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Abstract

While examples of variation and diversity exist throughout the nervous system, their importance 

remains a source of debate. Even neurons of the same molecular type show notable intrinsic 

differences. Largely unknown however is the degree to which these differences impair or assist 

neural coding. When outputs from a single type of neuron were examined - the mitral cells of the 

mouse olfactory bulb - to identical stimuli, we found that each cell's spiking response was dictated 

by its unique biophysical fingerprint. By exploiting this intrinsic heterogeneity, diverse 

populations coded for 2-fold more information than their homogeneous counterparts. Additionally, 

biophysical variability alone reduced pairwise output spike correlations to low levels. Our results 

demonstrate that intrinsic neuronal diversity serves an important role in neural coding and is not 

simply the result of biological imprecision.

Introduction

From the earliest drawings of neurons1, to the identification of families of voltage-gated ion 

channels 2, a central theme of neuroscience has been the remarkable intrinsic variety of 

cells. While catalogues of types of neurons continue to grow 3, the importance of intrinsic 

diversity within neurons of a single type for neuronal coding has been largely ignored. 

Differences in channel expression and morphology 4, 5 can diversify spike outputs, even 

among cells of a single identified type 6. Alternatively, spiking properties can be equivalent 

among neurons having channel densities in different proportions6. Intrinsic variability 

therefore seems to play multiple roles in mechanisms of spike generation. The extent to 

which these individual differences in cells are relevant to neural coding is however, less well 

understood.
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Intrinsic diversity could play a critical role in neuronal coding, for example by reducing 

pairwise spike train correlations and reducing redundancy across populations of neurons, 

perhaps in conjunction with connectivity 7, 8. Such decreases would afford populations of 

highly diverse neurons additional bandwidth with which to code for stimuli, as suggested by 

theoretical studies 9, 10. But in noisy neural systems, where trial-to-trial variability is large11, 

how the tradeoff between redundancy and bandwidth is balanced remains unexplored. At 

one extreme, biophysical differences may simply be the product of the imprecision of 

biology. For example, mosaic of neuronal properties may only reflect the probabilistic 

nature of gene expression among different cells. Alternatively, this diversity may be a 

functionally significant adaptation, whereby the noise of stochastic gene expression is 

harnessed in service of neuronal coding. Thus, understanding the effects of intrinsic 

diversity on neural responses and neuronal coding is essential for linking the cell biology of 

neurons with their functional role in information coding in the context of neuronal circuits. 

Heterogeneity in responses can arise from numerous sources, including anatomical 

differences and differences in inputs, but here we choose to focus on the mitral cells of the 

main olfactory bulb, where input correlations in mitral cells connected to the same 

glomerulus are high 12, and the anatomy is highly stereotypic.

Here we demonstrate that intrinsic biophysical diversity affects neuronal coding by reducing 

correlations in the population code while simultaneously increasing the information encoded 

by the population. We report two-fold increases in the coding capacity of populations of 

biophysically heterogeneous cells as compared to their homogeneous counterparts. This 

enhancement was seen both for random noisy inputs and for physiologically relevant stimuli 

modulated by oscillations corresponding to the frequency of sniffing. Additionally, we show 

that the spike triggered average (STA) can be used as one way to quantify neuronal 

diversity. Taken together, these data imply that biophysical heterogeneity is an important 

mechanism of robust population coding, not the unavoidable consequence of biology's 

imprecision.

Results

Mitral cells exhibit intrinsic biophysical diversity

To understand the role of intrinsic diversity in neuronal coding, recordings from mitral cells 

of the mouse main olfactory bulb in vitro were made (Fig. 1a). In the olfactory bulb, groups 

of ∼ 25 mitral cells receive their excitatory input from the same population of several 

thousand olfactory receptor neurons (ORNs) in structures known as glomeruli 13. Each 

glomerulus is the convergence point of all ORN axons expressing the same odorant receptor 

that together provide highly correlated inputs to mitral cells (Fig. 1a) 13, 14. Mitral cells 

activated by the same odor in the same animal show different temporal responses 8, 15, 16. In 

most cases, these responses are due to responses from mitral cells connected to different 

glomeruli 8. In other examples however, highly variable responses are observed even when 

mitral cells are connected to the same glomerulus17, suggesting that strongly correlated 

inputs trigger only weakly correlated outputs, not unlike what has been reported in neocortex 
7, 18. To explore differences in mitral cell intrinsic properties, a constant DC current was 

first injected into the mitral cell soma. This stimulus produced marked variability in mitral 
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cell output spike patterns (Fig. 1b-c, N = 34 cells, 19 animals). This variability was 

preserved in cells in which apical dendrites (green arrow) and lateral dendrites (blue arrow) 

were preserved, suggesting that spike pattern differences were not due to differences in 

morphology or to artifacts in slicing (N = 8). Analysis of these reconstructed mitral cells 

revlealed that they all had both apical and lateral dendrites (8/8), that 75% of cells (6/8) had 

well ramified apical tufts and 62.5% (5/8) had multiple obvious lateral dendrites extending 

throughout the bulb slice. The length of reconstructed dendritic processes totalled 1860±494 

um (N = 8). Thus, although the cells were anatomically similar, they differed markedly in 

their firing patterns, including differences in the spike after-hyperpolarization (Fig. 1d).

Even neurons firing at similar rates (e.g. Fig. 1b-c black cell = firing rate 25 Hz, gray cell = 

firing rate 24 Hz) fired more or less regularly, as measured by the coefficient of variation 

(CV) of their interspike intervals (ISIs; black cell = 0.09 CVisi, red cell = 1.12 CVisi). These 

examples typified the variability seen across all mitral cells recorded (Fig. 1e, CVisi = 0.44 

±0.33), and were indicative of the physiological signatures of their intrinsic biophysical 

differences 19, 20. Furthermore, mitral cells had highly variable input-output functions 

(firing rate to a given DC input, Fig. 1f N = 11 cells).

Differential expression of voltage gated ion channels can lead to differences in intrinsic 

properties 6. To characterize this differential channel expression, immunohistochemistry was 

performed on mitral cell populations against one subunit of the voltage gated potassium 

channel Kv1.2 (Fig. 1g). Examples of Kv1.2 positive mitral cells (Fig. 1g, red arrows) were 

directly next to cells that were Kv1.2 negative (Fig. 1g, white arrows), suggesting that one 

source of intrinsic diversity in the mitral cell population is the differential expression of the 

Kv1.2 subunit.

Mitral cell responses to complex stimuli are cell specific

Fixed DC current injection, as used above to identify regular spiking vs. bursting mitral cells 

(Fig. 1b-c) fail to capture the complex dynamics of neuronal firing21. To understand the 

effects of intrinsic diversity on neuronal output, mitral cell responses (in ACSF, containing 

25 μM APV, 10 μM CNQX, 10 μM bicuculline to block fast synaptic transmission and 

isolate intrinsic properties) to identical rapidly fluctuating currents were recorded (Fig. 2a 

filtered Gaussian white noise black trace, σ = 40pA, DC = 100-400pA, N = 15 over multiple 

trials (n = 30-40 trials), Fig. S1). Because all synaptic transmission was blocked, differences 

in spike output were due to intrinsic biophysical variability. Identical experiments performed 

without blocking synaptic transmission showed similar results indicating that the differences 

identified were also present under different physiological conditions (data not shown).

Identical input noise triggered reliable spike trains in a single cell 22, 23, but the spike trains 

in different mitral cells varied considerably (Fig. 2a). To classify this output diversity, 

principal component analysis (PCA, Fig. S2) was performed on the spike trains. As there 

were no slow covarying elements in the first three principal components (Fig. S2), each 

cell's response reflected a differential filtering of the rapidly fluctuating current in the 

stimulus, rather than slow decorrelation or spike frequency adaptation. Projecting each spike 

train onto the first three principal components (Fig. 2b, each point is a trial, each color is a 
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cell condition) showed that while the across-cell responses were broadly distributed, within-

cell responses were tightly packed.

To measure the similarities and the differences of spike trains within and between mitral 

cells in this space, each of the trials from the different recorded cells to the stimulus was 

classified using the k-nearest-neighbor (knn) algorithm. With only the first 15 principal 

components (3 nearest neighbors, using 60% of data for training), spike trains could be 

correctly classified as originating from a particular neuron with 86±2% accuracy (Fig. 2c, 20 

resamples of data). Furthermore, the number of nearest neighbours (Fig. 2d), ranging from 1 

to 10, did not affect classification accuracy (1 nearest neighbour = 86.7±2%, 10 nearest 

neighbours = 85.5±2%, P = 0.07 ANOVA) when 60% of the trials were used, suggesting 

that the clustering of spike responses was tight. Thus, a spike train from a single cell was 

more similar to the other spike trains from that cell than to spike trains from other cells. 

When changing the percentage of training vs testing data, a small effect on classification 

accuracy was observed (40% testing data gave 85.±3%, training accuracy, 80% testing data 

gave 88.8±3% accuracy, P = 0.006, ANOVA, Fig. 2e). Thus, the responses of all the trials in 

a single condition were highly reproducible and classification accuracy decreased only 

nominally when the number of trials used for training was reduced by half. Consequently, 

spike trains to the identical stimulus were reliable across trials in one cell, but specific across 

all cells.

Intrinsic diversity reduces correlations in spike output

Correlated spiking can emerge as a result of reliable firing among populations of cells that 

are driven by inputs that are highly correlated 17. However, intrinsic diversity may reduce 

pairwise correlations between cells. To explore this question, correlations of spike trains 

across all trials in the same cell and between trials in different mitral cells to this identical 

input were calculated (Fig. S3). Spike train correlations across trials recorded from a single 

cell were high (Fig. 3a, black within-trials example, gray between-trials for the different 

cells), but were much lower between the trials of different cells (Fig. 3a inset, within cell R2 

= 0.17±0.002, between cell R2 = 0.04±0.00, N = 15, P = 3.7×10 −10). When pairwise 

correlations across all trials from all cells to the stimulus were compared (N = 589 trials, 30 

- 40 trials/condition), the mean was R2 = 0.08±0.09 (Fig. 3b).

Thus, the intrinsic differences between this population of mitral cells reduce correlations of 

mitral cell responses to fluctuating inputs. The pairwise similarity between spike trains was 

low even when the inputs that drove those spikes were perfectly correlated. Low output 

correlations were not due exclusively to differences in firing rate; near-zero correlations 

were observed even with similar firing rates (Fig. 3c, gray arrow). Furthermore, when the 

precision by which correlation was measured was relaxed, pairwise population correlations 

were still only 0.34±0.15 for a 16 ms window (Fig. S3). Thus, intrinsic diversity between 

mitral cells alone was sufficient to reduce correlations between neural spike trains.

Diversity can be described by analysis of STAs

Rapidly fluctuating stimuli 21, in addition to providing an input for assessing correlation 23, 

can be used to probe the complex features of a cell's intrinsic dynamics 24. To explore this 

Padmanabhan and Urban Page 4

Nat Neurosci. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



further 11, 22, 23, 25, a family of rapidly fluctuating currents that differed in their variance 

and DC offset (Fig. S1, σ = 20-80 pA, DC = 100-600 pA) was injected into a population of 

recorded mitral cells, where all excitatory and inhibitory synapses were blocked (25 μM 

APV, 10 μM CNQX, 10 μM bicuculline). Additionally, identical experiments were 

performed where synaptic activity remained and found highly similar results. To 

characterize the features of the stimulus to which each neuron responded, the average 

stimulus waveform preceding all the spikes in that neuron, a quantity called the spike-

triggered average (STA, Figs. S4-S5, 24, 26 27) was calculated for each cell. Differences in 

STAs indicated that different mitral cells were filtering different features of the stimulus, 

and the different filters reflected differences in the biophysical properties of these neurons 
24. The STAs (Fig. 4a) of the 3 cells in figure 2a were highly variable, representative of the 

heterogeneity in stimulus filters across all the mitral cells that were recorded (Fig. 4b, N = 

35 STAs). To analyze these filters, principle component analysis (PCA) was done on the 

STAs (Fig.S4), allowing each STA to be represented as a linear combination of PCs 28. The 

first three components (Fig. 4c) accounted for 90% of the STA variance (Fig. 4d), and their 

projection into the space defined by these components (Fig. 4e) showed that STAs were not 

uniformly distributed, and that diversity was preserved across multiple firing rates (Figs. S4-

S5). Consequently, STA shapes projected onto the space defined by the first three principal 

components allowed us to visualize the distribution of intrinsic biophysical variability.

Biophysical diversity predicts information gain

To connect intrinsic diversity (STA) to information coding, spike trains were evoked in 

many neurons at different DC values (N = 15) using a rapidly fluctuating identical stimulus 
21, 23 over multiple trials (N = 30-70 trials, 6 trials/cell are shown in Fig 5a, Fig. S1). This 

can be seen as analogous to the case in which groups of mitral cells receive highly similar 

inputs from the same population of sensory receptor neurons 14. As all mitral cells received 

identical input fluctuations and all synaptic activity was blocked, differences in spike output 

were the result of intrinsic biophysical diversity. From these recordings, homogeneous (N = 

45 populations/network size) and heterogeneous populations (N = 200 populations/network 

size) were generated ranging in size from 2-10 mitral cells to explore the connection 

between diversity and entropy/information in spike output (Fig. 5b, Fig. S6 29). 

Homogeneous population responses were made by drawing spike trains from the set of trials 

recorded in a single neuron (Fig. 5b, blue cell), equivalent to the case where a stimulus was 

encoded by identical cells receiving the same input. By contrast, heterogeneous responses 

were created by selecting groups of non-identical neurons from the population of all 

recorded cells (Fig. 5b, 4 cells in the example). Spike trains recorded on individual trials for 

each of these different cells (Fig. 5b) were then drawn randomly to create the heterogeneous 

response (Fig. 5b), analogous to a case where biophysically distinct cells process the same 

input (N = 2000 trials/network Fig. S7 29). When the number of neurons in the population 

was small (e.g. 2 cells, Fig. 5c), only small differences between the information transmitted 

by the homogeneous population (0.60±0.15 = bits/8 ms bin) and the heterogeneous 

population (0.71±0.12 bits/8 ms bin) could be identified. However, as population size grew, 

heterogeneous networks (red, Fig. 5c) quickly carried more information than their 

homogeneous counterparts (black, Fig. 5c). Gains increased up to 2.1-fold (Fig. 5c, Fig. S7) 

in the largest network examined (10 mitral cells), where heterogeneous populations carried 
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2.66±0.12 bits/8 ms, significantly more than homogeneous populations of the same size 

(1.27±0.07 bits/ms), (P < 5×10 −7 ANOVA).

To determine if biophysical diversity accounted for the increases in information, the 

population's STA diversity was related to information for each set of heterogeneous mitral 

cells (Fig. 6, N = 1800 different simulated populations). Representative trials selected at 

random from the responses of each cell in one example of a heterogeneous mitral cells are 

shown for a 10 cell population (Fig. 6a). The STAs of each neuron (Fig. 6b) were then used 

as a measure of that mitral cell's intrinsic diversity contribution to the population. From this 

pairwise distances between these STAs (Fig. 6c) in the principal component space defined in 

Fig 4 could be calculated. As the mitral cell population's STA diversity increased, the bits of 

stimulus information relayed by those populations continued to increase to 2.60±0.16 bits/8 

ms (Fig. 6d, R2 = 0.89, N = 1800). Thus, the more intrinsically diverse the population, the 

more information the ensemble of mitral cells conveyed (Fig. 6d, Figs. S8-S9).

Diversity increases information during oscillatory inputs

In mammals, inputs to mitral cells are strongly modulated by oscillatory drive, 

corresponding to the animal's sniffing cycle (1-10 Hz in mice), and this periodic sampling of 

odours is thought to be essential for behaviour and the processing of odour information 30, 
31. To determine if the gain in information conferred by biophysically heterogeneity was 

present when mitral cells received physiologically relevant stimuli, mitral cells were injected 

with both synaptic barrages generated by convolving a random spike train with an alpha 

functions and synaptic barrages modulated with an underlying 8 Hz oscillation (Fig. 7a, Fig 

S10, N = 11 cells w/theta, N = 23 cells total). Spike trains from mitral cells (N = 27-40/cell) 

presented with an identical synaptic or synaptic + 8 Hz current were collected over multiple 

trials in both of these conditions. Again, these two conditions could be thought of as the case 

when populations of mitral cells receive highly similar synaptic inputs modulated by 

sniffing from groups of sensory neurons expressing the same olfactory receptor proteins. 

Responses for 3 mitral cells to the identical input are shown (Fig. 7b) along with the 

probability of spiking throughout the stimulus for each of the cells (Fig. 7c). The underlying 

theta rhythm resulted in locking of spike patterns to specific phases of the oscillation 32, 

notably in this example to the rising phase and the peak (Fig. 7c). However, when the 

precise timing of spikes in these cells was examined, differences quickly became apparent 

(Fig. 7d-e). Specifically, even mitral cells firing at similar rates (cell 1 =11.5±1.9 Hz, cell 2 

=8.6±2.1 Hz, cell 3 =13.7±1 Hz) showed considerable heterogeneity with spike times for 

each neuron staggered throughout various phases of the oscillation (Fig. 7d). In the 

highlighted epoch for instance (Fig. 7d), cell 3 (in blue) fired first, and was followed by cell 

1 (in black) and then cell 2 (in red) (Fig. 7e). When the STAs of these three different mitral 

cells was calculated by injecting a noisy stimulus, (Fig. 7f), they were indeed different. Thus 

the STA, in addition to reflecting each neuron's unique biophysical fingerprint, also reflected 

the diversity of that neuron's spike timing across various phases of an input driven by strong 

theta oscillatory activity. To determine the extent to which these differences in spike timing 

across theta cycles allowed mitral cells to code for information, model populations of 

homogeneous and heterogeneous neurons were created as before (Fig. 6a) from cells that all 
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received the same synaptic input and the same synaptic input modulated by a theta 

oscillation.

For synaptic inputs, 8 cell heterogeneous populations (N = 100) carried 1.67±0.13 bits/8 ms, 

significantly more (P = 1.3 ×10 −30, ANOVA) than their 8 cell homogeneous network 

(N=11) counterparts, which carried only 0.91±0.3 bits/8ms). Perhaps most significantly 

however, 8 cell heterogeneous networks (N = 100) that received synaptic inputs which rode 

on top of an underlying 8 Hz oscillation carried 24.5±2.5 bits/sniff, significantly more (P = 

5.1 ×10 −24, ANOVA) that the information carried by 8 cell homogenous networks 

(12.6±5.8 bits/sniff, N = 11). Taken together, these data suggest that biophysically 

heterogeneous populations of mitral cells can code for up to 1.9 fold more information per 

sniff cycle as compared to biophysically homogeneous populations of mitral cells. 

Furthermore, the degree of biophysical heterogeneity as measured by STA diversity 

correlated with the gains in information across different types of physiologically relevant 

stimuli (Fig. S10). Therefore, the coding capacity gains associated with diverse populations 

of mitral cells appeared to be preserved across a host of conditions, ranging from noisy 

stimuli to synaptic inputs modulated by a strong 8 Hz oscillation. In sum, the computational 

advantages conferred by intrinsic biophysical heterogeneity are a general feature of neural 

coding across a range of physiologically relevant stimuli.

Discussion

The origin and importance of intrinsic diversity

While neurons have long been known to be diverse in their anatomical and physiological 

properties. 3, 33, our results are the first to demonstrate the importance of intrinsic 

biophysical diversity in a population of neurons (mitral cells of the olfactory bulb) believed 

to be highly homogeneous, and shown to receive highly correlated inputs 14. A neuron's 

response to incoming stimuli is shaped by the voltage-gated ion channels expressed in that 

cell 34, 35. Different combinations of these channels may generate functional differences or 

may result in a population of neurons that are physiologically similar despite being 

molecularly different 6, 36. Consequently, the diversity that emerges from individual 

differences in gene expression 37 in some cases appears to be nullified by the combinatorial 

expression of different channels in that cell. In such instances, intrinsic diversity is titrated to 

produce equivalent output responses 6. In other cases, populations of inhibitory 3 and 

excitatory 33, 38 neurons both in the mammalian neocortex and inhibitory neurons in the 

Drosophila olfactory system 39 also exhibit a remarkable intrinsic diversity. In these regions, 

and these populations of neurons, differences in the expression of ion channels and 

morphology result in the marked heterogeneity of the intrinsic properties of those cells 39, 

and thus the responses are diverse even when similar inputs are delivered33.

While a number of mechanisms have been proposed to account for the origin and extent of 

these intrinsic differences 40, we demonstrate in this work the role that differences in 

intrinsic biophysical heterogeneity can play in neural coding.
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The effect of intrinsic diversity on correlations

One aspect of coding where heterogeneity may be important is in correlated activity among 

populations of cells 41. Correlations in output spiking can occur as a result of cells receiving 

highly correlated inputs 12, but these output correlations are often substantially less than the 

input correlations 17, due to a number of factors 8, including active decorrelation due to 

network connections 7, 42. Although the degree and origin 17 of this correlated firing 

remains controversial 7, 18, our results demonstrate that intrinsic diversity alone is sufficient 

to erode output correlations even when inputs are shared and even when only a single 

population of neurons is considered. Precise correlations have been identified as playing a 

crucial role in a number of systems, including the olfactory bulb 43. In the antenna lobe, the 

insect analog of the mammalian olfactory system, spiking activity is synchronized by 20 Hz 

oscillations 44, and desynchronization of this activity degrades the odor representation and 

impairs discrimination 45. Our results also suggest that intrinsic biophysical diversity among 

mitral cells may reduce the degree to which firing is correlated even when incoming ORN 

excitatory inputs are very similar and gated by oscillatory drive. In mammals, where 

respiratory drive and sniffing produce strong oscillatory input in the theta frequency, diverse 

cells may exploit their intrinsic differences to spread spikes across various phases of the 

underlying respiratory cycle, improving the information coding capacity of the population as 

we have shown.

Diversity of intrinsic properties may also influence the extent to which mitral cells can be 

synchronized by aperiodic inhibition 46. Reciprocal interactions between mitral cells and the 

inhibitory population of granule cells to which they are connected may be an additional 

source of diversity which can dynamically 42 alter the correlational structure of the spike 

outputs 47. In this respect, important relationships could exist between the dynamics of 

individually heterogeneous cells and the networks in which they are embedded.

Intrinsic diversity's role in neuronal coding

Among the many approaches taken to examine questions of neural computation, biophysical 

models of single neurons, and statistical analysis of populations of neurons have both been 

powerful. Dynamical systems approaches have provided insight into how single neurons and 

networks respond to stimuli 11. Simultaneously, the statistical characterization of neuronal 

responses and neuronal variability has allowed descriptions of neural computation in terms 

of the functions being performed21, 29. Largely absent however, is a framework that relates 

diversity in the parameters for spike generation in a single neuron with the coding of a 

population of neurons comprised of these diverse individual cells. Building on our previous 

work 24 showing how the STA, a concept in neural coding, is related to the phase resetting 

curve (PRC), an idea from neuronal dynamics, we demonstrate here how diversity at the 

single cell STA level (and by extension, the single cell PRC) contributes to efficient 

population coding. Our data establish a bridge linking these two frameworks, connecting the 

dynamical systems perspective (PRC–>STA) of a single neuron with the statistical 

perspective of a population code (STA–>bits). Thus, population coding may not simply the 

product of more neurons, or more connections, but depends on the contributions of intrinsic 

biophysical diversity to tie these elements together.
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Materials and methods

Animal Procedures

All procedures were done in accordance with the guidelines for the care and use of animals 

at Carnegie Mellon University and as previously described48, 49. Briefly, C57Bl/6 mice 

between P11 and P19 were deeply anesthetized with isoflurane and then decapitated. Brains 

were removed and placed in ice-cold Ringer's solution (concentrations in mM = 125 NaCl, 

25 Glucose, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 1 MgCl2, and 2.5 CaCl2). Coronal 

sections 300 um in thickness were made of the main olfactory bulb using a vibratome 

(VT1000S, Leica, Nussloch, Germany). After cutting, slices were incubated in Ringer's 

solution of (concentration in mM = 125 NaCl, 25 Glucose, 2.5 KCl, 25 NaHCO3, 1.25 

NaH2PO4, 1 MgCl2, and 2.5 CaCl2) at 37°C for 30 minutes before recordings were made.

For immunohistochemistry, mouse tissue was extracted from animals at P20. Briefly, 

animals were deeply anesthetized and then perfused with a solution of 4% paraformaldahyde 

and 30% sucrose in 0.1 phosphate buffer. 50 μm saggital sections of the main olfactory bulb 

were then made for subsequent processing.

Electrophysiology

Whole-cell recordings were made using patch pipettes filled with an internal buffer 

(concentration (130mM potassium gluconate, 10mM HEPES, 2mM MgCl2, 2mM MgATP, 

2mM Na2ATP, 0.3mM GTP, 4 mM NaCl and in some cases 10-50 uM Alexa 488/594 

Hydrazide or 1% biocytin) using a Multiclamp 700A amplifier (Molecular Devices, Palo 

Alto, CA) and an ITC-18 data acquisition board (Instrutech, Port Washington, NY). Mitral 

cells were identified under infrared differential interference contrast optics based on their 

laminar position in the olfactory bulb and their morphology. Cell identity was confirmed 

with fluorescent intracellular fills that revealed clear apical dendrites that ramified into a 

single glomerulus. Current clamp recordings were performed using whole-cell patch 

pipettes. All experiments were done at 35 °C in Ringers solution (concentrations in mM = 

125 NaCl, 25 Glucose, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 1 MgCl2, and 2.5 CaCl2) with 

excitatory (25 uM APV and 10 uM CNQX) and inhibitory (10 uM Bicuculline) synaptic 

activity blocked. Additional experiments performed without synaptic blockers were done 

with Ringers solution as described above except with a MgCl2 concentration of 0.2 mM. For 

all recordings, a 25 pA or 50 pA hyperpolarizing pulse was injected before stimuli were 

delivered to measure input resistance and membrane time constant, allowing us to track the 

stability of recordings over multiple trials. When multiple stimuli were presented to mitral 

cells, trials were interleaved to prevent systematic differences in neural responses that may 

have arisen over the entire recoding epoch.

Immunohistochemistry

A monoclonal antibody against a subunit of the voltage gated K+ channel was used to 

characterize differences in channel expression. The monoclonal antibody Kv1.2 was 

developed by and obtained from the UCDavis/NIH NeuroMab Facility, supported by NIH 

grant U24NS050606 and maintained by the Department of Neurobiology, Physiology and 

Behavior, College of Biological Sciences, University of California, Davis, CA 95616. The 
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primary Kv1.2 antibody was used at a dilution of 1:1000 for 1 hr. The secondary of donkey 

anti-mouse Alexa-Fluor 488 (Invitrogen, CA), was used at a 1:600 dilution for 1 hr. For all 

sections, an additional Hoechst stain to identify cell nuclei was used. Sections were then 

imaged using a confocal microscope by scanning multiple regions of interest (ROIs) in both 

the bulb and the mitral cell layer.

Stimulus

Noise traces were generated as previous described 23. Briefly, a 2.5 second white noise 

current was convolved with an alpha function having a 3 ms rise time (Fig S1a, top trace). 

The alpha function was selected as it reflected the time scale for optimal reliability of mitral 

cell spiking to a fluctuating input 23. In Fig S1a, the identical input in the top trace was 

delivered to all the cells causing differences in spiking responses; including different rates of 

firing in each cell and different times at which individual spikes occurred even when firing 

rates were similar (Fig S1a bottom traces, each color represents a cell, each raster a trial). 

Representative examples of responses to different noise stimuli for another group of cells 

(Fig S1b) illustrates that the response diversity identified (firing rates, spike times, ISI of 

spikes, etc) were present over various types of stimuli, suggesting that the variability in 

neuronal responses reflected underlying intrinsic differences across a host of stimuli rather 

than differences highlighted by selecting a single stimulus.

The variance of the noise used was between 5% and 40% of the DC (100 pA-800 pA, σ = 20 

pA-80 pA) offset for each cell with the majority of cells receiving 10-20% offset (Fig. S1c-

d). The variance of the noise was selected as previously described 23, 24 to allow for 

appropriate estimation of the spike triggered average. Specifically, the noise values chosen 

induced reliable firing in neurons without large input fluctuations. The input fluctuation 

values chosen were sufficiently small that there was poor correlation between the σ of the 

input noise and the degree of reliability (R = 0.17) across a 4-fold range (5% to 20%) of 

current (Fig. S1d). Only when the variance was substantially large did stimulus σ result in 

effects on cell reliability.

K Nearest Neighbor Analysi

The K nearest neighbor (Knn) approach was used to classify the 589 spike trains from 15 

conditions in 8 cells. The same input stimulus was given to all cells with different DC 

offsets to induce firing over multiple trials (N = 30-40). For computational efficiency, 

analysis was performed in the space of the first 15 principal components and because 

classification accuracy did not change for principal components > 10. The original data was 

then broken up into testing and training sets. The testing sets established the location of 

known responses in the principal component space, and the training set was probed with 

respect to these known responses. The Euclidian distance of the unknown response to all 

known responses was then calculated and the N nearest neighbors were used to determine 

what cell/condition the unknown spike response belonged to. This process of generating 

testing and training sets was repeated 20 times with each repeat reflecting a different random 

population of testing and training to ensure that the classification accuracy was not due to 

artifacts of selecting a single testing/training population.
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Information calculation

To generate population responses for our entropy calculations to an identical stimulus, a 

random group of mitral cells was selected from all the neurons that received the identical 

input stimulus. Each of these different populations was considered a single diverse mitral 

cell population. When homogeneous populations were made, spikes drawn at random from a 

single recorded neurons was assigned for all the cells in the population,. When 

homogeneous populations were generated, random sampling was done with replacement.

Spike trains were then binned into non-overlapping bins of various sizes. If one or more 

spikes occurred in a bin, then a value of 1 was recorded in that bin. If no spikes occurred in 

the bin, then a value of 0 was placed in this bin. In bin sizes as large as 12 ms, no examples 

of bins containing two or more spikes could be found, ensuring that at these bin sizes, the 

binary strings of 1s and 0s captured the entire spike train. In bins of size 16 ms, 2.8% of the 

bins had more than one spike, and therefore only time bins of up to 12 ms were considered 

to ensure that no relevant information was lost in our entropy calculations as a result of 

doublet spikes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Intrinsic diversity of mitral cell populations. a) Schematic of mammalian main olfactory 

bulb circuitry. Olfactory receptor neurons (ORNs) expressing one olfactory receptor all send 

their axons to the same glomerulus. All mitral/tufted (M/T) cell apical dendrites connected 

to a glomerulus receive inputs that are highly correlated. b-c) Biocytin fills of two 

representative mitral cells with spike responses to a fixed DC current. In both cells, apical 

dendrites and their tufts (green arrow) and lateral dendrites (blue arrow) are intact in the 

slice. d) Mitral cell spike outputs are also diverse based on the shape of the after 

hyperpolarizations that follow their action potentials (color corresponds to traces in b-c). e) 
Mitral cells differ widely in both firing rates and in the coefficients of variation (CVs) of 

their interspike intervals. f) Recordings of mitral cells show wide variation in excitability as 

described by the frequency of action potentials generated by constant current stimuli of 

different amplitudes. g) Confocal micrographs of the olfactory bulb stained for Kv1.2 
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(green, left panel) and Hoechst (blue, middle panel) and an overlay of Kv1.2 positive cell 

bodies and mitral cell nuclei (right panel). Red arrows highlight cell bodies of Kv positive 

neurons and their nuclei while white arrows highlight nuclei of mitral cells that do not 

express Kv1.2. Kv positive and negative mitral cells are interspersed in the same focal plane.
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Fig 2. 
Uniqueness of mitral cell output to identical input. a) Spike rasters of 10 trials for three 

mitral cells to an identical fluctuating input (top black trace). b) Projection of all spike 

patterns (points) from multiple cells (colors) onto a space defined by the first 3 principal 

components calculated from all spike trains. c) Classification accuracy of spike trains based 

on recording identity as a function of the number of eigenvectors (λ) used for classification. 

d) The number of nearest neighbours (1, 3, 5, 10) does not affect the classification accuracy. 

e) The percentage of trials used in the testing and the training sets affects the classification 

accuracy only when 80% of spike trains are used in training. (error = s.d.)
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Fig. 3. 
Intrinsic diversity affects pairwise spike train correlations. a) Histogram of all pairwise 

correlations for within-cell (black) and between-cell spike trains (red). Inset. Mean pairwise 

correlations are significantly different within-cells and between cells. b) Histogram of all 

pairwise correlations from cells receiving an identical input. c) Pairwise correlations of all 

spike trains from all mitral cells as a function of differences in firing rates. (Error = s.d.)

Padmanabhan and Urban Page 17

Nat Neurosci. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 4. 
Mitral cell spike triggered average (STA) diversity. a) Spike-triggered averages (STA) for 

the three cells in Fig 3a. b) STAs for a population of mitral cells that all received noisy input 

illustrates the diversity (N = 35 STAs). Color corresponds to identity in e. c) Principal 

components (PC) 1-3 of the STAs in b. d) Variance explained by the 1st 5 principal 

components for this population of mitral cells. e) Projection of each STA onto the space of 

principal components in c shows mitral cell STAs are not uniformly distributed, but span an 

arc in the space.
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Fig 5. 
Heterogeneous populations of mitral cells carry more information than their homogeneous 

counterparts. a) Representative trials of spike trains (6/cell) from 4 mitral cells all given an 

identical fluctuating input. b) A homogeneous population response was constructed by 

randomly drawing spike trains from a single recorded cell (blue). A heterogeneous 

population was constructed by randomly drawing spike trains from different neurons. The 

responses of each population were binarized into words of 0s and 1s and the pattern of 

words, for instance thomogeneous and theterogeneous, were analyzed to calculate information. c) 
Heterogeneous populations of mitral cells carry twice as much information as homogeneous 

populations of cells. (Error = s.d.)
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Fig. 6. 
Biophysical diversity correlates to information transfer. a) Spike train examples of a single 

trial for 10 mitral cells with different STAs. b) STAs of the 10 cells in (a) colour coded by 

cell identity. c) STA distance matrix calculated by measuring the Euclidian distance of the 

STAs to one another in the space defined by the principal components. d) Bits of 

information as a function of sum of STA distance/number of cells.

Padmanabhan and Urban Page 20

Nat Neurosci. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Heterogeneous populations improve the coding of physiologically relevant stimuli. a) 
Synaptic input currents modulated by an 8 Hz periodic oscillation. b) Responses of 6 trials 

each from 3 mitral cells to the identical periodic input. c) Probability of spike firing at 

various stimulus epochs. d) Enlargement of one theta cycle and spike times for the three 

cells in b over multiple trials and the e) probability of firing during the cycle. f) STAs for the 

3 mitral cells calculated by injecting a rapidly fluctuating noisy input.
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