Global, individual, 
specific, enrichment and co-expression analyses were used to compare the transcriptomic profiles of peripheral 
blood lymphocytes from the three groups. The global and individual analyses revealed that different genes 
were up- and downregulated in the SSD and MDD groups. Through our specific analysis, we identified 1719 and 
3278 differentially expressed genes specifically associated with MDD and SSD, respectively. Enrichment and co-
expression analyses demonstrated that the genes specific to MDD were enriched in pathways associated with 
hormone levels and immune responses, while those specific to SSD were associated with immune function. The 
specific hub gene for the MDD co-expression network was transmembrane protein 132B (TMEM132B), while 
the hub genes for SSD were actin-related protein 2/3 complex (ARPC2) and solute carrier family 5 member 5 
(SLC5A5). This bioinformatic analysis has provided potential biomarkers that can distinguish SSD from MDD. 
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concept of SSD, defining it as the presence of two or 

more depressive symptoms, lasting for at least two 

weeks and linked to damaged social function, but not 

accompanied by a depressed mood or anhedonia. The 

one-year prevalence rate of SSD is 8.4% [6]. SSD is an 

important indicator of disability and dysfunction, and 

the lifetime suicide attempt rate for SSD patients is 

10.1%, comparable to that for MDD patients [7]. To 

date, there is no empirical information about the clinical 

course of SSD, but there are the following possibilities: 

SSD may be a self-limited disease that disappears over 

time; SSD may be a prodrome of MDD or dysthymia; 

SSD may be an incomplete recovery from MDD or 

dysthymia; or SSD may be a chronic, low-grade 

depressive mood pathological state [8–10]. Therefore, 

SSD is worthy of further research.  

 

Previous genetic studies have suggested that SSD and 

MDD have overlapping genetic pathophysiologies, but 

the precise mechanisms of these two diseases have not 

been fully elucidated. Yi et al. [11] first used whole-

genome mRNA microarray analyses of leukocytes to 

distinguish drug-free first-episode SSD patients from 

MDD patients and matched controls (n=8/group) based 

on their gene expression profiles. SSD and MDD 

patients had different genomic signatures, and a 48-gene 

model had the best performance in classifying SSD, 

MDD and healthy control subjects. Yang et al. [12] 

used quantitative real-time PCR to assess the mRNA 

levels of these 48 genes in peripheral blood samples 

from SSD, MDD and healthy control subjects 

(n=60/group), and found that three genes: domain-

containing 84 (CD84), striatin (STRN) and cystinosin 

(CTNS) were differentially expressed among the groups. 

In another study [2], differential co-expression and 

regulation analyses of peripheral blood lymphocytes 

suggested that six differentially regulated genes: fos-

related antigen 1 (FOSL1), serum response factor (SRF), 

JUN, transcription factor activating enhancer binding 

protein 4 (TFAP4), SRY-box transcription factor 9 

(SOX9) and hepatic leukemia factor (HLF) and sixteen 

transcription factor-to-target differentially co-expressed 

gene links were the key differential factors in MDD, 

whereas one differentially regulated gene POZ/BTB and 

AT hook containing zinc finger 1 (PATZ1) and eight 

transcription factor-to-target differentially co-expressed 

gene links were the key differential factors in SSD. 

Overall, no target genes overlapped between MDD and 

SSD, and venlafaxine was found to significantly alter 

the gene expression profiles of MDD patients, but not 

SSD patients [2]. Using weighted gene co-expression 

network analyses, Geng et al. [13] identified 11 

modules from 9427 differentially expressed genes 
(DEGs) in SSD. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

analyses demonstrated that the inflammatory response 

and type II diabetes mellitus were enriched in SSD, and 

5'-nucleotidase domain containing 1 (NT5DC1), Small 

G protein signaling modulator 2 (SGSM2) and MYC 

binding protein (MYCBP) were ultimately identified as 

significant hub genes. Hori et al. [14] measured gene 

expression in 14 medication-free moderate MDD 

subjects and 14 healthy controls, and found that 317 

DEGs mapped to the ‘synaptic transmission’ pathway.  

 

Objective and convenient biomarkers are needed to 

hasten the recognition of SSD, reduce its conversion to 

MDD and precisely treat different subtypes of 

depression. In this study, we determined the specific 

genes and enrichment pathways associated with MDD 

and SSD. Then, we constructed specific gene co-

expression networks and identified highly specific hub 

genes of MDD and SSD. 

 

RESULTS 
 

Patient demographics 

 

This study was a secondary analysis of data originally 

published by Yi et al. [11]. Drug-free first-episode 

MDD and SSD patients (n=8/group) and healthy 

controls (n=8) were enrolled. Both age and sex were 

matched among the groups (Table 1). The Structured 

Clinical Interview for the Diagnostic and Statistical 

Manual of Mental Disorders-Fourth Edition (SCID) and 

the 17-item Hamilton Rating Scale for Depression 

(HRSD-17) were administered to all subjects by two 

experienced psychiatrists with senior positions 

(interrater reliability, kappa = 0.87). 

 

Global analysis of mRNAs 

 

Peripheral blood samples from the three groups of 

patients were subjected to microarray analyses so that 

mRNA levels could be compared among the groups. 

The most striking differences in mRNA levels were 

observed between the SSD and healthy control groups. 

Among 54,675 mRNAs, 9427 were differentially 

expressed between the SSD and healthy control groups 

(p ≤ 0.05), with a tendency to be upregulated in the SSD 

group (6.76% increase). Of the genes with larger 

expression changes (fold-change > 1.30 or < 0.77), 

3789 were upregulated and 3170 were downregulated in 

the SSD group compared with the healthy control 

group. 

 

Next, we compared MDD patients with healthy 

controls, we observed relatively few global mRNA 

changes. Of the 54,675 mRNAs, 4125 were 

differentially expressed between the MDD and healthy 

control groups (p ≤ 0.05), with a tendency to be 

upregulated in the MDD group (0.02% increase). 
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Table 1. General demographics 
of patients and healthy controls. 

Group 
Age range 

(years) 

MDD  

1 25-30 

2 25-30 

3 25-30 

4 35-40 

5 25-30 

6 30-35 

7 30-35 

8 40-45 

SSD  

1 25-30 

2 25-30 

3 25-30 

4 35-40 

5 25-30 

6 25-30 

7 35-40 

8 40-45 

Healthy control  

1 20-25 

2 25-30 

3 25-30 

4 35-40 

5 25-30 

6 30-35 

7 30-35 

8 40-45 

 

Among the genes with larger expression changes (fold-

change > 1.3 or < 0.769), 1434 were upregulated and 

1677 were downregulated in the MDD group compared 

with the healthy control group. 

 

When we compared global mRNA levels between 

MDD and SSD patients. We found that 9262 of the 

54,675 mRNAs were differentially expressed between 

these two groups (p ≤ 0.05), with a tendency to be 

upregulated in the MDD group (7.08% increase). 

Among the genes with larger expression changes (fold-

change > 1.30 or < 0.77), 3100 were upregulated and 

3900 were downregulated in the MDD group compared 

with the SSD group. 

 

The overall dataset reflected obvious, widespread 

mRNA changes in SSD patients vs MDD patients. 

Thus, altered mRNA expression may be regarded as a 

biomarker of SSD that is adaptive and homeostatic but 

lacking in MDD patients. 

Analysis of individual mRNAs 

 

Of the 9427 mRNAs that were significantly 

differentially expressed between SSD patients and 

controls, the top ten upregulated and downregulated 

genes are exhibited in Table 2. FRAS1-related 

extracellular matrix 3 (FREM3) on chromosome 11: 

62040583-62047156 was the most strongly upregulated 

gene (fold-change: 14.74; p-value: 0.03), while C-C 

motif chemokine ligand 20 (CCL20) on chromosome 2: 

228386813-228390494 was the most strongly 

downregulated gene (fold-change: 0.05; p-value: 0.02).  

 

The top ten upregulated and downregulated genes 

among the 4125 significantly differentially expressed 

mRNAs between MDD patients and controls are shown 

in Table 3. Olfactory receptor 2H1 (OR2H1) on 

chromosome 6: 29537525-29538476 was the most 

strongly upregulated gene (fold-change: 10.50; p-value: 

0.04), while CCL20 on chromosome 2: 228386813- 
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Table 2. Significantly up- and downregulated mRNAs in SSD patients vs. healthy controls. 

 Gene Fold-change p-value chromosome 

 Upregulated    

1 FREM3 14.73884566 0.033489922 chr11: 62040583-62047156 

2 PDZRN3 9.36926631 0.014126602 chr3: 73759272-73759736 

3 GALP 9.059542668 0.003601305 chr19: 61379200-61388956 

4 POU4F3 8.568801129 0.021930619 chr5: 145698868-145700200 

5 ESPN 7.6434056 0.007291285 chr1: 6407587-6442993 

6 FN1 7.528425974 0.037148336 chr2: 215933832-216008690 

7 BTBD8 7.463212882 0.023074933 chr1: 92318480-92385933 

8 FARP2 7.203860206 0.008283210 chr2: 241944383-242054117 

9 NTRK3 7.027205922 0.000779235 chr15: 86207772-86209836 

10 IGF1R 6.921653028 0.025073337 chr15: 99276454-99276946 

 Downregulated    

1 CCL20 0.050188723 0.020152367 chr2: 228386813-228390494 

2 AHNAK 0.09476463 0.009823222 chr11: 62039949-62050658 

3 LOC399744 0.117500665 0.000168497 chr10: 38732122-38777664 

4 PFAAP5 0.119307294 0.014539339 chr13: 31982654-31985621 

5 CCDC102B 0.12814995 0.025351322 chr18: 65030493-65032564 

6 SORBS2 0.128267303 0.000597935 chr4: 186798113-186799907 

7 LNPEP 0.14701882 0.004190173 chr5: 96394114-96394977 

8 RAB3C 0.157130794 0.014039095 chr5: 58188365-58188910 

9 AJ276555 0.157265173 0.011187684 chr12: 109859370-109859638 

10 CPAP 0.163601794 0.010409793 chr13: 24361345-24376132 

 

Table 3. Significantly up- and downregulated mRNAs in MDD patients vs. healthy controls. 

 Gene Fold-change  p-value chromosome 

 Upregulated     

1 OR2H1 10.49930199  0.036466554 chr6: 29537525-29538476 

2 PDZRN3 8.040524786  0.035864269 chr3: 73759272-73759736 

3 NRXN1 7.266546337  0.027104021 chr2: 49999506-50001065 

4 AQP4-AS1 6.583444561  0.001625302 chr18: 26737858-26738017 

5 ADAM30 6.323491911  0.033936130 chr1: 120237954-120238204 

6 TAX1BP3 6.228224117  0.009671162 chr17: 3517422-3518603 

7 POU4F3 6.121667165  0.042860783 chr5: 145698868-145700200 

8 ESPN 6.02225045  0.011621354 chr1: 6407587-6442993 

9 NTRK3 5.924995635  0.002248940 chr15: 86207772-86209836 

10 CPE 5.858833617  0.009855088 chr4: 166519543-166638926 

 Downregulated     

1 CCL20 0.093343424  0.018734019 chr2: 228386813-228390494 

2 HLA-DQB1 0.109670469  0.021685769 chr6: 32735224-32742572 

3 RP1 0.115663331  0.009439945 chr6: 163733604-163738866 

4 SYT1 0.132274079  0.007769112 chr12: 78317217-78317562 

5 CHES1 0.155760903  0.029942786 chr14: 87671581-87672158 

6 RAB32 0.160788193  0.028362683 chr6: 146912587-146915288 

7 RAB7A 0.164235711  0.024497067 chr3: 130013902-130015623 

8 LOC101927760 0.164256336  0.028223721 chr10: 119991065-119991576 

9 CXCL3 0.16776403  0.011589400 chr4: 75121177-75123269 

10 H2AFY2 0.168078772  0.017307962 chr10: 71515566-71516055 
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228390494 was the most strongly downregulated gene 

(fold-change: 0.09; p-value: 0.02).  

 

Table 4 displays the top 10 upregulated and 

downregulated genes among the 9262 differentially 

expressed mRNAs between MDD and SSD patients. 

AHNAK on chromosome 11: 62039949-62050658 was 

the most strongly upregulated gene (fold-change: 12.01; 

p-value: 0.0094), whereas galanin-like peptide (GALP) 
on chromosome 19: 61379200-61388956 was the most 

strongly downregulated gene (fold-change: 0.097; p-

value: 0.0022).  

 

Specific analysis 

 

Next, we performed a specific analysis, which identified 

3278 DEGs specifically associated with SSD patients vs. 

controls, 1719 DEGs specifically associated with MDD 

patients vs. Controls and 3269 DEGs specifically 

associated with MDD patients vs. SSD patients (Refer 

to Venn diagram for details, Figure 1).  

 

Functional enrichment analysis of genes from the 

specific analysis 

 

Subsequently, enrichment analyses were performed to 

determine the GO molecular functions (MFs), GO 

biological processes (BPs), GO cellular components 

(CCs) and KEGG pathways of the genes in the specific 

analysis. Figure 2 displays the pathways of SSD, while 

Figure 3 displays the pathways of MDD. The MFs of 

SSD were mainly enriched in ‘neurotransmitter binding’, 

‘G protein-coupled receptor binding’, ‘growth factor 

receptor binding’, ‘ATPase activity, coupled, calcium 

ion binding’, ‘protein tyrosine kinase activity’, 

‘cytokine receptor activity’, ‘ligand-gated ion channel 

activity’ and ‘ion gated channel activity’ (Figure 2A). 

The BPs of SSD were mainly enriched in ‘cell 

activation involved in immune response’, ‘trans-

membrane receptor protein tyrosine kinase signaling 

pathway’, ‘G protein-coupled receptor signaling 

pathway’, ‘coupled to cyclic nucleotide second 

messenger’, ‘second-messenger-mediated signaling’, 

‘regulation of secretion’, ‘peptidyl-tyrosine 

phosphorylation’, ‘positive regulation of kinase activity’ 

and ‘trans-synaptic signaling’ (Figure 2B). The CCs of 

SSD were mainly enriched in ‘endoplasmic reticulum 

lumen’, ‘actin cytoskeleton’, ‘perinuclear region of 

cytoplasm’, ‘cell-cell junction’ and ‘GABA-ergic 

synapse’ (Figure 2C). The KEGG pathways of SSD 

were mainly enriched in ‘Cushing syndrome’, 

‘transcriptional misregulation in cancer’, ‘rheumatoid 

arthritis’, ‘serotonergic synapse’, ‘human T-cell 
leukemia virus 1 infection’, ‘complement and co-

agulation cascades’, ‘dopaminergic synapse’, ‘systemic 

lupus erythematosus’, ‘autoimmune thyroid disease’, 

‘IL-17 signaling pathway’, ‘chemokine signaling 

pathway’, ‘cAMP signaling pathway’, ‘retrograde 

endocannabinoid signaling’, ‘Kaposi sarcoma-

associated herpesvirus infection’ and ‘MAPK signaling 

pathway’ (Figure 2D). 

 

The MFs of MDD were mainly enriched in ‘ATPase 

activity’, ‘calcium activated cation channel activity’, 

‘3',5'-cyclic-nucleotide phosphodiesterase activity’, 

‘kinase activity’, ‘hydrolase activity’, ‘acting on ester 

bonds’ and ‘inorganic cation transmembrane transporter 

activity’ (Figure 3A). The BPs of MDD were mainly 

enriched in ‘response to pheromone’, ‘lymphocyte 

activation involved in immune response’ and ‘inorganic 

cation transmembrane transport’ (Figure 3B). The CCs 

of MDD were mainly enriched in the ‘CCR4-NOT 

complex’ and ‘symmetric, GABA-ergic, inhibitory 

synapse’ (Figure 3C). The KEGG pathways of MDD 

were mainly enriched in ‘cortisol synthesis and 

secretion’, ‘cell adhesion molecules’, ‘arrhythmogenic 

right ventricular cardiomyopathy’ and ‘pyrimidine 

metabolism’ (Figure 3D). 

 

Co-expression analysis of genes from the specific 

analysis 

 

We then performed a co-expression analysis, which 

suggested that there was a significantly higher 

correlation and connectivity of gene expression in SSD 

patients than in MDD patients or healthy controls. The 

co-expression analysis also indicated that SSD and 

MDD patients had different transcription signatures. 

Thus, we constructed normal gene co-expression 

networks using all the specifically differentially 

expressed mRNAs of the MDD and SSD patients. The 

most concentrated differentially expressed mRNAs of 

the SSD patients constituted a network of 20 nodes and 

72 connections (Figure 4), while those of the MDD 

patients constituted a network of 42 nodes and 66 

connections (Figure 5). The hub genes for the SSD co-

expression network were actin-related protein 2/3 

complex (ARPC2) and solute carrier family 5 member 5 

(SLC5A5), located at chr2: 218790364-218827076 and 

chr19: 17843906-17865777, respectively. The hub gene 

for the MDD co-expression network was trans-

membrane protein 132B (TMEM132B), located at 

chr12: 124709076-124709542. The network graphs 

revealed that the nodes and connections in the SSD 

subnetwork were significantly richer than those in the 

MDD subnetwork.  
 

Overall, different gene expression characteristics were 

found in peripheral blood samples from SSD and MDD 
patients in this study. The hub genes detected in this 

study may be associated with the etiology, diagnosis 

and treatment of MDD and SSD. 



 

www.aging-us.com 13129 AGING 

Table 4. Significantly up- and downregulated mRNAs in MDD patients vs. SSD patients. 

 Gene Fold-change p-value chromosome 

 Upregulated    

1 AHNAK 12.00684864 0.009447029 chr11: 62039949-62050658 

2 EDNRB 8.171230689 0.001870225 chr13: 77370240-77390755 

3 LOC284701 7.057598609 0.010444377 chr1: 226221713-226228812 

4 BC032034 6.557337529 0.001381698 chr3: 180301847-180348451 

5 LNPEP 6.21575868 0.011049362 chr5: 96394114-96394977 

6 IGFBP5 6.037622489 0.025706624 chr2: 217248219-217249383 

7 PFAAP5 5.982076617 0.040062454 chr13: 31982654-31985621 

8 LOC102724612 5.894702597 0.042944315 chr8: 64540959-64547620 

9 PDGFRA 5.740653281 0.002692000 chr4: 54837254-54843018 

10 LOC728852 5.737907484 0.022468675 chr14: 30959714-30991839 

 Downregulated    

1 GALP 0.09672831 0.002222873 chr19: 61379200-61388956 

2 RANBP2L1 0.107935435 0.009097415 chr2: 111085983-111086739 

3 FIP1L1 0.115811265 0.001991012 chr11: 37991635-37992296 

4 SLC9A7 0.132974447 0.002015236 chrX: 46349700-46503303 

5 GUCA1C 0.134880497 0.003687287 chr3: 110109339-110155310 

6 RH17876 0.138002894 0.014801866 chr1: 34743617-34744982 

7 USP26 0.150844724 0.016120346 chrX: 131987172-131989966 

8 SERPINB4 0.153862372 0.010070519 chr18: 59455931-59461796 

9 CARD8 0.153939137 0.013866022 chr19: 53398216-53414013 

10 ARHGAP29 0.154003298 0.005056514 chr1: 94414770-94434085 

 

 
 

Figure 1. Venn diagram of DEGs in blood samples from MDD, SSD and healthy control subjects. Three-way Venn diagram of the 
total number of significantly DEGs (p ≤ 0.05) in the MDD vs. healthy control (HC), SSD vs. HC and MDD vs. SSD comparisons. The numbers of 
genes that are unique for each disease are shown in the circle beside the Venn diagram. The numbers of genes shared are indicated at the 
intersections of the circles in the Venn diagram. 
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DISCUSSION 
 

In the original study on which this study was based, 

Yi et al. [11] identified 1456 DEGs between SSD 

patients and normal controls, along with 149 DEGs 

between MDD patients and normal controls, both at a 

significance level of p < 0.01. By applying stricter 

thresholds to their intergroup comparisons, the

 

 
 

Figure 2. Bar graph of enriched terms across input SSD-specific genes, colored by p-values. Provided gene identifiers were 

first converted into corresponding H. sapiens Entrez gene IDs using the latest version of the database (last updated on 2020 -09-16). If 
multiple identifiers corresponded to the same Entrez gene ID, they were considered as a single Entrez gene ID in downstream a nalyses. 
For each given gene list, pathway and process enrichment analyses were performed using the following ontology sources: (A) GO MFs; 
(B) GO BPs; (C) GO CCs; (D) KEGG pathways. All genes in the genome were used as the enrichment background. “Log10(P)” is the p -
value in log base 10. 
 

 
 

Figure 3. Bar graph of enriched terms across input MDD-specific genes, colored by p-values. Provided gene identifiers 
were first converted into corresponding H. sapiens Entrez gene IDs using the latest version of the database (last updated on 2020 -09-
16). If multiple identifiers corresponded to the same Entrez gene ID, they were considered as a single Entrez gene ID in down stream 
analyses. For each given gene list, pathway and process enrichment analyses were performed using the following ontology sources:  (A) 
GO MFs; (B) GO BPs; (C) GO CCs; (D) KEGG pathways. All genes in the genome were used as the enrichment background. “Log10(P)” is 
the p-value in log base 10. 
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authors identified a signature of 63 differentially 

expressed genes between SSD patients and controls 

(adjusted p = 1.0E-4), a signature of 30 differentially 

expressed genes between MDD patients and controls 

(adjusted p = 5.0E-4), and a signature of 123 

differentially expressed genes between SSD and MDD 

patients (adjusted p = 1.0E-4). In our re-analysis of 

the data, we selected a significance threshold that 

would include more genes, in order to gain a more 

comprehensive understanding of the biological 

markers of MDD and SSD. At a significance level of 

p ≤ 0.05, 9427 genes were differentially expressed 

between SSD patients and healthy controls, 4125 were 

differentially expressed between MDD patients and 

healthy controls and 9262 were differentially 

expressed between MDD and SSD patients. 

 

When we individually analyzed the differentially 

expressed mRNAs between the groups, we found that 

FREM3 was the most strongly upregulated and CCL20 

was the most strongly downregulated gene in SSD 

patients vs. healthy controls. These two genes have 

previously been linked to mental diseases. FREM3 was 

significantly associated with MDD in a genome-wide 

association study [15], and Nikolova et al. reported that 

depression risk factors such as slower perceptual 

processing speeds and reduced reactivity to 

environmental stimuli may be due to reduced FREM3 

expression [16]. The C-C motif chemokine 20 protein 

encoded by CCL20 is an important Th17 mediator that 

is involved in inflammatory bowel disease [17], 

 

 
 

Figure 4. Co-expression subnetworks of SSD-associated 
genes. Nodes in the network represent genes, and edges 

represent significant co-expression (≥ 0.80) between two genes. 
Different colors indicate different strengths of co-expression. 
Genes colored in red are hub genes, and genes colored in blue 
are corresponding genes. 

indicating that CCL20 may be associated with immune 

function. 

 

For MDD patients vs. healthy controls, OR2H1 was the 

most strongly upregulated and CCL20 was the most 

strongly downregulated gene. In a parallel case-control 

study, Orozco et al. found three new independent loci: 

Zinc finger 391(ZNF391), OR2H1 and c6orf26-rdbp in 

the major histocompatibility complex region that were 

associated with rheumatoid arthritis [18]. Patients with 

rheumatoid arthritis were found to have a greater risk of 

depression than normal controls and patients with 

remitted vasculitis, and CCL20 (Th17) was reported to 

be significantly upregulated in active vasculitis patients 

[19]. Some studies have demonstrated that olfaction 

disorders and immune diseases are associated with 

depression, possibly because all these diseases involve 

excess production of inflammatory cytokines and 

eicosanoids [20]. 

 

In our comparison between MDD vs. SSD patients, 

AHNAK was the most strongly upregulated and GALP 

was the most strongly downregulated gene. Constitutive 

AHNAK knockout mice and forebrain glutamatergic 

neuron-selective AHNAK knockout mice were found to 

have a depression-like behavioral phenotype, whereas 

parvalbumin interneuron-selective AHNAK knockout 

mice displayed an antidepressant-like behavioral 

phenotype [21]. Thus, AHNAK seems to control 

depressive behavior. GALP is generated by neurons in the 

median eminence and basomedial arcuate nucleus [22], 

and is associated with immune function [23]. The 

differential expression of these genes between MDD and 

SSD patients indicates that these diseases are associated 

with the immune system. To the best of our knowledge, 

this is the first study to analyze individual candidate 

genes associated with MDD and SSD. 

 

We also identified new candidate genes that were only 

enriched in MDD or SSD patients. In our Venn diagram 

analysis, 1719 DEGs, 3278 DEGs and 3269 DEGs were 

specifically associated with comparisons of MDD patients 

vs. controls, SSD patients vs. controls and MDD patients 

vs. SSD patients, respectively. Depression and lack of 

interest are core symptoms of MDD, but not of SSD; thus, 

the DEGs specifically associated with MDD may be 

involved in the underlying pathological mechanisms of 

depression or anhedonia.  

 

Our functional enrichment analysis demonstrated that 

altered hormone levels may increase the risk of MDD, 

while inflammatory responses may contribute to SSD. In 

MDD patients, GO analysis demonstrated that ‘response 
to pheromone’ was the most enriched BP, and KEGG 

pathway analysis indicated that altered ‘pyrimidine 

metabolism’ may increase the risk of MDD. Early studies 
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on the projection of melanin-concentrating hormone 

(MCH)-ergic neurons and the distribution of melanin-

concentrating hormone receptor 1 (MCH-R1) suggested 

that MCH may regulate emotions [24, 25]. MCH directly 

contributes to depression-like behaviors by inhibiting the 

monoaminergic neurotransmitter function of the dorsal 

raphe nucleus and the locus coeruleus nucleus [26], and 

indirectly contributes to depression-like behaviors  

by regulating the sleep-wake cycle [27]. Also the 

hypothalamic-pituitary-thyroid [28] and hypothalamic-

pituitary-adrenal axes [29] are altered in major depression. 

Uridine, a pyrimidine metabolite, has been shown to have 

antidepressant-like activities in mice [30]. 

 

In SSD patients, GO analysis indicated that ‘cell 

activation involved in immune response’ was the most 

enriched BP. KEGG pathway analysis demonstrated 

that inflammatory cytokines may increase the risk of 

SSD, as evidenced by the enrichment of ‘rheumatoid 

arthritis’, ‘serotonergic synapse’, ‘human T-cell 

leukemia virus 1 infection’, ‘complement and 

coagulation cascades’, ‘dopaminergic synapse’, 

‘systemic lupus erythematosus’, ‘autoimmune thyroid 

disease’, ‘IL-17 signaling pathway’, ‘chemokine 

signaling pathway’ and ‘Kaposi sarcoma-associated 

herpesvirus infection’. The limited research thus far 

suggests that the immune system may contribute to the 

development of SSD. Geng et al. [13] found that GO 

terms such as ‘regulation of leukocyte migration’,  

 

 
 

Figure 5. Co-expression subnetworks of MDD-associated 
genes. Nodes in the network represent genes, and edges 

represent significant co-expression (≥ 0.80) between two genes. 
Different colors indicate different strengths of co-expression. The 
gene colored in red is the hub gene, and genes colored in blue 
are corresponding genes. 

‘T cell-mediated immunity’ and ‘regulation of 

autophagy’ were enriched in SSD patients, along with 

KEGG pathways such as ‘Th17 cell differentiation’ and 

‘the NOD-like receptor signaling pathway’. 

 

Alterations in the peripheral immune system and 

subsequent overactivation of pro-inflammatory cyto-

kines have long been associated with mood disorders 

[31, 32], leading to the proposal of a macrophage theory 

of depression [33]. In addition, continuous activation of 

the peripheral immune system due to cancer, systemic 

infections or autoimmune diseases may promote the 

development of major depression in vulnerable 

individuals [34]. Altered leukocyte function/number and 

elevated cytokine expression have been proposed as 

potential biomarkers of depression [35, 36] and post-

traumatic stress disorder [37]. Moreover, anti-

inflammatory drugs may have antidepressant effects in 

MDD patients [38]. ‘Cell activation involved in immune 

response’ was identified in our pathway analyses of 

both MDD and SSD patients. Although the relationship 

between SSD and MDD is unclear, previous studies 

have indicated that SSD is a subtype of depression and a 

transitory phenomenon in the depression spectrum with 

a high likelihood of transition to MDD [39–41]. Thus, 

genes involved in the ‘cell activation involved in 

immune response’ pathway may contribute to the 

pathogenesis of both MDD and SSD.  

 

Our co-expression network analysis identified ARPC2 

and SLC5A5 as hub genes contributing to SSD. 

Previously, ARPC2 expression was found to be 

significantly elevated in gastric cancer tissues [42]. 

SLC5A5 was reported to be downregulated in papillary 

and follicular thyroid cancer [43, 44] and dysregulated 

in patients with neurotransmitter, endocrine and 

immune abnormalities [45]. These genes have also been 

associated with neuroplasticity, cognitive function and 

neuropsychiatric disease development [46]. The present 

study was the first to reveal the involvement of ARPC2 

and SLC5A5 in SSD. 

 

In the study of Yi et al. [11], peripheral blood 

leukocytes from MDD and SSD patients had different 

genomic signatures, and a 48-gene model was proposed 

to classify SSD patients, MDD patients and healthy 

controls. In the current study, we found some 

differences between the hub genes of SSD and MDD. 

Our co-expression network analysis suggested that 

TMEM132B participates in the pathogenesis of MDD as 

a hub gene. Peripheral blood TMEM132B mRNA 

expression was previously found to differ significantly 

between aneurysm patients and controls [47]. 
Aneurysms are known to be caused by immune 

illnesses, infections, acute or blunt injuries and 

atherosclerosis; thus, the alteration of TMEM132B in 
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both MDD and aneurysm patients suggests that MDD is 

also linked to immunity and inflammation.  

 

This study had several limitations. We used peripheral 

blood samples rather than brain tissues or cerebrospinal 

fluid to compare the expression profiles of MDD and 

SSD patients. Previous studies have shown that gene 

expression overlaps considerably between peripheral 

blood and the brain [48]. We chose to identify 

biomarkers from peripheral blood to circumvent several 

limitations of postmortem brain tissue and cerebrospinal 

fluid, such as invasive acquisition and low patient 

acceptance. Additional SSD and MDD samples will be 

needed to replicate our results. Quantitative real-time 

PCR should be used to verify the levels of the three 

differentially expressed hub genes in SSD and MDD 

patients, and cell or animal studies should be conducted 

to further explore the pathophysiological functions of 

these genes in SSD and MDD. 

 

MATERIALS AND METHODS 
 

Subjects 

 

All subjects were recruited from the ward and clinic of 

Shanghai Mental Health Center, China. Our project was 

approved by the Institutional Review Board of Shanghai 

Mental Health Center in accordance with the World 

Medical Association’s Declaration of Helsinki. 

Informed consent was obtained from each subject 

before the study.  

 

Candidates for the MDD group were required to meet 

the Diagnostic and Statistical Manual of Mental 

Disorders-Fourth Edition criteria for MDD and have 

scores ≥ 17 on the HRSD-17. The exclusion criteria 

were pregnancy and other special physical conditions. 

For inclusion in the SSD group, patients were required 

to have two or more depressive symptoms, exhibit 

social dysfunction, be free of anhedonia and a depressed 

mood, and have a total HRSD-17 score of 8-16 for 

approximately two weeks. Healthy control subjects 

were required to score ≤ 7 on the HRSD-17 and to have 

no severe physical illness. Additional details can be 

found in the original paper [11].  

 

Microarray analysis 

 

Blood samples for mRNA and protein analyses were 

obtained after overnight fasting. Venous blood (5 mL) 

was collected between 7 and 9 a.m. in anticoagulant-

free tubes. Blood for leukomonocyte extraction was 

collected from the whole blood using Ficoll-Paque 

PLUS reagent (GE Healthcare, IL, USA), and was 

transferred into fresh RNase/DNase-free micro-

centrifuge tubes with TRIzol (Invitrogen, CA, USA) 

before being stored at -80° C. Subsequently, total RNA 

was extracted using TRIzol [11]. The cDNA synthesis, 

cDNA hybridization, signal scanning, data acquisition 

and preliminary analysis were performed using the 

platform of the Affymetrix U133 Plus2.0 GeneChip 

oligonucleotide array. The raw expression data were 

standardized through robust multi-array averaging using 

Gene Spring Software 11.0 (Agilent Technologies, CA, 

USA), and log2 transformation was applied. The details 

of the analysis have been published previously [11]. 

 

All data have been shared in the Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo/query/acc. 

cgi?acc=gse32280). We reused the GSE32280  

dataset [11].  

 

Specific analysis 

 

Specific mRNAs that were differentially expressed 

between the different pairs of groups were identified 

through a Venn diagram analysis using the 

“draw.triple.venn” package in R.  

 

Functional enrichment analysis of genes from the 

specific analysis 

 

The CCs, MFs, BPs and KEGG pathways of the MDD- 

and SSD-specific genes were determined through GO 

and KEGG pathway enrichment analyses using 

Metascape (https://metascape.org/gp/index.html) [49]. 

Terms with p-values < 0.01, a minimum count of three 

and an enrichment factor > 1.5 (the ratio between the 

observed counts and the counts expected by chance) 

were collected and grouped into clusters based on their 

membership similarities. P-values were calculated based 

on the accumulative hypergeometric distribution [50]. 

Sub-trees with similarity values > 0.3 were considered 

to be a cluster. The most statistically significant term 

within a cluster was chosen to represent the cluster.  

 

Co-expression network from the specific analysis 

 

The expression correlations of co-expressed genes were 

used to determine their total connectivity and identify 

gene-gene interactions in SSD and MDD. Highly 

correlated genes may be functionally related or involved 

in similar biological processes. We used the “igraph” 

package in the R platform to construct the co-expression 

network. 

 

Abbreviations 
 

DEGs: differentially expressed genes; FREM3: FRAS1-

related extracellular matrix 3; HC healthy control; 

HRSD-17: the 17-item Hamilton Rating Scale for 

Depression; KEGG Kyoto Encyclopedia of Genes and 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse32280
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse32280
https://metascape.org/gp/index.html


 

www.aging-us.com 13134 AGING 

Genomes; MDD: major depressive disorder; SSD: 
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