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Pathway‑specific model estimation 
for improved pathway annotation 
by network crosstalk
Miguel Castresana‑Aguirre & Erik L. L. Sonnhammer*

Pathway enrichment analysis is the most common approach for understanding which biological 
processes are affected by altered gene activities under specific conditions. However, it has been 
challenging to find a method that efficiently avoids false positives while keeping a high sensitivity. 
We here present a new network‑based method ANUBIX based on sampling random gene sets against 
intact pathway. Benchmarking shows that ANUBIX is considerably more accurate than previous 
network crosstalk based methods, which have the drawback of modelling pathways as random gene 
sets. We demonstrate that ANUBIX does not have a bias for finding certain pathways, which previous 
methods do, and show that ANUBIX finds biologically relevant pathways that are missed by other 
methods.

Improvements in molecular biology have led to an increase in high-throughput data, which typically produces 
lists of differentially expressed genes or proteins. These lists are useful for identifying genes with important 
roles in certain conditions. However, more insight about the biological mechanisms is often needed, e.g. which 
functional gene sets are related to genes in the result list. The study of the relation between a query gene set 
(differentially expressed gene list) and functional gene sets (pathways) is called pathway enrichment analysis.

Improvements in molecular biology have led to an increase in high-throughput data, which typically pro-
duces lists of differentially expressed genes or proteins. These lists are useful for identifying genes with important 
roles in certain conditions. However, more insight about the biological mechanisms is often needed, e.g. which 
functional gene sets are related to genes in the result list. The study of the relation between a query gene set 
(differentially expressed gene list) and functional gene sets (pathways) is called pathway enrichment analysis.

There are four generations of pathway enrichment analysis approaches. Over-representation analysis (ORA) 
calculates how many genes from a list of genes, extracted based on a threshold or criteria (e.g. differentially 
expressed genes), are in a certain  pathway1. Statistical significance is assessed repeating this process with a back-
ground list of genes (e.g. all the genes in the microarray). This is known as Gene Enrichment Analysis (GEA) and 
famous tools like  DAVID2 use it. Similar but taking into account all the genes in the experiment and the gene 
expression values, is the Functional Class Scoring algorithms (FCS)3, for which known algorithms include Gene 
Set Analysis(GSA)4 and Gene Set Enrichment Analysis (GSEA)5. However, both FCS and ORA have limitations. 
They both consider genes as independent, which is often not true, only taking into account their overlap and not 
their associations or  interactions6. Another issue with overlap-based methods is their low coverage since they 
are heavily dependent on pathway knowledge, which is still incomplete, leading to a high rate of false  negatives7. 
Pathway topology-based methods use the same steps as FCS with additional pathway topology information. 
However, the reliance on gene overlap leads to similar limitations as ORA and FCS.

We could consider the network crosstalk enrichment tools as the fourth generation. They rely on a network, 
such as a functional association network like  Funcoup8 or  STRING9. These networks integrate different experi-
ments from different data types into a single network, providing information about gene to gene functional 
associations, which is translated into links in the network. With this, limitations such as gene independency 
and low coverage of overlap-based methods are overcome. Association between two sets is measured in terms 
of links between them in the network, known as crosstalk. In the past few years different ways to assess enrich-
ment between two gene sets have been published, like  NEA10,  EnrichNet11,  CrosstalkZ12,  NEAT13,  NEArender14, 
 BinoX7, and GeneSetDP/GeneSetMC15. EnrichNet defines a network enrichment score based on network dis-
tances between two gene sets using random walks with restart, but is not able to calculate statistical significance 
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of the enrichment. The tools NEA and CrosstalkZ assess significance using statistical tests assuming that cross-
talk between non-enriched gene sets is normally distributed, but this is often not the case. Moreover, they rely 
on network randomizations to obtain null model parameters, which makes them computationally very slow. 
Computational time is reduced in BinoX, which also applies network randomization but uses the binomial 
distribution to calculate statistical significance.

The methods NEAT, NEArender and GeneSetDP/GeneSetMC do not use network randomization. NEAT 
calculates the expected number of links between two gene sets based on their degrees and then uses the hyper-
geometric distribution to assess statistical significance. NEArender computes the expected number of links in 
the same way as NEAT, but uses a chi-square test to assess statistical significance. GeneSetDP uses dynamic 
programming to calculate an exact distribution of the expected number of links to a pathway for a certain gene 
set size. GeneSetMC does this approximately using Monte-Carlo sampling, which is faster. These two algorithms 
are however not implemented to allow large scale pathway enrichment analysis.

The null model assumption of NEAT, NEArender, and BinoX is that compared gene sets are expected to 
behave like random gene sets. For real pathways that are very non-random (e.g. highly intra-connected) this can 
lead to underestimating the expected level of crosstalk and produce a high false positive rate (FPR). To avoid this, 
it is important that the method can cope with the non-randomness of pathways. To this end, we have developed 
a novel network-based pathway enrichment analysis algorithm called ANUBIX (Adaptive NUll distriButIon of 
X-talk), which is based on scoring random gene sets against real pathways to build its null model. We show that 
ANUBIX clearly outperforms recent network crosstalk methods like BinoX, NEArender, and NEAT in terms of 
avoiding False Positives (FP), showing that it can model expected network crosstalk to pathways more precisely.

Material and methods
Our network-based pathway enrichment analysis tool, ANUBIX, depends on a global functional association 
network. We used the network Funcoup version 3.0, with a link confidence cutoff of 0.75, containing 12,391 
genes and 1,123,873 links. With those genes 
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form a symmetric matrix A , with dimensions SxS such that:

A gene set Q and a pathway P are a subset of the total number of genes for a certain proteome, such that 
{Q, P} ⊆ S . Notice that S ⊆ Q , we can have some genes from the proteome that are not in the network. The 
crosstalk between Q and P is measured with the degree k =
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The null model is built based on the expected crosstalk between a random gene set of the same size as the 

original gene set Q and pathway P . Since the network connections are binary, each link is considered as a Ber-
noulli trial Y ∼ B

(
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)

 , where p is the probability of observing a link. We also calculate n = |Q||P| − |Q ∩ P| , all 
the possible links between Q and P . We count the links each gene from Q has to the pathway P , meaning that if 
two linked genes are in Q and also in the P , we count that link twice, boosting the cases where we find overlap. 
Each of these Bernoulli trials are assumed to be independent and the sum of them follows a binomial distribution.

In the binomial distribution, the mean and variance are defined as µ = np and Var = np
(

1− p
)

 , respec-
tively. This means that µ ≥ Var , which may not be true when the random variable is overdispersed, leading to 
an underestimation of its  variance16.

The beta-binomial distribution has been extensively used as an alternative to handle overdispersed binomial-
like random  variables17,18. Here, the probability of success p , is not fixed as it is in the binomial distribution, but 
follows a beta distribution, Beta(α, β) with parameters α > 0 and β > 0.

The marginal distribution of the beta-binomial is described in Eq. (1):

To estimate the optimal parameters of the beta-binomial we use maximum likelihood estimation (MLE)19, 
where the log-likelihood is, Eq. (2):

The negative log-likelihood is optimized with the Nelder and Mead  method20. The factorial term in the 
log-likelihood is removed since it does not depend on the parameters to be optimized. Once we have the beta-
binomial parameters α,β of our null distribution we calculate if the crosstalk between Q and P is enriched. The 
null and alternative hypotheses are:

H0 : No more links between Q and P than expected by chance.
H1 : More links between Q and P than expected by chance.
Because of the discrete nature of the null distributions, ordinary p-values are conservative, and therefore mid 

p-values were  used21,22. Mid p-value is defined as half the probability of the observed statistic plus the probability 
of observing more extreme  values22. The workflow of the ANUBIX algorithm is depicted in Fig. 1.
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It is important to point out that the network-based approaches ANUBIX, NEAT, NEArender, and BinoX 
test three different types of null hypothesis. ANUBIX, which takes only enrichment into account, computes 
a one tailed test. NEAT computes two one-tailed tests, for enrichment and depletion, and takes the minimum 
p-value of them multiplied by 2 to emulate a two-tailed test. BinoX and NEArender compute both enrichment 
and depletion but only perform one one-tailed test since the hypothesis test changes depending on whether the 
observed number of links is above or below the expected crosstalk.

Pathways. To generate the false positive and true positive benchmarks we used 288 KEGG (v70.1)23 path-
ways and 398 REACTOME (v62)24 pathways for Homo sapiens. REACTOME pathways have a deep hierarchical 
structure, including many small pathways on the lower levels that are very specific. To reduce Reactome’s speci-
ficity we resolved its hierarchy by collapsing lower level pathways below a certain pathway size to their parents 
until obtaining an average pathway size similar to KEGG pathways, 80 genes per pathway.

Performance measures. In the FP benchmark, we generated 10,000 random gene sets and tested them 
against KEGG and REACTOME pathways. To make these gene sets representative of real experiments, we took 
the average size of  MSigDB25 gene sets, which is 110 genes.

In the True Positive (TP) benchmark, we bisected the KEGG pathways and REACTOME pathways into two 
parts. Each part gets a similar number of genes and  links7. To be able to benchmark GEA we emulated some 
overlap between the two bisected parts. This overlap corresponded to the average overlap between the 2,392 
MSigDB gene sets and the pathway, measured individually for each of the pathways in KEGG and REACTOME.

Correction for multiple hypothesis testing was done using the Benjamini–Hochberg  procedure26.

Stability. Our null distributions are based on random sampling. We take random samples of genes from the 
genome. This stochastic procedure makes the null distributions different every time they are generated. Since 
the p-values are computed from the null distribution, their values may change. To analyze stability, we generated 
the null distribution 100 times for the crosstalk between the same gene set to the same pathways, for increasing 
numbers of random samples. For each sample size, we computed the coefficient of variation (CV), which is the 
ratio between the standard deviation (SD) and the mean. We required a CV lower than 2% to limit the dispersion 
of the mean of the null distribution, and this was reached at 2000 random samples. Once the number of random 
samples were chosen, we measured how much the p-values were varying in each run. For that we ran a randomly 
selected MSigDB gene set 100 times. To compute the 95% confidence interval of the p-values, we used the central 
limit theorem and applied normal distribution statistics to compute them.

Used programs. ANUBIX: https ://bitbu cket.org/sonnh ammer group /anubi x
BinoX: https ://bitbu cket.org/sonnh ammer group /binox 
NEAT: https ://cran.r-proje ct.org/web/packa ges/neat/neat.pdf
NEArender: https ://cran.r-proje ct.org/web/packa ges/NEAre nder/NEAre nder.pdf
GeneSetDP: https ://githu b.com/stati stica lbiot echno logy/genes etdp

Figure 1.  Workflow of ANUBIX. The algorithm assesses the significance of the network crosstalk between a 
query gene set and a pathway. A null distribution is generated for each pathway to model the expected crosstalk 
of random gene sets of the same size as the original gene set. This distribution is then fit to a beta-binomial 
distribution to calculate the probability of reaching at least the number of observed links, or more, between the 
query gene set and the pathway. Software: Inkscape version 0.91 https ://inksc ape.org.

https://bitbucket.org/sonnhammergroup/anubix
https://bitbucket.org/sonnhammergroup/binox
https://cran.r-project.org/web/packages/neat/neat.pdf
https://cran.r-project.org/web/packages/NEArender/NEArender.pdf
https://github.com/statisticalbiotechnology/genesetdp
https://inkscape.org
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Results
To correctly assess the statistical significance of an observed network crosstalk between two gene sets, e.g. one 
experimental gene set and one known pathway, it is paramount that the null distribution appropriately models 
the crosstalk of random query gene sets. Note that it is not necessarily appropriate to assume that the pathway 
gene set behaves like a random gene set, i.e. the null distributions need to model crosstalk between random 
query gene sets versus real pathway gene sets. It is also paramount to model the expected crosstalk distribution 
with an appropriate distribution. Previous methods, such as BinoX or NEAT, use binomial and hypergeometric 
distributions respectively, which are not appropriate for overdispersed distributions, since they do not allow the 
variance of the distribution to be greater than the mean. To showcase this, we generated null distributions for 
KEGG and REACTOME pathways by sampling 2,000 gene sets of size 110 from the proteome. In Fig. 2 we show 
the dispersion for each pathway as the ratio between the variance and the mean of the crosstalk null distribution. 
We observe that almost all of these distributions suffer from overdispersion, meaning that the variance of the 
distribution is greater than the mean. Therefore, statistical models that cannot cope with overdispersion are not 
appropriate to model the null distribution of most pathways.

To visualize the overdispersion in detail we chose 3 pathways that are in different quartiles of the disper-
sion distribution. We show their null distributions in Fig. 3. Figure 3A shows the “Beta-alanine metabolism” 

Figure 2.  Overdispersion of KEGG and REACTOME pathways null distributions when sampling 2000 random 
gene sets of size 110 from the proteome. The dispersion for each pathway is calculated as the ratio between the 
variance and the mean of the crosstalk null distribution. For each pathway database we illustrate the dispersion 
values through a boxplot and also by showing the dispersion distribution. Software: R version 3.4.3 https ://
www.r-proje ct.org/.

Figure 3.  Observed crosstalk distribution fit with binomial and beta-binomial distributions. 2000 random gene 
sets of size 110 were used to generate a null distribution of crosstalk to the (A) “Beta-alanine metabolism”, (B) 
“Prostate cancer”, and (C) “Alzheimer’s disease” pathways. Beta-binomial shows a much better fit to the observed 
link distribution than the binomial. Software: R version 3.4.3 https ://www.r-proje ct.org/.

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
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pathway, whose dispersion value is in the first quartile. Figure 3B shows the “Prostate cancer” pathway, with a 
dispersion in the second quartile, and Fig. 3C shows the “Alzheimer’s disease” pathway with a dispersion in the 
fourth quartile. The high variance relative to the mean gives a very poor fit with the binomial distribution, yet the 
beta-binomial distribution gives a very good fit. This underestimation of variance by the binomial distribution 
would lead to many false positives. With a few pathways there is no overdispersion in the data, but these can fit 
a beta-binomial equally well as a binomial.

Benchmark for false positives. Since the null model in ANUBIX is based on random gene sets we expect 
the p-value distributions when tested with random query gene sets to behave uniformly for any pathway. For 
almost all pathways we observed a virtually perfectly uniform distribution when plotting ANUBIX p-values of 
10,000 random gene sets against each KEGG pathway (full results at Supplementary Fig. 1). A few pathways 
deviated somewhat from uniform, which is the result of the beta-binomial fit not being able to model the null 
distribution with enough precision. A second type of deviation from perfect uniform distribution is caused by 
staggering of observed p-values. This is relatively frequent and arises because the support of the test statistics is 
limited to a few values and therefore unavoidable. We also generated the p-value distributions for 10,000 gene 
sets of size 50 and size 200 against each KEGG pathway (Supplementary Fig. 2 and 3 respectively), which gave 
similar results. However, some pathways seem to be affected by the size of the gene set. ANUBIX was compared 
to the top network-based methods BinoX, NEAT and NEArender, and a recently published method GeneSetDP. 
For comparison we also tested a popular overlap-based pathway enrichment method, GEA. Because GeneSetDP 
and GenesetMC are too computationally heavy for large scale analysis, we first tested all the gene sets against 
one individual pathway. We only used GeneSetDP because GeneSetMC produces similar p-values. P-values 
were plotted versus quantiles of a uniform distribution (0,1). For an unbiased method, the p-values would lie on 
the diagonal y = x . Figure 4A shows that for the “Prostate cancer” pathway. P-values of ANUBIX adhere to the 
diagonal much better than for BinoX, NEAT, NEArender and GEA, while performing equally well as GenesetDP.

For crosstalk to random gene sets, we expect ~ 5% of the p-values to be lower than 0.05. However, for the 
“Prostate cancer” pathway, BinoX had 26.4% of its p-values lower than 0.05, NEAT 21.2% and NEArender 20.9%. 
GEA, whose coverage is  small7, had 0.2% of its p-values below 0.05, and highly discrete, taking on only four pos-
sible values for “Prostate cancer” due to few overlapping genes. ANUBIX and GeneSetDP find a correct fraction 
of the p-values with 5.4% and GeneSetDP 5.2% under 0.05, respectively.

We also ran ANUBIX, BinoX, NEAT, NEArender, and GEA for the 10,000 random gene sets against all 
pathways in the KEGG database and REACTOME database. Full results in Supplementary Data 1 and Data 2 
respectively. GeneSetDP was not included as it is not implemented to run at a large scale. NEAT, NEArender 
and BinoX can also give statistical significance when gene sets have fewer links to a pathway than expected by 
chance, known as depletion. To make a more consistent benchmark where all methods can be compared equally 
we only considered enrichment, and depleted pathways were treated as non-significant. The average FPR for all 
KEGG pathways was 5.1% with ANUBIX, 13.3% with BinoX, 11.2% with NEAT, 12.0% with NEArender, and 
0.4% with GEA. For REACTOME almost the same FPR values were obtained (ANUBIX 4.9%, BinoX 14.9%, 
NEAT 13.8%, NEArender 14.3% and GEA 0.2%). Roughly the same FPR levels came from significant depletions 
for BinoX, NEAT and NEArender. However, the averaging of the FPR levels for all pathways does not show the 
real problem of these methods. Some pathways could give very non-conservative p-values while other pathways 
could give very conservative p-values. To show how each method performs for each of the pathways we plot the 
distribution of the FPR (fraction of p-values below 0.05) for each pathway as violin plots in Fig. 4B. Since GEA 

Figure 4.  P-value uniformity test of ANUBIX, Binox, GEA, GeneSetDP, NEArender and NEAT. 10,000 random 
gene sets of 110 genes were tested for crosstalk enrichment against the KEGG pathway “Prostate cancer” (A). 
Reported p-values are plotted against theoretical quantile (rank). A perfect method should adhere to the 
diagonal. (B) Distributions of the FPR for all KEGG and REACTOME pathways tested with ANUBIX, BinoX, 
NEArender, NEAT and GEA. Green distribution for enriched tests and red distribution for depleted. The dashed 
line at FPR = 0.05 denotes the expected FPR level. The black triangle and circle represent the mean FPR for 
enrichment or depletion respectively. Software: R version 3.4.3 https ://www.r-proje ct.org/.

https://www.r-project.org/
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and ANUBIX cannot test for depletion they only have the enriched case. A perfect method would have all points 
close to the dashed line at FPR = 0.05. ANUBIX produces FPR values close to this line, meaning that the model 
is robust. GEA greatly underestimates FDR and produces almost no false positives, but this leads to very poor 
sensitivity as shown below. NEArender, NEAT and BinoX, produce similar FPR distributions that are very spread 
out, i.e. the FPR tends to be very different for different pathways. For the 10,000 tests performed per pathway, 
some pathways reach an FPR of 0.4 for enriched cases and similar for depleted. Summing these two can lead to 
a total FPR above 0.8 if we take both enriched and depleted cases into account, which is very non-conservative. 
The plot also shows that for some pathways these methods are overly conservative, giving considerably lower 
FPR than they should. In other words, methods like BinoX, NEAT and NEArender have a huge variation in the 
quality of their p-values depending on the pathway under study.

BinoX is implemented in a web server, called  PathwAX27, where users can submit a query gene set to test for 
network crosstalk enrichment. By analogy, we studied false positive rates assuming independence between gene 
sets, where each user submits a single gene set, i.e. multiple testing correction is only performed for number of 
pathways each query is compared to. 10,000 random gene sets were used against the KEGG database. A FDR 
threshold of 5% was used and enrichment and depletion were grouped separately as shown in Fig. 5A. The top 
10 pathways with highest FPR for BinoX were plotted (full results in Supplementary Data 3), all having a highly 
non-conservative behaviour for BinoX, NEAT and NEArender. Every time a user submits a random gene set, 
the chance of getting one of these pathways is very high, on average 40% if we take both enriched and depleted 
cases into account. In contrast, ANUBIX and GEA have less than 1% FPR. We observed a very high correlation 
between per-pathway FPR values for BinoX, NEAT and NEArender, above 0.98 for each pairwise comparison. 
This indicates that the pathway enrichment analysis results obtained with these methods are highly similar. They 
all had low Pearson correlation to ANUBIX, with 0.06 for BinoX, 0.005 for NEAT, and 0.08 for NEArender. The 
corresponding Spearman correlations were 0.24, 0.22, and 0.11.

As for the pathways, we noticed that there is a high overlap between some of them. For instance, the “Alz-
heimer’s disease” and “Parkinson’s disease” pathways share 43.3% of their genes. The “Alzheimer’s disease”, the 
“Parkinson’s disease” and the “Huntington’s disease” pathways have 32% of the genes in common from the union 
between them. Further, the “Oxidative phosphorylation”, the “Non-alcoholic fatty liver disease”, the “Alzheimer’s 
disease”, the “Parkinson’s disease” and the “Huntington’s disease” have 20% of the genes in common from the 
union between them. Therefore, if there is significant crosstalk to one of them, crosstalk to the other pathways 
is very likely. The high dependency between some pathways points to opportunities for further improvement 
of pathway definitions. Further exploration was performed in these pathways’ topologies to understand their 
tendency to generate many FPs.

We computed the fraction of intralinks for each pathway, as the ratio between the number of internal links and 
the total number of links. We plotted this ratio against the FPR (Fig. 5B). A higher fraction of intralinks means 
that more links are within the pathway than to the outside, suggesting a more isolated pathway. The Spearman 
correlation coefficient between the fraction of intralinks and FPR for BinoX was 0.79, indicating that the fraction 
of internal links plays a major role in causing false positives. This dependence is also observed with NEAT, with 
a correlation of 0.82, and with NEArender at 0.83. However, ANUBIX had a correlation of only 0.12 and GEA 
0.34. This indicates that methods like NEAT, NEArender, and BinoX cannot deal properly with pathways that 
are clearly not random and behave more as isolated communities.

Additionally, we calculated the number of maximal cliques each of the KEGG pathways has and we observed 
a correlation with the FPR for BinoX, with a spearman correlation of 0.71. These maximal cliques were com-
puted using the igraph package in R. We considered cliques as all complete subgraphs and a clique is considered 
maximal if we cannot add more nodes to it. This indicates that the higher the number of maximal cliques in a 
pathway, meaning a less random pathway in terms of topology, the higher the FPR is.

Benchmark of true positives. Besides a correct FPR, it is also important to verify that the power of the 
method is sufficient for a high true positive rate (TPR). To this end we devised a benchmark by splitting each 
KEGG and REACTOME pathway into two parts and then measured each method’s ability to reconnect these 
parts. The splitting into parts included giving an amount of gene overlap between the two parts, emulated based 
on the average overlap between MSigDB gene sets and KEGG and REACTOME pathways. We compared the 
methods by their Receiver Operating Characteristic (ROC) curves. Figure 6A shows only the tests that are statis-
tically significant, FDR < 5%, and only considering enrichment. ANUBIX has a TPR of 94.0% of the enrichment 
tests as significant without having any FP. BinoX has a TPR of 94.2% with 7.6% FPR, NEArender a TPR of 94.8% 
with 8.2% FPR, and NEAT a TPR of 93.4% with 7.2% FPR. GEA, whose coverage is low, gives only 1.5% TPR and 
no FPs. Figure 6B shows the ROC curve for all the enriched tests performed, also including insignificant results. 
This shows the coverage of each method. ANUBIX recovers 99.4% of the TP tests without suffering any FPs. 
BinoX, NEArender and NEAT have similar curves, recovering 96.2%, 95.9% and 95.5% of the enriched TP tests 
respectively. GEA can here maximally find 14.1% of the TP tests, since only those tests have some gene overlap. 
This benchmark shows that GEA has very low coverage of what it can potentially find. We note that the maximal 
TPR obtained by GEA corresponds to the amount of significantly enriched crosstalks obtained when running all 
of MSigDB against KEGG pathways (see Pathway annotation of MSigDB gene sets).

Stability and robustness. Considering that the null distributions are based on random sampling, we stud-
ied the number of iterations required to reach a coefficient of variation (CV) of 2%. Figure 7A shows how many 
pathways pass that threshold depending on different amounts of random samples. 98% of the pathways had a CV 
lower than 2% when using 2,000 random samples to model the null distribution. To verify that this number of 
random samples is sufficient for every pathway, we computed the enrichment of one randomly selected MSigDB 
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gene set to all KEGG pathways 100 times. The null distributions are thus generated 100 times for each pathway 
and we would expect some changes in the p-values between runs. Figure 7B shows the standard deviation of 
the p-values. We observe that the p-values almost did not vary, showing that 2,000 random samples are enough. 
Moreover because of sampling, the p-value is not an exact p-value but a point estimate of it, we also provide with 
the 95% confidence interval of each of the p-values (Supplementary Data 4).

Compute time. Our method relies on random sampling to model the null distribution, which makes ANU-
BIX computationally intensive. To benchmark its speed we did 100 runs, each time with a randomly chosen 
biological gene set extracted from MSigDB against KEGG, REACTOME, and KEGG plus REACTOME. We 
measured the compute time for each of the network-based methods, see Fig. 8. With this benchmark we can 
show that ANUBIX is fast when running single gene sets. One should take into account that ANUBIX and 
BinoX need a precomputation step before running the actual analysis. However, the ANUBIX precomputation 
step takes around 2 s whereas in BinoX it takes around 22 min. To compute the randomized network for BinoX, 

Figure 5.  Analysis of why certain pathways are very prone to produce false positives. 10,000 random gene 
sets of 110 genes were tested independently for crosstalk enrichment against the KEGG pathways. (A) The top 
ten pathways that produce the highest false positive rate (FPR) with BinoX, and the FPR obtained with other 
methods. (B) Fraction of intralinks for each of the KEGG pathways against FPR. The size of the point reflects 
the total number of links in each pathway. Software: R version 3.4.3 https ://www.r-proje ct.org/.

https://www.r-project.org/
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we used 150 iterations. A drawback for ANUBIX compared to methods like BinoX or NEAT is that the com-
putation time for large scale analyses take more time. For instance, the time required to compute the large scale 
pathway annotation study for the 2392 MSigDB gene sets against KEGG pathways took 150 min for ANUBIX 
using 4 cores, 90 min for NEArender, 28 min for BinoX, and 18 min for NEAT. Compute times were measured 
on an i7-7700 CPU 3.60 GHz with 32 Gb RAM.

Pathway annotation of MSigDB gene sets. We carried out a large-scale pathway analysis study by 
running 2392 MSigDB gene sets against 288 KEGG pathways using ANUBIX, BinoX, NEAT, NEArender, and 
GEA. Full results are in Supplementary Data 5. In total 688 896 crosstalk tests were done per method, and to 
get a more fair comparison between different methods we only considered enriched crosstalk, considering that 
ANUBIX and GEA can only test for enrichment.

NEArender, BinoX, and NEAT found the highest number of significantly (FDR < 0.05) enriched crosstalks, 
with 28.75%, 27% and 26.4% of all pairs respectively, followed by ANUBIX with 21.1% and GEA with 1.3%. 
Many MSigDB gene sets thus appear to have a high occurrence of pathway enrichments. Even if we do not know 
whether those enrichments are TPs or FPs, we show above (Figs. 4 and 5A) that BinoX, NEArender and NEAT 
are prone to produce FPs.

The Venn diagram in Fig. 9 shows that the overlap between BinoX, NEAT and NEArender is very high, having 
81.9% of their significant pathway annotations in common. This was expected since all these methods consider 
pathways as random. The overlap is even higher between NEAT and NEArender, 91.8%, because they compute 

Figure 6.  Receiver Operating Characteristic (ROC) curve. For the TP tests, each KEGG and REACTOME 
pathway is divided into two and a TP is interpreted as the crosstalk between two parts from the same pathway. 
For the FP tests, 10,000 random gene sets of size 110 are tested for enrichment against KEGG and REACTOME 
pathways. (A) ROC curve for only the significantly enriched tests (FDR < 0.05). (B) ROC curve for all enriched 
tests. Software: R version 3.4.3 https ://www.r-proje ct.org/.

Figure 7.  Stability analysis of ANUBIX. (A) Fraction of KEGG pathways with Coefficient of variation (CV) 
below 2% for different number of iterations. (B) ANUBIX p-values are stable—their variance is low, and 
proportional to the magnitude of the p-value. A randomly chosen MSigDB gene set, DAIRKEE_CANCER_
PRONE_RESPONSE_BPA, was run 100 times against KEGG pathways. Standard deviation of the log(p-value) 
is plotted against the mean-log(p-values) for each pathway. Software: R version 3.4.3 https ://www.r-proje ct.org/.
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the expected number of links between sets in identical ways. Even though the number of significant annotations 
by ANUBIX is lower, we show that 47.9% of its annotations are unique.

An example of annotations unique to ANUBIX is the gene set RODRIGUES_THYROID_CARCINOMA_
POORLY_DIFFERENTIATED_UP, for which only ANUBIX identifies specific pathways such as “Thyroid can-
cer” (q-value = 1.0 × 10−23 ), but also more general cancer pathways, such as “Pathways in cancer” (q-value = 2.8 × 
10−41 ). Further, only ANUBIX found “thyroid hormone signaling” (q-value = 5.3 × 10−28 ) and “thyroid hormone 
synthesis” (q-value = 1.1 × 10−28 ), which is reasonable since it has been demonstrated that anaplastic thyroid 
carcinomas lose the most characteristic thyroid cellular function, which is the synthesis of T4 and T3  hormones28. 
The tumor suppressor P53 has been found to be mutated in poorly differentiated thyroid  carcinoma29, and this 

Figure 8.  Compute time when running a random experimental gene set from MSigDB. 100 different gene sets 
were tested against KEGG, REACTOME and KEGG plus REACTOME pathways, for each of the network-based 
methods. Since ANUBIX allows parallelization we also added another run with 4 cores. The error bars show the 
variability in compute time for each of the methods in each of the databases. The BinoX precomputation step is 
not included since it takes 22 min. Software: R version 3.4.3 https ://www.r-proje ct.org/.

Figure 9.  KEGG pathway annotation for 2392 MSigDB gene sets with five methods. The Venn diagram shows 
the number of shared pathway annotations at FDR < 0.05. Note that ANUBIX finds a high number of unique 
annotations. Software: R version 3.4.3. https ://www.r-proje ct.org/.
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was supported by ANUBIX with a significant finding of the “p53 signalling” pathway (q-value = 4.3 × 10−56 ), 
yet was not found by the other network-based methods. Finally, the “MAPK signaling” pathway (q-value = 5.9 
× 10−20 ) shows a key role in the genesis and progression of a substantial proportion of papillary  tumours30. For 
this gene set, none of these pathways were found by any of the other methods, except GEA that found “p53 
signalling” pathway with a q-value of 1.4 × 10−03.

Another example is the gene set GRADE_COLON_CANCER_UP. ANUBIX is the only method that finds 
expected pathways such as, “Colorectal cancer” , “Pathways in cancer” or “microRNAs in cancer’’, with q-values of 
2.5 × 10−56 , 3.3 × 10−64 , and 4.8 × 10−53 respectively. Another pathway found only by ANUBIX that is a key driver 
in almost all colorectal cancers is the “WNT-signaling pathway” (q-value = 7.5 × 10−55)31. It also uniquely found 
two other signalling pathways that generally are dysregulated in cancer, “p53 signalling” and “RAS-signaling” 
with q-values of 3.5 × 10−48 and 5.8 × 10−43  respectively32.

Discussion
Here we present ANUBIX, a novel network-based pathway enrichment method, which focuses on modelling the 
expected crosstalk between a gene set and a pathway. We prove how important it is to have an accurate model 
that can correctly treat real pathways. Users working with pathway enrichment analysis tools are expecting to 
find out whether their gene sets have a relation to certain pathways that is not expected by chance. To achieve 
this, ANUBIX keeps the properties of each pathway intact to precisely estimate the expected level of crosstalk 
between a query gene set and each individual pathway. In contrast, previous methods such as BinoX, NEArender 
and NEAT generalize the statistical properties of crosstalk for all pathways, and are therefore unable to adapt to 
specific properties of individual pathways which may be highly non-random. BinoX uses network randomiza-
tions to assess the expected crosstalk between a gene set and a pathway, while NEArender and NEAT assume 
that pathways behave like random gene sets. However, this ignores important properties of the known biological 
pathways. As a result, the null distributions used by BinoX, NEArender and NEAT are not suitable to handle 
crosstalk to certain pathways, especially the pathways in Fig. 5A, where they produce a high FPR for random 
gene sets. This means that a user is likely to get some of those pathways as significant enrichments even though 
a random gene set is submitted. Almost all pathways showed overdispersed crosstalk distributions for random 
query gene sets, and hence violate the model assumptions of BinoX, NEArender, and NEAT, leading to high FPR.

We have analyzed the reliability of different methods for crosstalk of random gene sets against all KEGG and 
REACTOME pathways. For each pathway one would expect ~ 5% of the p-values to be under 0.05. ANUBIX 
displayed excellent reliability, with pathways close to 5%. In contrast, BinoX, NEAT and NEArender had highly 
variable performance between pathways. In general, these methods have non-conservative p-values, but we 
show that for some pathways they are actually too conservative. This shows how sensitive these methods are to 
pathway properties. Pathways should not be treated as random gene sets, and as shown in Fig. 5B there is a cor-
relation of 0.79 between the FPR of Binox and the fraction of intralinks. The same dependency is observed for 
NEAT with a correlation of 0.81, and for NEArender at 0.83. This suggests that these methods perform worse 
when the pathways are more isolated communities. In contrast, ANUBIX only had a correlation of 0.12, showing 
almost no bias towards certain pathways. Since ANUBIX can handle random gene sets well, as demonstrated in 
the benchmark, it gives to the user a higher confidence of obtaining reliable results. Further, ANUBIX not only 
gives a good accuracy for random gene sets together with a perfect specificity, but its TPR competes with previ-
ous methods like BinoX, NEArender and NEAT. Because ANUBIX’ model assumption keeps the properties of 
each pathway intact, it can discover many new pathway annotations that are not found by any of the previous 
methods. As shown in Fig. 9, 47.9% of the significant MSigDB annotations found by ANUBIX were unique.

Compute time analysis showed that even though ANUBIX is fast for single runs, it scales linearly with the 
number of query gene sets. In contrast, methods like BinoX and NEAT have a high fixed computation cost 
regardless of the number of query gene sets but a low cost per gene set, which makes them relatively faster for 
large batch comparisons.

GenesetDP/GeneSetMC show an equally good accuracy in terms of FPR as ANUBIX for the pathway tested 
in Fig. 4A. They keep the biological properties of the pathways and they focus on the gene sets the user inputs. 
However, no large scale benchmark of FPs or TPs was possible since these algorithms are not implemented to 
allow large scale analyses.

For comparison we also benchmarked GEA, which is implemented in DAVID, a popular overlap-based 
pathway enrichment analysis tool. While it was not found to have a high FPR for random gene sets, it suffers 
from poor sensitivity (TPR) which is caused by its dependency on overlapping genes. The high false negative rate 
may be explained by the fact that GEA only relies on overlap between sets, while network-based methods use 
a network, which gives them a much richer source of information. Moreover, GEA as implemented in DAVID 
uses the EASE-score33, which is a conservative modification of Fisher’s exact test, and requires an overlap of at 
least 2 genes to perform the test.

In conclusion, we show that ANUBIX substantially improves the quality of pathway annotation compared to 
state of the art network-based methods. Existing state of the art network-based methods have high false positive 
rates and a bias to find certain pathways, which are both eliminated by the ANUBIX algorithm, that also still has 
a true positive rate that competes with previous network-based methods. We show that ANUBIX is able to find 
a large amount of biologically relevant pathways that are not found by other methods.

Data availability
The 2392 MSigDB gene sets were taken from the C2.CGP (chemical and genetic perturbations) v3.0 collection, 
available at https ://softw are.broad insti tute.org/gsea/msigd b/downl oad_file.jsp?fileP ath=/resou rces/msigd b/3.0/
msigd b_v3.0_files _to_downl oad_local ly.zip. The 288 human pathways were extracted from KEGG release 70.1 

https://software.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/msigdb/3.0/msigdb_v3.0_files_to_download_locally.zip
https://software.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/msigdb/3.0/msigdb_v3.0_files_to_download_locally.zip
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via https ://www.kegg.jp/kegg/rest/kegga pi.html. The Reactome pathways were gathered from https ://react ome.
org/downl oad/curre nt/Ensem bl2Re actom e_All_Level s.txt and the pathway hierarchy from https ://react ome.
org/downl oad/curre nt/React omePa thway sRela tion.txt. We also used the human functional association network, 
Funcoup v3.0 available at https ://funco up.sbc.su.se/archi ve/FC3.0/. The source code for ANUBIX is available at 
https ://bitbu cket.org/sonnh ammer group /anubi x/src/maste r/R/. All scripts and data are available at https ://bitbu 
cket.org/sonnh ammer group /anubi x/src/maste r/anubi x_bench mark/.
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