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Abstract: Background: Alcohol-related road-traffic injury is the leading cause of premature death in
middle- and lower-income countries, including Thailand. Applying machine-learning algorithms
can improve the effectiveness of driver-impairment screening strategies by legal limits. Methods:
Using 4794 RTI drivers from secondary cross-sectional data from the Thai Governmental Road Safety
Evaluation project in 2002–2004, the machine-learning models (Gradient Boosting Classifier: GBC,
Multi-Layers Perceptrons: MLP, Random Forest: RF, K-Nearest Neighbor: KNN) and a parsimonious
logistic regression (Logit) were developed for predicting the mortality risk from road-traffic injury
in drunk drivers. The predictors included alcohol concentration level in blood or breath, driver
characteristics and environmental factors. Results: Of 4974 drivers in the derived dataset, 4365 (92%)
were surviving drivers and 429 (8%) were dead drivers. The class imbalance was rebalanced by
the Synthetic Minority Oversampling Technique (SMOTE) into a 1:1 ratio. All models obtained
good-to-excellent discrimination performance. The AUC of GBC, RF, KNN, MLP, and Logit models
were 0.95 (95% CI 0.90 to 1.00), 0.92 (95% CI 0.87 to 0.97), 0.86 (95% CI 0.83 to 0.89), 0.83 (95% CI 0.78
to 0.88), and 0.81 (95% CI 0.75 to 0.87), respectively. MLP and GBC also had a good model calibration,
visualized by the calibration plot. Conclusions: Our machine-learning models can predict road-traffic
mortality risk with good model discrimination and calibration. External validation using current
data is recommended for future implementation.

Keywords: alcohol; drunk driver; road-traffic injury; machine learning

1. Introduction

Road-traffic injury (RTI) is currently a major public health issue and a leading cause of
mortality among all age groups, particularly children and young adults [1]. According to a
WHO report, 93% of the world’s fatalities on the roads occur in low- and middle-income
countries [2]. Thailand is a middle-income country and has remained in the top ten for
road-traffic deaths for many years [3].

Drunk driving is a key behavioral risk factor for increased risk of fatality and seri-
ous disabilities [4–6]. Even with low blood-alcohol concentration (BAC) levels, alcohol
can increase the severity of RTI [7,8]. Various strategies, both at a national and at an
individual level, have been implemented and have reduced alcohol-related fatalities and
injuries [9–11]. Those focused on individual behavior include the perceived threat of being
arrested, legislative penalties, and RTI severity. However, only the perceived threat of
being arrested has been shown to influence individual behavior in avoiding drunk driving,
but not punitive measures [12]. Raised awareness of RTI consequences using mass media
campaigns and social activities was also an effective strategy, particularly when combined
with checkpoints [9,13]. However, increasing the number of checkpoints and intensive
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mass media campaigns are too costly, especially in low–middle income countries. There-
fore, the current strategies might not be enough and may need additional efforts for better
management of this problem.

Although the legal limit of blood-alcohol level is a good indicator for defining im-
paired drivers, the intensity of impairment and RTI severity are also influenced by driver
characteristics and environmental factors [14–16]. Therefore, using these factors com-
bined with alcohol data has the feasibility to develop a more personalized drunk-driver
screening strategy.

Prediction models are widely used to predict health events and for screening high-risk
individuals [17,18]. Machine learning (ML) has become a popular approach for prediction
model development in health care [19]. The advantages of ML are the ability to analyze
diverse data types and perform complex computational algorithms [20]. It requires specific
data preprocessing, complex parameter tuning, and understanding of each ML algorithm.
Several ML algorithms have been applied to predict the severity of road-traffic injuries. The
study of Artificial Neural Networks and classical decision tree algorithms was developed
using precrash factors and could predict the severity of non-alcohol-related traffic injuries
with acceptable performance [21]. Another study using the Recurrent Neural Network
(RNN), Multilayer Perceptron (MLP) and Bayesian Logistic Regression found that only the
RNN provided good accuracy [22]. The study of the decision tree-based algorithm (Random
Forest: RF), nonparametric learning method (K-Nearest Neighbor: KNN), and modified
traditional statistical model (Regularized Logistic Regression Classifier: Logit) also reported
promising results in predicting road-traffic severity [23]. Furthermore, a recent study using
ML algorithms synergized with clustering techniques (e.g., Fuzzy C-Means-based Support
Vector Machines and Neural Networks) also obtained good performance in terms of
accuracy and F1 score [24]. Nevertheless, there is no current evidence on the use of ML
algorithms to predict the risk of alcohol-related traffic mortality.

Using machine-learning models instead of a legal limit of alcohol concentration or
fixed prediction rules/methods (e.g., regression models, decision trees) may provide a
more flexible, effective, and personalized tool for identifying drunk drivers at risk of road-
traffic mortality. The major advantage of machine learning is its continuous learning, in
which the model algorithm is constantly modified in response to newly derived data. For
future implementation, these machine learning models may be integrated with the present
sobriety checkpoint screening method to provide a personalized drunk-driving screening
strategy. Therefore, we conducted the development and internal validation of ML models
using driver characteristics, environmental factors, and alcohol testing results to evaluate
the performance of ML models in alcohol-related traffic mortality prediction.

2. Materials and Methods
2.1. Derivation Dataset (Thai Governmental Road Safety Evaluation Project from 2002–2004)
2.1.1. Data Collection

This study used retrospective cross-sectional data from the Thai Governmental Road
Safety Evaluation project conducted by the Thai Health Promotion Foundation evaluation
team in response to road safety planning from 2002–2004. The road-traffic injury data were
collected in 4 main geographical regions of Thailand and directly reported to the informa-
tion center by field investigators who co-operated with nurses at emergency departments
from 29 main provincial hospitals.

2.1.2. Study Population

The development of the prediction model was performed based on 4794 records of
drivers who received emergency care or were transferred or admitted to a secondary and
tertiary hospital during the long weekend periods of 2003 (27 December 2002–2 January
2003), Thai New Year 2003 (11–18 April 2003), and New Year 2004 (29 December 2003–4
January 2004). All the patient identification data including hospital numbers and citizen ID
were completely removed and it was not possible to track back by using other characteristic
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data in the derivation dataset. Ethical approval of this study was obtained from the
Research Ethics Committee of Faculty of Medicine, Chiang Mai University, Thailand
(COM-2563-07841).

2.1.3. Predictors

Candidate predictors for modeling were selected based on the previous evidence from
road-traffic injury studies. The retrieved predictors from a dataset included alcohol odor
on breath, breathing alcohol concentration (BrAC) and BAC. The alcohol concentration
level was measured in patients attending accident and emergency departments with road-
traffic injuries by a nurse at the triage point, or by the officer who assessed victims at the
scene. The BAC samples were gathered immediately at emergency departments from all
suspected alcohol-related road-traffic injury patients according to legislative measures
at that time, and were delivered to the toxicology lab of the same hospital within 24 h.
The BAC results were reported to authorized officers before being directly sent to the
information center. In addition, the demographic data, location, driving in an unfamiliar
area, and time of the road-traffic accident, type of vehicle, and safety used, were collected
by field investigators from all study sites. Categorical variables—place of accident and
vehicle type—were modified by one-hot encoding into binary features. The time of the
accident was categorized based on the period of sobriety checkpoint shifts, which were
8:01 a.m. to 4:00 p.m., 4:01 p.m. to 12:00 midnight, and 12:01 midnight to 8:00 a.m. The
continuous predictors, including age and BAC, were normalized before being used in
model development.

2.1.4. Outcomes

Death from the road-traffic injury was the primary outcome from our predictive
models, which was derived from the Thai Governmental Road Safety Evaluation project
data. Death location from the derived dataset was death at the scene, death during transfer,
death at the emergency room, and death in hospital. The outcomes were obtained from
police officers and medical records by investigators at study sites.

2.2. Missing Data and Imputation

The missing data were not found in the other candidate predictors except BAC. From
4794 records, 2536 (52.90%) had BAC missing data. 844 (17.61%) were missing because a
breathalyzer was used instead of the BAC test. Hence, those values were replaced by BrAC
results which is the relative measurement of BAC [25,26]. There were 705 records (14.71%)
with BAC missing data due to a low suspicion of alcohol use, which was consistent with
the absence of alcohol odor. The other missing data were found in 987 drivers (20.58%)
whose alcohol odor was detected but no BAC or BrAC measure was performed. Therefore,
we imputed these data by predictive mean matching imputations using the numbers of
10 nearest neighbors. The flow diagram of derived data and missing data imputation is
displayed in Figure 1.
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Figure 1. The flow diagram of derived data and missing data imputation.

2.3. Model Development

The mortality prediction model was developed by the information of candidate vari-
ables. The derived models were developed using two datasets, which were the imbalanced
dataset and the rebalanced dataset. The minority class of the imbalanced dataset was
oversampled into a 1:1 ratio (4365 survivors: 4365 dead drivers) by the Synthetic Minor-
ity Oversampling method (SMOTE) to obtain the rebalanced dataset. Machine-learning
algorithms using Python programming and the Sci-kit learn package were implemented in
this study including the K-Nearest Neighbors (KNN) algorithm, ensemble tree-based ML
algorithms: Random Forest classifier (RF), Stochastic Gradient Boosting Classifier (GBC),
Multilayer Perceptron Artificial Neural Network (MLP) and Logistic Regression model.
The details of machine-learning algorithms and their hyperparameters are described below.
The feasible predictors were obtained using stepwise variable choosing with backward
elimination based on a significant threshold of p-value < 0.100 by Multi-variate Logistic
Regression. ML hyperparameters were determined by using a grid search with 10-fold
cross-validation (GridSearchCV) on the derived dataset to determine the parameters that
led to the best performance. For the GridSearchCV function, the dictionary of model
hyperparameters or “parameter grid” is defined based on the model preferences as de-
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scribed below. This function performed hyperparameter optimization by exhaustively
searching for the best parameters from all combinations of values in parameter grids and
also performed k-fold cross-validation to estimate the performance score.

2.3.1. K-Nearest Neighbors (KNN)

KNN, or neighbor-based classification, is an instance-based or nongeneralizing learn-
ing approach. Classification is determined by a simple majority vote of each point’s nearest
neighbors: a query point is allocated to the data class having the most representation
among its nearest neighbors. The hyperparameters in KNN are the number of neighbors
(K), weight function (“Uniform weights” assigns equal weights to all points or “Distance
weights” points by the inverse of their distance to a query point), the method of distance
measurement (e.g., Euclidean method or Manhattan method), and the algorithm used to
compute the nearest neighbors including Auto, Ball tree, K-D tree, and Brute-force searches.

2.3.2. Random Forest Classifier (RF)

The RF classifier is an ensemble decision-tree based method, which eradicates the
limitations of a classic decision-tree algorithm, including overfitting of datasets, and in-
creases discrimination performance. The RF algorithm is based on a variety of decision
trees, which are generated by bootstrap sampling and selected variables. Each decision
tree is composed of three types of nodes: decision nodes, leaf nodes, and a root node. Each
tree’s leaf node represents the decision tree’s final results, which is determined using a
majority-voting mechanism. The main parameters to optimize when using this method
are the number of trees in the forest and the maximum features in each tree. The other
hyperparameters in RF are the maximum depth of the tree and the number of nodes.”

2.3.3. Stochastic Gradient Boosting Classifier (GBC)

GBC is a group of combined weak learning models that generate more effective
machine-learning models. The core principle of GBC is based on the boosting method
(e.g., AdaBoost), which is to fit a sequence of weak learners (e.g., models that are only
slightly better than random guessing, such as small decision trees) to make a classification
on repeatedly modified versions of the data. This algorithm weights the input observations
in the training set, providing a higher sample weight to observations that are difficult to
classify. Additional weak learners are sequentially added to the algorithms and assigned to
the most difficult classified observations. The predictions are made through majority vote,
with the observations being classified according to which class receives the most votes from
the weak learners. Gradient boosting classifiers combine the boosting method with error
minimization using loss functions to minimize the prediction error between the actual and
the predicted classes. The hyperparameters of GBC in generating the boosting algorithm
are the number of weak learners, the maximum depth of decision trees, and the maximum
features in each tree. The learning rate is a hyperparameter in the range 0 to 1 that controls
weight applied to each weak learner at each boosting iteration. For error minimization, the
loss functions (e.g., binomial deviance (provides probability estimates) and exponential
loss) can be specified by hyperparameter tuning.

2.3.4. Multilayer Perceptron Artificial Neural Network (MLP)

MLP is a supervised learning algorithm using the concept of a neural network. The
simplest elements of MLP are the input layer, the hidden layer, and the output layer of
the perceptron/neuron. There are basically three steps in the training of the MLP model.
The input data is entered via the input layer, passes through the hidden layers to the
output layer to obtain the predicted class, and calculates the error by a specified loss
function. Then, the calculated error will be backpropagated to optimize the weights and
bias of each perceptron to minimize the prediction error. To make a precise classification,
the hidden layer sizes, the activation functions of the hidden layers (e.g., ReLU, Logistic,
Identity), and the solver for weight optimization (e.g., Stochastic Gradient Descent, Quasi-
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Newton method) are required to be optimized by hyperparameter tuning. The other
hyperparameters for the learning effectiveness are the learning rate (learning methods and
initial learning rate) and the maximum number of training iterations.

2.3.5. Logistic Regression Model (Logit)

Logistic regression model is also known in the literature as logit regression, maximum-
entropy classification, or the log-linear classifier. In this approach, the target classification
probabilities are modeled using a logistic function. Model transparency and interpretability
is the major advantage of this approach. In addition, using the regularization approaches,
which are an extension of the logit model, can improve model performance and decrease
overfitting. The regularization techniques (e.g., L1, L2, Elastic-net), C-value (inverse
of regularization strength; smaller values specify stronger regularization), and solver
algorithms (e.g., Newton-CG, lbfgs, liblinear, sag, and saga) are the hyperparameters of the
logit model.

2.4. Internal Validation, Discrimination Performance and Calibration

A 10-fold cross-validation method was performed for assessing model optimism and
internal validation. The derived dataset is divided into 10 folds of data and repeated 10
times to perform model training and testing. For each iteration, nine folds of data are used
to train the model and then tested with the remaining fold to ensure that almost all of
the derived data were used to train and test the models. We assessed the discrimination
performance by computing the area under the receiver operating characteristic curve (AUC)
for each model. Estimates of discrimination performance were reported as the mean AUC
across all repetitions of cross-validation. To further explain model performance, we also
calculated secondary metrics of the models, including likelihood ratio, predictive values,
specificity, and sensitivity. The equations for the secondary metrics calculation are provided
below. The model calibration revealed the agreement between the observed proportion of
classified outcomes and predicted probability from derived models. The calibration plot
contrasted how well the probabilistic predictions of different classifiers were calibrated.

Sensitivity equation:

Sensitivity =
True positive

True positive + False negative
(1)

Specificity equation:

Speci f icity =
True negative

True negative + False positive
(2)

Positive predictive value (PPV) equation:

PPV =
True positive

True positive + False positive
(3)

Negative predictive value (NPV) equation:

NPV =
True negative

True negative + False negative
(4)

Positive likelihood ratio (PLR) equation:

PPV =
sensitivity

1 − speci f icity
(5)
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Negative likelihood ratio (NLR) equation:

NPV =
1 − sensitivity

speci f icity
(6)

2.5. Statistical Analysis

The associations between predictors and outcomes were identified by statistical tests
consisting of correlation analysis, chi-squared test, t-test for parametric values, Rank-sum
test for nonparametric values, and multivariate logistic regression for predictors selection.
All statistical analyses and missing data imputation were performed using statistical
software by the STATA software package (Stata Corp. 2019. Stata Statistical Software:
Release 16. College Station, TX, USA: Stata Corp LLC.). The data preprocessing, modeling,
and performance analysis was conducted using Python (Python Software Foundation)
with the Pandas package and the Sci-kit learn package. Additional details on the machine-
learning models were shown in Table S1 in the Supplementary Materials.

3. Results
3.1. Baseline Characteristics of Drivers

Of 4794 drivers, 429 (8.94%) died from the RTI. In our study, most of the injured drivers
were teenagers and young adolescents. Driver age was slightly higher in the survivor
group (30 years, IQR 6 vs. 26 years, IQR 19; p = 0.001). Most drivers were male, and males
were significantly more highly represented in road-traffic deaths compared to survivors
(393, 91.61%) vs. 3804, 87.15%); p = 0.008). BAC levels in the road-traffic death group
(15.00, IQR 156.70) were higher than the surviving drivers (1.00, IQR 130.00; p = 0.051)
after imputing the missing data. Motorcycles were the most common vehicle used in both
groups and the proportion of motorcycles used was significantly higher in the survivor
group compared to the dead group (91.38% vs. 88.11%; p = 0.038). The usage of helmets in
the survivor group was also significantly higher than the dead group (17.25% vs. 10.05%;
p = 0.001). Safety-belt usage was also higher in the survivor group (31.98% vs. 9.68%;
p = 0.010). The majority of road-traffic injuries occurred between midnight and 8:00 a.m.,
where the RTI deaths were considerably higher in than in the RTI survivors (52.68% vs.
44.88%; p = 0.002). Most of the accidents occurred in rural areas. The percentage of RTI
deaths in these areas were significantly higher than the RTI survivors (53.85% vs. 47.26%;
p = 0.009), whereas the RTI deaths were lower than the RTI survivors in urban areas (11.66%
vs. 18.83%; p < 0.001). In addition, road-traffic deaths caused by driving across provinces
were significantly higher than RTI survivors (25.87% vs. 13.45%, p < 0.001). The detail of
driver characteristics from the derived dataset is presented in Table 1.

Table 1. Baseline driver characteristics divided by the target outcome.

Characteristics
Total (n = 4794)

p-ValueDeath (n = 429) Survive (n = 4365)

n % n %

Age, median (IQR), years 26 (19) 30 (6) <0.001 *

Gender
Male 393 91.61 3804 87.15 0.008

Female 36 8.39 561 12.85

Alcohol
BAC level, median (IQR), mg% 15 156.70 1 130.00 0.051 *

Alcohol odor on breath 321 74.83 2915 66.78 <0.001

Type of vehicle
Bicycle 20 4.66 133 3.05 0.069

Motorcycle 378 88.11 3978 91.38 0.038
4-wheel car 26 6.06 210 4.81 0.254

Commercial truck, semitrailer, and trailer 5 1.17 37 0.85 0.500
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Table 1. Cont.

Characteristics
Total (n = 4794)

p-ValueDeath (n = 429) Survive (n = 4365)

n % n %

Safety belt used a (n = 31) (n = 247)
Yes 3 9.68 79 31.98 0.010
No 28 90.32 168 68.02

Helmet used b (n = 398) (n = 4111)
Yes 40 10.05 709 17.25 <0.001
No 358 89.95 3402 82.75

Place of accident
Urban 50 11.66 822 18.83 <0.001

Suburban 148 34.50 1480 33.91 0.805
Rural 231 53.85 2063 47.26 0.009

Driving across provinces 111 25.87 587 13.45 <0.001

Time of accident
8:01 a.m. to 4:00 p.m. 106 24.71 1208 27.67 0.189
4:01 p.m. to 12:00 a.m. 97 22.61 1198 27.45 0.031
12:01 a.m. to 8:00 a.m. 226 52.68 1959 44.88 0.002

a only 4-wheel car, commercial truck, semitrailer and trailer driver; b only motorcyclist and bicyclist; BAC: Blood alcohol concentration.
All p-values of the categorical variables were obtained from chi-squared test; For the continuous variables, p-values were obtained from *
Rank-sum test (nonparametric).

3.2. Model Development

Data from 4794 drivers were used for model development. The association between
candidate predictors and road-traffic death by univariate analysis, multivariable regression,
and AUC were reported in Table 2. Feature selection for model development was selected
by a backward elimination approach via multivariable logistic regression. It was found
that wearing a motorcycle helmet and wearing a seat belt were associated with decreased
road-traffic deaths. Whereas other candidate variables were related to increased road-
traffic mortality risk. However, the discrimination performance by each predictor showed
a failure of poor performance. These predictors from the original data were used for the
ML development and measured the model performances. Nevertheless, the discrimination
performances of imbalance learning classifiers obtained a poor performance because the
classifiers intended to classify only the majority class (Accuracy paradox). Therefore, a re-
balancing strategy by SMOTE was applied to counter this problem. The oversampling data
were generated and rebalanced the minority group in a 1:1 ratio. Finally, the derived data
included 4365 RTI dead drivers and 4365 surviving drivers, and all candidate predictors,
as shown in Table 2, were used in model development. The performances of imbalance
learning models are provided (Table S2, Figures S1 and S2 in the Supplementary Materials).

Table 2. The association between candidate predictors and death from road-traffic injury.

Characteristic OR p-Value aOR p-Value AUC 95% CI

Age, years (median, IQR) 1.01 <0.001 1.01 <0.001 0.56 0.53–0.58
Male 1.60 0.008 1.42 0.059 0.52 0.51–0.54

BAC level, mg% (median, IQR) 1.00 0.051 1.00 0.052 0.53 0.49–0.55
Motorcycle 0.72 0.038 0.74 0.071 0.48 0.46–0.50

Safety belt used 0.38 0.010 0.18 0.005 0.49 0.49–0.50
Helmet used 0.53 <0.001 0.55 <0.001 0.46 0.45–0.48

Place of accident: Suburban 1.03 0.805 1.57 0.008 0.50 0.48–0.53
Place of accident: Rural 1.30 0.009 1.74 0.001 0.53 0.51–0.55

Driving across provinces 2.25 <0.001 2.12 <0.001 0.56 0.54–0.58
Driving at night (12:01 a.m. to 8:00 a.m.) 1.37 0.002 1.25 0.035 0.53 0.51–0.56

aOR: Adjusted odd ratio from the multivariable logistic regression model; AUC: Area under the received operating characteristic curve;
OR: Odd ratio from univariable analysis.
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3.3. Discrimination Performance and Model Calibration

The rebalanced data by SMOTE were used for the classification-model development.
The model optimism and internal validation were evaluated by 10-fold cross-validation.
The discrimination performances of models are presented in Figure 2 and Table 3. It
was found that all rebalanced learning models performed with excellent discrimination.
The overall discrimination performance was presented by mean AUC and 95% CI from
10-fold cross-validation. As a result, the ensemble-based (GBC) and the decision tree-based
(RF) models had obtained the outperforming model discrimination with mean AUC (0.95,
95% CI 0.90 to 1.00, and 0.92, 95% CI 0.87 to 0.97), respectively. The KNN model and MLP
had also achieved valid discrimination performances. Though the logistic regression had
the lowest discrimination performance and low specificity (50.79%), it still provided high
AUC (0.81, 95% CI 0.75 to 0.87). For the secondary metrics, a high sensitivity represents the
rule-in performance (screening test), and a high specificity reflects the rule-out performance
(confirm test). The models that provided outperforming sensitivity were RF (91.66%), GBC
(90.4%), and Logit model (90.01%). For specificity, GBC and KNN provided excellent
model specificity, which were 86.39% and 81.12%, respectively. For other alternative
metrics, a positive likelihood ratio (PLR) and a negative likelihood ratio (NLR), which
were not affected by data rebalancing, were also used to express a change in odds by
model prediction. A high PLR means that the post-test probability of a road-traffic death
is highly increased, given a positive test. Conversely, a relatively low NLP (e.g., 0.1)
significantly decreases the probability of a road-traffic death, given a negative test. The
best performances in both PLR and NLP were found in the GBC (6.64 and 0.11) and RF
(3.68 and 0.11) models.

Table 3. The Discrimination Performance of Mortality Prediction Models with Rebalanced data using SMOTE.

Models Model
Prediction

(Death/
Survival)

AUC Likelihood Ratio
Sensitivity Specificity

Mean 95% CI Positive Negative

GBC Death (3946/594) 0.95 0.90–1.00 6.64 0.11 90.4 86.39
Survival (419/3771)

RF Death (4001/1086) 0.92 0.87–0.97 3.68 0.11 91.66 75.12
Survival (364/3279)

MLP Death (3462/1299) 0.83 0.78–0.88 2.67 0.29 79.31 70.24
Survival (903/3066)

Logit Death (3929/2148) 0.81 0.75–0.87 1.83 0.2 90.01 50.79
Survival (436/2217)

KNN Death (3573/824) 0.86 0.83–0.89 4.34 0.22 81.86 81.12
Survival (792/3541)

AUC, Area under the received operating characteristic curve; GBC, Gradient Boosting classifier; KNN, K-Nearest Neighbor; Logit, Logistic
regression; MLP, Multilayer Perceptrons; RF, Random Forest.

The model calibration was visualized with the calibration plot, which compared the ex-
pected probability of road-traffic death, and the mean 10-fold cross-validation predicted the
probability of each model. From Figure 3, the MLP classifier was almost perfectly calibrated,
but slightly underestimated the high predicted probability. The predicted probabilities from
GBC, RF, and Logistic models were underestimated in low predicted probability. However,
GBC and RF appeared to be well-calibrated in high predicted probability, whereas the KKN
model made a marginally overestimated predicted probability.
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mean AUC: 0.92, 95% CI: 0.87–0.97; (c) Multilayer Perceptron (MLP) model, mean AUC: 0.73, 95% CI: 0.78–0.88; (d) Reg-
ularized Logistic Regression (Logit) model, mean AUC: 0.73, 95% CI: 0.78–0.88; (e) K-Nearest Neighbor (KNN) model, 
mean AUC: 0.73, 95% CI: 0.78–0.88. 

Figure 2. Receiver Operating Characteristic curves from 10-fold cross-validation of the rebalanced learning classifiers
by SMOTE. (a) Gradient Boosting Classifier (GBC) model, mean AUC: 0.95, 95% CI: 0.90–1.00; (b) Random Forest (RF)
model, mean AUC: 0.92, 95% CI: 0.87–0.97; (c) Multilayer Perceptron (MLP) model, mean AUC: 0.73, 95% CI: 0.78–0.88;
(d) Regularized Logistic Regression (Logit) model, mean AUC: 0.73, 95% CI: 0.78–0.88; (e) K-Nearest Neighbor (KNN)
model, mean AUC: 0.73, 95% CI: 0.78–0.88.
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4. Discussion

Alcohol-related RTI is the most important risk factor in road-traffic mortality [4–6].
Currently, the alcohol limit regulations have been globally enforced for many years [1].
However, the risk of drunk driving may differ in different circumstances and contexts. It
has raised the concern that only one cutoff of alcohol level might not be general enough to
identify drivers at risk in all populations. As a result, the univariate predictors including
BAC and others obtained poor discrimination performances. We also demonstrated that
imbalanced learning in prediction-model development affected the model discrimination
and calibration. Rebalanced data by the minority group oversampling using the SMOTE
method significantly improved the model performances. Lastly, our study has revealed
the potential of ML application in the prediction of alcohol-related road-traffic death
using precrash factors combined with BAC, which can be applied as a personalized risk-
prediction tool for RTI prevention in the future.

4.1. Limitations

Our ML models have several additional limitations. The most crucial limitation is the
derived secondary data, which were cross-sectionally collected 16 years ago. Therefore,
this model may be out of date and may need further updating and validation with contem-
porary data. Nevertheless, we decided to use these data because it was a large national
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survey of RTI data consisting of the alcohol testing results (BAC, BrAC). Besides, a lack of
current RTI data and other data, e.g., alcohol testing results particularly for BrAC, which
can be used for ML development, is an important factor. The pattern of RTI in Thailand [27],
and other middle- and lower-income countries [28], has remained the same as in the past
decades, and drunk driving is also the leading cause of traffic death. The ML models
from our study may be helpful for these countries where the pattern of traffic accidents is
similar to Thailand. Second, using the occurrence of RTI as a target outcome may be more
appropriate than road-traffic mortality for the prevention. Moreover, predicted road-traffic
death by our models was under the assumption that a traffic accident had occurred. Hence,
the application of these models in practice should warn that these models may overestimate
the risk of RTI death. The third limitation was the missing values of BAC, approximately
half of all drivers were not tested. Nevertheless, we used both domain expertise and other
imputation techniques to improve quality of the data. Another limitation was imbalanced
data that directly impacted the model performances. A rebalancing strategy was performed
to handle imbalanced data before developing the ML. We decided to use the Synthetic
Minority Oversampling Technique (SMOTE) based on its effectiveness in the previous
prediction model developments [29,30].

4.2. Interpretations

Our RTI risk models predict a mortality risk from RTI based on BAC level, driver
characteristics, safety practice, and environmental factors. These precrash factors are
collected by the investigating officer, e.g., driver characteristics by scanning driver license
or ID card, safety practices and alcohol level at the sobriety checkpoint. The sobriety
checkpoint location can be retrieved from an application programming interface requests
for real-time geolocation data. The ML prediction result was the probability of road-traffic
mortality (0–100%) and the classified outcomes were death (high risk) or survival (low
risk) from the road-traffic accident. It should be noted that the prediction relied on the
assumption that the driver had been in a traffic accident. For the probability result, the
MLP model is the preferable algorithm because this model demonstrated the best model
calibration (best fit between actual and predicted probability in the calibration plot) and
still provided good model discrimination. In contrast, the boosting-based (GBC) and
ensemble-based (RF) models are our suggested methods for classifying the driver into
high risk and low risk of road-traffic death. According to their ground theorems, based on
an extension of the decision-tree method, these models tend to be better at predicting the
binary outcome. The officers can use the prediction result to communicate with the drunk
driver, particularly those whose alcohol level is under legal limitation. BrAC values may
be feasible for use in the models according to an impractical BAC measurement.

4.3. Implications

Our study demonstrated that the ML algorithm using precrash predictors and BAC
can precisely predict the road-traffic mortality risk of the drunk driver. We also showed that
using only legal cutoff or BAC levels might provide very poor discrimination performance
for the driver at risk. In addition, an alcohol level under the legal threshold might cause an
impairment based on various precrash conditions or driver characteristics [14–16]. These
models can be applied as personalized risk identification and an alternative personalized
legal limit. The officer at the checkpoint can use the prediction result to raise the awareness
of the drunk driver. Since many countries have had RTI data collection and report systems
for years, it is possible to integrate these ML models with RTI data management systems as
an innovative RTI prevention strategy. Furthermore, BrAC may be the preferred predictor
method as it is simpler to implement at screening sites than BAC measurements, especially
if used as a screening strategy. However, we assumed that BAC values are relatively
similar to BrAC measurements with some variation. BrAC has been widely accepted as
the standard alcohol measurement. Thus, it is possible to apply BrAC level instead of
BAC data. The advancement of government data integration and exchange will increase
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several possibilities to utilize the data for other public health prevention tasks [31]. For
instance, the added predictors, e.g., driving experience, underlying health conditions,
or the driving route conditions, which were already collected by the government, may
improve the performance of the updated ML model in the future.

5. Conclusions

Our study developed novel machine-learning algorithms with internal validation to
identify model performances using the standard alcohol level measurement combined with
simple precrash factors. Our machine-learning models can predict road-traffic mortality
risk with a good model discrimination and calibration. Nonetheless, model updating
and external validation with current data are required to ensure the possibility of model
implementation in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph181910540/s1, Table S1: The parameter setting of the derived models, Table S2: The
discrimination performance of mortality prediction models using imbalance data, Figure S1: Receiver
Operating Characteristic curves from 10-fold cross-validation of the imbalanced learning classifiers,
Figure S2: Calibration plot of the imbalanced learning classifiers.
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