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Abstract: Background: Neonatal encephalopathy due to perinatal asphyxia is one of the leading
causes of neonatal death and morbidity worldwide. The neurodevelopmental outcomes of asphyxi-
ated neonates have considerably improved after therapeutic hypothermia (TH). The current challenge
is to identify all newborns with encephalopathy at risk of cerebral lesions and subsequent disability
within 6 h of life and who may be within the window period for treatment with TH. This study
evaluated the neurodevelopmental outcomes in surviving asphyxiated neonates who did and did not
receive TH, based on clinical and polygraphic electroencephalographic (p-EEG) criteria. Methods:
The study included 139 asphyxiated newborns divided into two groups: 82 who received TH and
57 who were not cooled. TH was administered to asphyxiated newborns (gestational age ≥ 35 weeks,
birth weight ≥ 1800 g) with encephalopathy of any grade and moderate-to-severe p-EEG abnormal-
ities or seizures. Neurodevelopmental outcomes between the groups at 24 months of life and the
risk factors for severe outcomes were assessed. Results: Severe neurodevelopmental impairment
occurred in 10 (7.2%) out of the 139 enrolled neonates. Nine out of the 82 cooled neonates (11.0%)
had severe neurodevelopmental impairment. All but one neonate (98.2%) who did not receive TH
had normal outcomes. The multivariate logistic regression analysis showed that abnormal p-EEG
patterns (OR: 27.6; IC: 2.8–267.6) and general movements (OR: 3.2; IC: 1.0–10.0) were significantly
associated with severe neurodevelopmental impairment (area under ROC curve: 92.7%). Conclusion:
The combination of clinical and p-EEG evaluations in hypoxic–ischemic encephalopathy contributed
to a more accurate selection of patients treated with therapeutic hypothermia. When administered
to infants with moderate to severe p-EEG abnormalities, TH prevents approximately 90% of severe
neurodevelopmental impairment after any grade of hypoxic–ischemic encephalopathy.

Keywords: hypoxic–ischemic encephalopathy; therapeutic hypothermia; EEG; neurodevelopmental outcome

1. Introduction

Neonatal encephalopathy after perinatal asphyxia is one of the leading causes of
neonatal death and morbidity worldwide; however, therapeutic hypothermia (TH) has
significantly improved clinical outcomes [1]. Randomized clinical trials (RCT) have shown
that TH is effective in reducing death and disability in term newborns with moderate to
severe hypoxic-ischemic encephalopathy (HIE) [2–5]. Due to a lack of RCTs supporting the
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administration of TH to infants with mild HIE in the first 6 h of life, the full potential benefit
of TH remains unclear. However, increasing evidence from cohort studies shows that some
untreated neonates may develop disabilities [5–7]. Hence, the current challenge is to iden-
tify all newborns with encephalopathy at risk of cerebral lesions and subsequent disability
within 6 h of life and who may be within the window period for treatment with TH. The
extent of cerebral injury (basal ganglia–thalami or cortical watershed lesions) in HIE is not
only determined by the biochemical cascades that trigger the apoptosis–necrosis continuum
of cell death in the brain parenchyma, but also by the breaching of the blood–brain barrier
by pro-inflammatory factors. Several studies showed the usefulness of neuro-biomarkers
(IL-1, IL-10, TNF-alpha, glial fibrillary acidic protein, ubiquitin carboxyl-terminal hydrolase
L1, S100B, neuron-specific enolase) in detecting brain injury and in monitoring asphyxiated
infants treated by TH [8–10]. Given the evolving nature of neonatal encephalopathy, the
severity of HIE cannot be assessed accurately through clinical evaluation alone. In con-
trast, a neurophysiologic assessment may contribute to better defining of the severity of
cerebral dysfunction in the first hours of life. Many centers use amplitude-integrated EEG
(aEEG), an easy-to-interpret, real-time tool that shows changes in brain activity over time.
Early aEEG findings in moderate to severe HIE correlate well with short- and long-term
outcomes [11,12]. Indeed, aEEG has been used in conjunction with neurological scoring
to determine whether an infant has moderate/severe HIE and is, therefore, eligible for
TH [1,13]. However, aEEG monitoring within 6 h of birth seems insufficient for predicting
the outcome of infants with mild HIE.

Continuous polygraphic EEG monitoring (p-EEG) is the gold standard method for
assessing neonatal brain activity. Although it requires many electrodes to be placed on
the neonate’s head and specialist interpretation, before the era of TH, several studies had
shown that EEG recording was highly predictive of neonatal outcomes [14,15]. Therefore,
p-EEG and clinical assessment might more accurately identify asphyxiated neonates who
would benefit from TH.

This study assessed the neurodevelopmental outcomes in cooled (administered TH)
and non-cooled (not administered TH) asphyxiated infants based on clinical and p-EEG
criteria. Furthermore, we evaluated risk factors for severe neurodevelopmental outcomes.

2. Methods
2.1. Inclusion Criteria

This prospective study included 139 surviving asphyxiated newborns (gestational
age ≥ 35 weeks and birth weight ≥ 1800 g) admitted to the neonatal intensive care unit
(NICU) of the University Hospital of Modena between 1 January 2009, and 31 December 2019.
TH was performed based on clinical and p-EEG criteria, such as (1) intrapartum asphyxia,
confirmed by at least one of the following criteria: 10 min Apgar score ≤ 5, ventilation
with an endotracheal tube (or mask) for at least 10 min after birth, severe acidosis (defined
as cord pH or any arterial/venous pH ≤ 7.0 or base deficit ≥ 12 mmol/L within 60 min
of birth); (2) neonatal encephalopathy assessed within 1 h of birth; (3) moderate to severe
p-EEG abnormalities or seizures confirmed by p-EEG recording [1,2,14–19]. Among the
139 neonates, 82 newborns who met the requisite criteria were cooled (TH group), and
57 who did not meet the criteria were not cooled (no-TH group). Perinatal data, HIE
severity, p-EEG, seizures, cerebral MRI, FM, GMDS-R scales, and outcomes were compared
between the two groups.

Neurological examination was performed during the first hour of life. Encephalopathy
was classified as mild (hyperactivity, normal or increased tone, normal spontaneous move-
ments and posture, tremors, exaggerated Moro reflex, no autonomic dysfunction), moderate
(lethargy, reduced motility, distal flexion/complete extension, hypotonia, weak/incomplete
primitive reflexes, myosis, bradycardia, periodic breathing), and severe (stupor or coma, de-
cerebrated posture, absent motility, flaccid tone, absent reflexes, mydriatic/deviated/non-
reactive pupils, apnea) according to the modified Sarnat and Sarnat criteria [1,2,14–19]. TH
was administered to newborns with moderate or severe HIE and moderate or severe p-EEG
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anomalies, regardless of the severity of HIE (including mild HIE). Patients were cooled to a
rectal temperature of 33.5 ◦C for 72 h (CritiCool MTRE, Charter Kontron, Milton Keynes,
UK) and then slowly rewarmed (+0.5 ◦C/h). Cooled infants received fentanyl analgesia as
previously reported [20].

Exclusion criteria were congenital malformations, chromosomal abnormalities,
metabolic disorders, sepsis or central nervous system infections, different causes of as-
phyxia (i.e., sudden unexpected postnatal collapse), incomplete TH (less than 72 h), or
incomplete neurological follow-up.

This study was approved by the local ethics committee (Prot. AOU 0011282/20).
Informed consent was obtained from the parents of each neonate included in this study.

2.2. p-EEG Recording

p-EEG monitoring was started within the first 6 h of life, as soon as possible after ad-
mission, using the 10–20 system of electrodes, electromyography (EMG), electrooculogram,
and pneumogram (EB Neuro Galileo, Florence, Italy). EEG recordings were evaluated at the
bedside by one of three experienced neonatologists (F.F, L.Lug., and I.G.) for every patient
enrolled. Early p-EEG findings (<6 h) were classified according to the grading system
described by Murray et al.: grade 0 (normal p-EEG), grade 1 (normal/mild abnormalities),
grade 2 (moderate abnormalities), grade 3 (severe abnormalities), and grade 4 (inactive p-
EEG) [1] (Figure 1). p-EEG monitoring was continued during hypothermic treatment (72 h)
and rewarming. p-EEG signals at 24, 48, and 72 h were classified according to the system
described by Murray et al. [14]. A seizure was defined as a sudden, repetitive, stereotyped
discharge lasting ≥10 s on two or more EEG channels [21,22] (Figure 1). Antiepileptic drugs
(AEDs) were administered based on online p-EEG evaluations. According to the local
protocol, phenytoin was administered as the first-line and midazolam as the second-line
AED [21,22].
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tions (at 3, 6, 12, and 24 months of age) with an assessment of general movements at 
12–14 weeks, standard neurologic examination according to the protocols of Amiel–Tison 
and Touwen’s criteria, and Griffiths Mental Developmental Scales (GMDS-R) [24–29]. 
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Figure 1. Classification of p-EEG abnormalities adapted with permission from Murray et al. [14].
p-EEG recording of patients included in the study are used as examples. (A): grade 0 (normal p-EEG).
(B): grade 1 (normal/mild abnormalities). (C): grade 2 (moderate abnormalities). (D): grade 3 (severe
abnormalities). (E): grade 4 (inactive p-EEG). (F): EEG confirmed seizure.
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2.3. Brain Magnetic Resonance Imaging

Brain magnetic resonance imaging (MRI) was performed within 30 postnatal days.
The infants were scanned using a Philips Intera 1.5-T MRI scanner (Philips Medical Systems,
Best, The Netherlands). Conventional and diffusion-weighted MRI sequences were ob-
tained. Three experienced neuroradiologists (F.C., A.T., M.G.) scored the scans according to
previously published criteria. Five patterns of injury were identified: moderate/severe dam-
age in the basal ganglia and thalami associated with moderate/severe white matter (WM)
changes and cortical injury (pattern 1); damage in the basal ganglia and thalami associated
with mild WM changes with or without cortical injury (pattern 2); focal thalamic lesion
with or without cortical injury (pattern 3); predominant WM damage (moderate/severe)
with or without cortical injury with or without mild basal ganglia and thalami changes
(pattern 4); mild WM abnormalities with or without mild cortical changes but with normal
basal ganglia and thalami, or normal imaging (pattern 5) [23].

2.4. Neurological Follow-Up

Follow-up assessments were performed by experienced neonatologists trained in
developmental neurology (F.F., L.Luc., L.B., M.F.R., E.D.), a developmental psychologist
(M.P.), and a physical therapist (N.B.). The follow-up schedule included serial evaluations
(at 3, 6, 12, and 24 months of age) with an assessment of general movements at 12–14 weeks,
standard neurologic examination according to the protocols of Amiel–Tison and Touwen’s
criteria, and Griffiths Mental Developmental Scales (GMDS-R) [24–29]. GMDS-R (0–2 years)
provides a global development quotient (DQ) of infants’ abilities with a mean of 100.5,
a standard deviation (SD) of 11.8, and five subscale quotients (locomotor, eye and hand
coordination, personal and social, hearing and language, and cognitive performance) [25].

2.5. Assessment of General Movements

General movements (GMs) are gross movements involving the whole body, evident
from the fetal period until approximately five months of post-term age [26–28]. For this
study, fidgety movements (FM) were evaluated at 12–14 weeks and classified as follows:
normal fidgety movements (small-amplitude movements of moderate speed and variable
acceleration of the neck, trunk, and limbs in all directions, continual in the awake infant
except during crying), absent fidgety movements (absence of fidgety movements but the
presence of other movements), and abnormal fidgety movements (fidgety-like movements
with moderately or greatly exaggerated amplitude, speed, and jerkiness) [28].

2.6. Neurodevelopmental Outcome

Neurodevelopmental outcomes were classified as normal (absent neurological signs
and DQ > 85), moderately abnormal (clumsiness, poor balance, DQ 70–85, hearing im-
pairment with no amplification), or severely abnormal (cerebral palsy, DQ < 70, epilepsy,
a severe sensorineural deficit like bilateral deafness, requiring bilateral hearing aids or
unilateral or bilateral cochlear implants, or bilateral blindness with visual acuity < 6/60 in
the better eye) [21,22]. Cerebral palsy (CP) was defined as spastic (diplegia, hemiplegia, or
quadriplegia), dystonic, or athetoid [29].

3. Statistical Analysis

MedCalc 8 software for Windows was used for statistical analyses. Descriptive statis-
tics included mean, standard deviation (SD), median, and interquartile range (IQR) for
continuous variables, and frequencies or proportions for categorical variables.

The groups were compared using χ2 analysis for categorical variables. Analysis of
variance and Mann–Whitney U tests were used for continuous variables when normally or
not normally distributed, respectively. Several variables were evaluated in the univariate
analysis as possible risk factors for severe neurodevelopmental outcomes. Multivariate
logistic regression analysis was performed using the best subset regression and backward
variable selection strategy (entry criteria = 0.05 and stay criteria = 0.1). The multivariate
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analysis final model (area under ROC curve: 92.68%) included two variables (p-EEG at 48 h
of age and FM). Statistical significance was set at p < 0.05.

4. Results

Among 139 included neonates, 82 were cooled (TH group) and 57 were not (no-TH
group) (Figure 2). Perinatal data, HIE severity, p-EEG, seizures, cerebral MRI, FM, GMDS-R
scales, and outcomes of the two groups are shown in Table 1. Seventeen (12.2%) out of
139 neonates had any grade of neurodevelopmental impairment (moderate, n = 7; severe,
n = 10). Newborns with severe outcomes had CP (n = 7, 70%; comprising quadriplegia
(n = 5), hemiplegia (n = 1), and dystonic CP (n = 1), hearing loss (n = 2, 20%), and cognitive
delay (n = 1, 10%). All five infants with quadriplegia also had early epilepsy (Figure 3).
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Table 1. Comparison of cooled and un-cooled asphyxiated infants.

All HIE
(n = 139)

Cooled HIE
(n = 82)

Un-Cooled HIE
(n = 57) p

Inborn
Outborn

59 (42.4%)
80 (57.66%)

41 (50%)
41 (50%)

18 (31.6%)
39 (68.4%) 0.0470 *

Sentinel event
Present
Absent

114 (82.0%)
25 (18.0%)

62 (75.6%)
20 (24.4%)

52 (91.2%)
5 (8.8%)

0.0329 *

Delivery
Vaginal
Cesarean

91 (65.5%)
48 (34.5%)

52 (63.4%)
30 (36.6%)

39 (68.4%)
18 (31.6%)

0.6678

Weight 3381.30 ± 488.7 3379.9 ± 520.6 3383.3± 443.3 0.2030

Gestational age 39.66 ± 1.5 39.48 ± 1.41 39.9 ± 1.6 0.3240

Apgar 1st minute 2.48 ± 1.9 1.93 ± 1.55 3.3 ± 2.1 0.0090 *

Apgar 5th minute 5.06 ± 2.0 4.16 ± 1.74 6.3 ± 1.4 0.0001 *

Apgar 10th minute 6.52 ± 1.9 5.70 ± 1.74 7.7 ± 1.6 0.0001 *

pH 6.98 ± 0.2 6.92 ± 0.15 7.1 ± 0.1 0.5530

BE 15.96 ± 6.0 17.60 ± 6.08 13.6 ± 4.9 0.0001 *

HIE
-Mild

-Moderate
-Severe

71 (51.17%)
45 (32.4%)
23 (16.5%)

14 (17.1%)
45 (54.9%)
23 (28.0%)

57 (100%)
0 (0%)
0 (0%)

<0.0001 *

p-EEG
-Normal

-Mild abnormalities
-Moderate abnormalities

-Severe abnormalities
-Inactive p-EEG

10 (7.2%)
47 (33.8%)
43 (30.9%)
35 (25.2%)

4 (2.9%)

0
0

43 (52.4%)
35 (42.7%)

4 (4.9%)

10 (17.5%)
47 (82.5%)

0
0
0

<0.0001 *

Seizures
-Absent
-Present

109 (78.4%)
30 (21.6%)

52 (63.4%)
30 (36.6%)

57 (100%)
0

<0.0001 *

Cerebral MRI
-Pattern 1
-Pattern 2
-Pattern 3
-Pattern 4
-Pattern 5

13 (9.4%)
11 (7.9%)
7 (5.0%)

23 (16.5%)
85 (61.2%)

13 (15.9%)
11 (13.4%)

2 (2.4%)
14 (17.1%)
42 (51.2%)

0
0

5 (8.8%)
9 (15.8%)
43 (75.4%)

0.0001 *

FM
-Normal

-Abnormal
-Absent

108 (77.7%)
7 (5.0%)

24 (17.3%)

59 (72.0%)
3 (36.6%)
20 (24.4%)

49 (85.96%)
4 (7.2%)
4 (7.2%)

0.0237 *

Outcome
-Normal

-Moderately abnormal
-Severe

122 (87.8%)
7 (5.0%)
10 (7.2%)

66 (80.5%)
7 (8.5%)
9 (11.0%)

56 (98.2%)
0

1 (1.8%)

0.0066 *

GMDS-R
-DQ

-Locomotor subscale
-Eye & Hand Coordination subscale

-Personal & Social subscale
-Hearing & Language subscale
-Cognitive Performance subscale

101.9 ± 15.6
100.8 ± 16.6
104.9 ± 16.8
97.4 ± 20.0

107.8 ± 15.4
101.8 ± 14.6

99.76 ± 17.9
97.72 ± 18.2

102.32 ± 18.2
95.30 ± 22.0

106.04 ± 17.9
100.64 ± 17.1

105.19 ± 10.8
105.26 ± 12.8
108.80 ± 13.7
100.26 ± 16.6
110.31 ± 10.2
103.42 ± 10.0

<0.001 *
0.0050 *
0.0250 *
0.0280 *
0.0010 *
<0.001 *

Sentinel event: placenta abruption, umbilical cord prolapse, umbilical cord knot. BE: base excess. HIE: hypoxic
ischemic encephalopathy. p-EEG: polygraphic electroencephalographic monitoring. MRI: cerebral magnetic reso-
nance imaging. FM: fidgety movements, Griffiths Mental Developmental Scales: GMDS-R. Global Development
Quotient: DQ. χ2 analysis was used for categorical variables. Analysis of variance and Mann–Whitney U tests
were used for continuous variables.*: statistically significant.
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4.1. Cooled Infants (TH Group)

Among 82 cooled infants, 45 had moderate (54.9%), and 23 had severe (28.0%) HIE. In
addition, 14 neonates with mild encephalopathy were cooled because of moderate-to-severe
p-EEG abnormalities. The neurodevelopmental outcomes of these 82 cooled neonates were
normal in 66 cases (80.5%), whereas 16 (19.5%) had neurodevelopmental impairment
(moderate, n = 7, 8.5%; severe, n = 9, 11%) (Table 2). Among 23 cooled newborns with
severe HIE, eight (34.8%) had severe and two (34.8%) had moderately abnormal outcomes
(Table 2). Among 45 newborns with moderate HIE, one (2.2%) had severe outcomes, and
four (8.9%) had moderate neurological outcomes. One of 14 patients (7.1%) with mild
HIE (presenting with severe early p-EEG abnormalities) showed a moderate outcome
(Table 2). Seizures occurred in 30/82 (36.6%) neonates during TH, and all infants with
severe outcomes presented with seizures.

Early p-EEG was severely abnormal (grade 3) or inactive (grade 4) in all patients
who developed severe outcomes; grade 2 or 3 p-EEG abnormalities were confirmed up
to 48 and 72 h in all neonates with severe outcomes (Figure 4). Among neonates with
normal outcomes, early p-EEG was moderately abnormal in 42/66 (63.3%) and severe in
24/66 (36.4%); however, at 72 h, p-EEG improved to mild abnormalities in 52/66 cases
(78.8%) (Table 3) (Figure 5). Figure 6 shows the p-EEG variation in patients with severe
neurodevelopmental outcomes (Figure 6A) and normal or moderate outcomes (Figure 6B).
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Figure 4. Patient 5 with severe HIE and severe neurodevelopmental outcome at 24 months of life.
(A): p-EEG at enrollment (4 h of life) showing inactive EEG abnormalities (grade 4). (B): p-EEG at 12 h
of life showing electrical seizures. (C): p-EEG at the end of TH showing severe EEG abnormalities
(grade 3). (D): Cerebral MRI on day 5, showing pattern 1.
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Table 2. Neuro-developmental outcome of infants with HIE who underwent TH.

Severe Outcome
(n = 9)

Normal or Moderately
Abnormal Outcome

(n = 73)
p

Inborn
Outborn

2 (22.2%)
7 (77.8%)

39 (53.4%)
34 (46.6%) 0.154

Sentinel event *
Present
Absent

2 (22.2%)
7 (77.8%)

18 (24.7%)
55 (75.3%)

0.028

Delivery
Vaginal

Cesarean section
5 (55.6%)
4 (44.4%)

47 (64.4%)
26 (35.6%)

0.017

Gestational age 39.8 ± 1.9 39.4 ± 1.3 0.1843

Weight 2993.9 ± 629.3 3427.5 ± 489.8 0.0908

Apgar 1st minute 1.6 ± 1.7 1.9 ± 1.5 0.4804

Apgar 5th minute 3.5 ± 2.1 4.2 ± 1.7 0.2826

Apgar 10th minute 5.0 ± 2.1 5.8 ± 1.7 0.3585

pH 6.8 ± 0.1 6.9 ± 0.1 0.1964

BE 21.1± 3.2 17.2 ± 6.2 0.0323 *

Encephalopathy severity
-Mild

-Moderate
-Severe

0
1 (11.1%)
8 (88.9%)

14 (19.2%)
44 (60.3%)
15 (20.6%)

0.0002 *

p-EEG
-Moderate p-EEG abnormalities

-Severe p-EEG abnormalities
-Inactive p-EEG

0
7 (77.8%)
2 (22.2%)

43 (58.9%)
28 (38.4%)
2 (27.4%)

0.0002 *

Seizures
Absent
Present

0
9 (100%)

52 (71.2%)
21 (28.8%)

0.0001 *

Cerebral MRI
-Pattern 1
-Pattern 2
-Pattern 3
-Pattern 4
-Pattern 5

4 (44.4%)
3 (33.3%)
1 (11.1%)
1 (11.1%)

0

9 (12.3%)
8 (11.0%)
1 (1.4%)

13 (17.8%)
42 (57.5%)

0.0002 *

FM
-Normal

-Abnormal
-Absent

1 (11.1%)
1 (11.1%)
7 (77.8%)

58 (79.5%)
2 (2.7%)

13 (17.8%)

<0.0001 *

GMDS-R
-DQ

-Locomotor subscale
-Eye & Hand Coordination subscale

-Personal & Social subscale
-Hearing & Language subscale
-Cognitive Performance subscale

65.7 ± 23.8
65.7 ± 24.5
63.9 ± 21.6
53.6 ± 10.3
74.7 ± 30.8
72.00 ± 27.6

103.9 ± 11.5
101.7 ± 12.8
107.1 ± 10.7
99.4 ± 18.3

109.9 ± 10.9
104.2 ± 11.3

<0.0001 *
0.0002 *

<0.0001 *
<0.0001 *
0.0029 *
0.0021 *

Sentinel event: placenta abruption, umbilical cord prolapse, umbilical cord knot. BE: base excess. HIE: hypoxic
ischemic encephalopathy. p-EEG: polygraphic electroencephalographic monitoring. MRI: cerebral magnetic reso-
nance imaging. FM: fidgety movements, Griffiths Mental Developmental Scales: GMDS-R. Global Development
Quotient: DQ. χ2 analysis was used for categorical variables. Analysis of variance and Mann–Whitney U tests
were used for continuous variables.*: statistically significant.
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Table 3. p-EEG in patients with normal, moderate, and severe neurodevelopmental outcome.

Normal Outcome
(n = 66)

Moderate Outcome
(n = 7)

Severe Outcome
(n = 9) p

p-EEG under age 6 h
Normal p-EEG

Mild p-EEG abnormalities
Moderate p-EEG abnormalities

Severe p-EEG abnormalities
Inactive p-EEG

0
0

42 (63.6%)
24 (36.4%)

0

0
0

1 (14.3%)
5 (71.4%)
1 (14.3%)

0
0
0

7 (77.8%)
2 (22.2%)

<0.0001 *

p-EEG at age 24 h
Normal p-EEG

Mild p-EEG abnormalities
Moderate p-EEG abnormalities

Severe p-EEG abnormalities
Inactive p-EEG

0
15 (22.7%)
42 (63.6%)
9 (13.6%)

0

0
1(14.3%)
2(28.6%)
4 (57.1%)

0

0
0

1 (11.1%)
6 (66.7%)
2(22.2%)

<0.0001 *

p-EEG at age 48 h
Normal p-EEG

Mild p-EEG abnormalities
Moderate p-EEG abnormalities

Severe p-EEG abnormalities
Inactive p-EEG

0
34 (51.5%)
29 (43.9%)
3 (45.5%)

0

0
2 (28.6%)
1 (14.3%)
4 (57.1%)

0

0
0

1 (11.1%)
8 (88.9%)

0

<0.0001 *

p-EEG at age 72 h
Normal p-EEG

Mild p-EEG abnormalities
Moderate p-EEG abnormalities

Severe p-EEG abnormalities
Inactive p-EEG

2 (3.03%)
52 (78.79%)
12 (18.2%)

0
0

1(14.3%)
2 (28.6%)
4(57.1%)

0
0

0
0

3 (33.3%)
6 (66.7%)

0

<0.0001 *

p-EEG: polygraphic electroencephalographic monitoring. χ2 analysis was used for statistical analysis. *: statisti-
cally significant.
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Figure 6. p-EEG variation in patients with severe (A) and normal or moderately abnormal neurdevel-
opmental outcomes (B).

Cerebral lesions were severe (pattern 1 or 2) in seven of nine patients with severe
outcomes (77.8%), while patterns 3 and 4 were found in the remaining two (22.2%). FM
was abnormal (n = 1; 11.1%) or absent (n = 7; 77.8%) in all but one of the infants with
severe outcomes. In the univariate analysis, p-EEG, seizures, MRI, encephalopathy severity,
and FM were associated with severe neurodevelopmental outcomes. In the multivariate
analysis, p-EEG at 48 h of life (OR: 27.6; IC: 2.8–267.6) and FM (OR: 3.2; IC: 1.0–10.0)
remained associated with severe outcomes (Table 4). Table 5 shows the prognostic accuracy
of p- EEG, MRI, encephalopathy, and FM for severe outcomes in infants treated with TH.
p-EEG at 48 h presented the best prognostic accuracy (area under ROC curve: 92.0%).
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Table 4. Uni- and multivariate analysis in cooled infants.

Uni-Variate Analysis Multivariate Analysis

OR CI p OR CI p

p-EEG < 6 h 11.1 2.3–53.4 0.0025 * - - -

p-EEG at 24 h 26.2 3.3–207.1 0.0019 * - - -

p-EEG at 48 h 36.9 4.3–316.9 0.0010 * 27.6 2.8–267.5 0.0042 *

FM 5.0 1.9–13.0 0.0010 * 3.2 1.0–10.0 0.0475 *

HIE 24.2 2.9–202.5 0.0033 * - - -

Cerebral MRI 0.4 0.2–0.7 0.0020 * - - -

Apgar 1st minute 0.9 0.5–1.4 0.5476 - - -

Apgar 5th minute 0.8 0.5–1.2 0.2594 - - -

Apgar 10th minute 0.8 0.5–1.2 0.2286 - - -

BE 1.1 0.9–1.3 0.0892 - - -

PH 0.1 0.0–4.4 0.1489 - - -

Seizures 46.3 5.6–384.9 0.0004 * - - -

Mode of delivery 1.5 0.4–5.9 0.6054 - - -

Inborn 4.0 0.8–20.6 0.0962 - - -

Sentinel event 0.9 0.2–4.6 0.8725 - - -

Sex 0.7 0.2–2.6 0.6067 - - -
BE: base excess. p-EEG: polygraphic electroencephalographic monitoring. MRI: cerebral magnetic resonance
imaging. FM: fidgety movements, Griffiths Mental Developmental Scales: GMDS-R. Global Development
Quotient: DQ. *: statistically significant.

Table 5. Prognostic accuracy for severe outcome in infants undergoing TH.

Sensitivity %
(95% CI)

Specificity %
(95% CI) PPV % NPV % ROC (95% CI)

HIE
(criterion: >moderate) 88.9 (51.7–98.2) 79.5 (68.4–88.0) 34.8 98.3 0.85 (0.7–0.9)

p-EEG < 6 h
(criterion > 2) 100 (66.2–100) 58.9 (46.8–70.3) 23.1 100 0.83 (0.7–0.90)

p-EEG 48 h
(criterion > 2) 88.9 (51.7–98.2) 90.4 (81.2–96.0) 53.1 98.5 0.92 (0.8–1)

Seizure
(criterion: present) 100 (66.2–100) 71.2 (59.4–81.2) 30 100 0.85 (0.8–0.9)

Cerebral MRI pattern
(criterion: pattern ≤ 3) 88.9 (51.7–98.2) 75.3 (63.9–84.7) 30.8 98.2 0.84 (0.7–0.9)

FMs
(criterion: abnormal or absent) 88.9 (51.7–98.2) 79.5 (68.4–88.0) 34.8 98.3 0.84 (0.7–0.9)

HIE: hypoxic–ischemic encephalopathy. p-EEG: polygraphic electroencephalographic monitoring. MRI: cerebral
magnetic resonance imaging. FMs: fidgety movements. PPV: positive predictive value. NPV: negative predictive
value. ROC: receiver-operating characteristic).

4.2. Non-Cooled Infants (No TH Group)

Among 57 infants who did not undergo TH, none had seizures or severe cerebral
lesions (pattern 1 or 2), and all but one (98.2%) presented normal outcomes at 24 months.
The only case (1.8%) with a severe outcome (cognitive delay) presented no apparent
hypoxic–ischemic brain lesions on MRI (pattern 5) (Table 1). Univariate analysis showed
no association with severe outcomes.
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4.3. Mild HIE

Table 6 compares the 14 cooled and 57 non-cooled infants with mild HIE. The neonates
were cooled based on p-EEG abnormalities (moderate, n = 10; severe, n = 4). Apgar scores at
the 5th and 10th minute of cooled infants were significantly lower than those of non-cooled
infants. FM, neurodevelopmental outcome, GMDS-R DQ, and its subscales did not differ
between cooled and non-cooled mild HIE.

Table 6. Comparison of cooled and un-cooled neonates with mild HIE.

All Mild HIE
(n = 71)

Un-Cooled Mild HIE
(n = 57)

Cooled Mild HIE
(n = 14) p

Weight 3373.9 ± 426.7 3383.3 ± 443.3 3335.9 ± 363.3 0.8003

Gestational age 39.8 ± 1.6 39.9 ± 1.6 39.5 ± 1.4 0.3550

Inborn
Outborn

46 (64.8%)
25 (35.2%)

39 (68.4%)
18 (31.6%)

7 (50.0%)
7 (50.0%) 0.3267

Sentinel event
Present
Absent

9 (12.7%)
62 (87.3%)

5 (87.7%)
52 (9.2%)

4 (18.6%)
10 (71.4%)

0.1219

Delivery
Vaginal
Cesarean

50 (70.4%)
21 (19.6%)

39 (68.4%)
18 (31.6%)

11 (78.6%)
3 (21.4%)

0.6753

Apgar 1st minute 3.1 ± 2.1 3.3 ± 2.1 2.3 ± 1.6 0.1837

Apgar 5th minute 5.9 ± 1.9 6.3 ± 1.6 4.5 ± 2.1 0.0055 *

Apgar 10th minute 7.4 ± 1.6 7.7 ± 1.4 6.2 ± 1.9 0.0103 *

pH 7.1 ± 0.2 7.1 ± 0.2 7.0 ± 0.1 0.5019

BE 13.7 ± 4.9 13.6 ± 4.6 13.6 ± 4.9 0.9821

p-EEG
-Normal

-Mild abnormalities
-Moderate abnormalities

-Severe abnormalities
-Inactive p-EEG

10 (14.1%)
47 (66.2%)
10 (14.1%)

4 (4.6%)
0

10 (17.5%)
47 (82.5%)

0
0
0

0
0

10 (71.4%)
4 (18.6%)

0

0.001 *

Seizure
Absent
Present

71 (100%)
0

57 (100%)
0

14 (100%)
0

-

Cerebral MRI
-Pattern 1
-Pattern 2
-Pattern 3
-Pattern 4
-Pattern 5

0
0

5 (7.0%)
11 (15.5%)
55 (77.5%)

0
0

5 (8.8%)
9 (15.8%)
43 (75.4%)

0
0
0

2 (14.3%)
12 (85.7%)

0.4972

Fidgety Movements
Normal

Abnormal
Absent

61 (85.9%)
5 (7.0%)
5 (7.0%)

49 (86.0%)
4 (7.0%)
4 (7.0%)

12 (85.7%)
1 (7.1%)
1 (7.1%)

0.9997

Outcome
-Normal

-Moderately abnormal
-Severe

70 (98.6%)
0

1 (1.4%)

56 (98.2%)
0

1 (1.8%)

14 (100%)
0
0

0.4434

GMDS-R
-DQ

-Locomotor subscale
-Eye & Hand Coordination subscale

-Personal & Social subscale
-Hearing & Language subscale
-Cognitive Performance subscale

104.7 ± 11.2
104.9 ± 12.0
108.5 ± 13.4
99.5 ± 17.8

109.5 ± 11.5
103.6 ± 11.4

105.2 ± 10.8
105.3 ± 12.8
108.8 ± 13.7
100.3 ± 16.6
110.3 ± 10.2
103.4 ± 16.4

102.6 ± 13.1
103.6 ± 8.4
107.3 ± 12.6
96.4 ± 22.6

106.0 ± 15.7
104.3 ± 19.9

0.3819
0.7781
0.3899
0.7746
0.2418
0.8737

BE: base excess. HIE: hypoxic ischemic encephalopathy. P-EEG: polygraphic electroencephalographic monitoring.
MRI: cerebral magnetic resonance imaging. FMs: fidgety movements, Griffiths Mental Developmental Scales:
GMDS-R. Global Development Quotient: DQ. χ2 analysis was used for categorical variables. Analysis of variance
and Mann–Whitney U tests were used for continuous variables. *: statistically significant.
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5. Discussion

Although RCTs on TH show a huge improvement of neurodevelopmental outcome after
moderate to severe HIE, the outcome after mild encephalopathy remains unclear [1–3,7,19].
In contrast to previous trials that enrolled patients to receive TH based on clinical and
sometimes aEEG criteria [1,16], in this study, we administered TH to asphyxiated patients
based on both clinical and p-EEG criteria and for any grade of encephalopathy (including
mild) with moderate to severe EEG abnormalities. Overall, severe neurodevelopmental
outcomes at 24 months occurred in a small proportion of all infants with HIE (7.2%). Severe
outcomes accounted for 11.0% of cooled infants and 13.2% of infants with moderate to
severe HIE undergoing TH. This proportion aligns with our regional surveillance data [30]
and is lower than that previously reported [1–3,31]. Although differences in study design
and included population could play a role, our encouraging data may also be due to a more
accurate selection of the asphyxiated infants to administer TH. Interestingly, patients with
mild HIE who were not enrolled to receive TH (because of absent or mild EEG anomalies)
presented normal outcomes in all but one case (98.2%).

As clinical evaluation alone may be elusive in assessing HIE severity soon after birth,
neurophysiological recording can help identify apparently mild cases showing otherwise
cerebral dysfunction on p-EEG (mild HIE plus). In infants with moderate-to-severe HIE,
there is a good correlation between early aEEG findings and short- and long-term out-
comes [11,12], but the ability to predict outcomes in infants with mild HIE appears to
be limited. Most infants with mild HIE display either normal aEEG background activity
or potentially slightly broader bands of activity, which can be subtle and difficult to de-
tect [6]. In contrast, p-EEG can better discriminate the degree of abnormal cerebral activity
even among patients with mild HIE. In a pre-hypothermia case-control study, Murray et al.
showed that normal or mildly abnormal EEG < 24 h had a 100% positive predictive value for
a normal outcome and a 70% negative predictive value at two years of age [14]. In one-third
of cases, moderate EEG abnormalities appeared to be associated with moderate/severe
cerebral injury, and intact survival at five years was reported in 46% of cases [14,31–33].
Therefore, we included patients with TH with moderate p-EEG abnormalities independent
of HIE severity. Despite the lack of RCTs supporting the use of TH for mild HIE, many
centers have reported a therapeutic creep, such that TH is now often offered to infants
with mild HIE. For example, at a single site in Canada, among term newborns referred to
the NICU for possible TH, 36% had mild HIE, and 16% of these infants received TH [34].
Analysis of the Children’s Hospital Neonatal Database, encompassing 27 regional NICUs
in the United States, showed that of the 160 infants with mild HIE, 122 (76%) had received
TH [35]. In a recent study of mild HIE, the rates of intact survival were comparable in
controls, perinatal asphyxia without HIE, and mild HIE. There was no significant difference
in Bayley Scales of Infant and Toddler Development composite scores between children
with mild HIE treated with TH and non-treated children [7]. Consistent with these data,
we found similar results when comparing cooled and non-cooled mild HIE.

Regarding prognosis in cooled patients, in our multivariate model, both p-EEG at
48 h of age and FM were associated with severe neurodevelopmental outcomes. Because
p-EEG abnormalities tend to modify during TH, early EEG is not a good predictor of
outcome, while p-EEG at 48 h better predicts prognosis. Severe EEG abnormalities persisted
despite TH in infants who later showed severe disabilities. Regarding FM, several studies
previously found that the quality of general movements is highly correlated with poor
motor outcomes and central gray matter injury (patterns 1 and 2), the hallmark of acute
perinatal asphyxia in full-term infants [28,36–38]. This study confirmed that FM is a good
predictor of outcomes in cooled HIE infants. In contrast, in our study, cerebral MRI failed to
correlate with neurodevelopmental outcomes in the multivariate logistic regression model,
possibly because of the timing of the MRI. Cerebral MRI was performed over the first four
postnatal weeks, a relatively long period. When MRI images were acquired very early, the
conventional sequences could not be as reliable in predicting outcomes as when MRI was
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performed later. In fact, both overestimating brain injury due to transient abnormalities
(such as cerebral edema) and underestimating the severity of damage can occur.

Our study has several limitations. First, reliable conclusions cannot be drawn because of
the observational, non-randomized study design. Second, approximately 30% of infants were
lost to follow-up, but this proportion is similar to that in previous studies [1,6,13]. Third, the
follow-up duration was only 24 months, and some children classified with normal outcomes
could later develop minor neurological or neuropsychological problems at the preschool or
school age. In any case, cognitive and neurodevelopmental assessment at two years of life is
a sensitive tool for the early identification of developmental impairment and delay, enabling
the referral of high-risk children to early intervention. Finally, brain injury neuro-biomarkers
were not evaluated, although their correlation with p-EEG remains to be established.

Nevertheless, this study is among the few to provide data on prolonged p-EEG during
TH. Additionally, p-EEG has shown high diagnostic and prognostic accuracy by correctly
selecting neonates to undergo TH and identifying those with poor outcomes. In fact, all
infants with severe neurodevelopmental outcomes presented with early severe p-EEG
abnormalities with no significant improvement during TH.

In conclusion, we selected to TH newborns with any grade of HIE and moderate to
severe p-EEG abnormalities, thus including some mild HIE. Overall, severe neurodevel-
opmental disability occurred in less than 10% of cases, confirming the protective role of
TH. Although untreated with TH, almost all neonates with mild p-EEG abnormalities,
did not develop neurodevelopmental sequelae. The combination of clinical and p-EEG
evaluations in HIE contributed to a more accurate selection of patients treated with TH.
Furthermore, p-EEG at 48 h of age and general movements were the best predictors of
severe neurodevelopmental impairment in cooled patients.
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