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A B S T R A C T

High levels of trait anxiety are associated with impaired attentional control, changes in brain activity during attentional control tasks and altered network resting
state functional connectivity (RSFC). Specifically, dorsolateral prefrontal cortex to anterior cingulate cortex (DLPFC – ACC) functional connectivity, thought to be
crucial for effective and efficient attentional control, is reduced in high trait anxious individuals. The current study examined the potential of connectivity-based real-
time functional magnetic imaging neurofeedback (rt-fMRI-nf) for enhancing DLPFC – ACC functional connectivity in trait anxious individuals. We specifically tested
if changes in DLPFC - ACC connectivity were associated with reduced anxiety levels and improved attentional control. Thirty-two high trait anxious participants were
assigned to either an experimental group (EG), undergoing veridical rt-fMRI-nf, or a control group (CG) that received sham (yoked) feedback. RSFC (using resting
state fMRI), anxiety levels and Stroop task performance were assessed pre- and post-rt-fMRI-nf training. Post-rt-fMRI-nf training, relative to the CG, the EG showed
reduced anxiety levels and increased DLPFC-ACC functional connectivity as well as increased RSFC in the posterior default mode network. Moreover, in the EG,
changes in DLPFC – ACC functional connectivity during rt-fMRI-nf training were associated with reduced anxiety levels. However, there were no group differences in
Stroop task performance. We conclude that rt-fMRI-nf targeting DLPFC – ACC functional connectivity can alter network connectivity and interactions and is a feasible
method for reducing trait anxiety.

1. Introduction

Anxiety disorders defined by excess worry, hyperarousal, and de-
bilitating fear are some of the most common psychiatric conditions in
the Western world (Remes et al., 2016). Anxiety has also been linked to
impaired attentional control (Berggren and Derakshan, 2013), changes
in brain activity during attentional control tasks (Barker et al., 2018;
Basten et al., 2011; Basten et al., 2012; Bishop, 2009) and altered
network resting state functional connectivity (RSFC) (Servaas et al.,
2014; Sylvester et al., 2012; Allen et al., 2019).

Attentional Control Theory (ACT; Eysenck et al., 2007) provides a
framework describing how anxiety can affect attentional control and
exacerbate anxiety symptoms (See Berggren and Derakshan, 2013 for
review). Central to the model is the notion that anxiety competes for
limited processing resources in anxious individuals occupying cognitive
resources that would otherwise be allocated to attentional control

(Eysenck and Calvo, 1992; Mathews, 1990; McNally, 1998), leading to
inefficient task processing and impairing the ability to inhibit negative
thoughts and worry (Eysenck et al., 2007; Berggren and
Derakshan, 2013). A number of functional Magnetic Resonance Ima-
ging (fMRI) studies are consistent with this prediction of ACT reporting
both inefficient task related activation in regions important for atten-
tional control, i.e., the dorsolateral prefrontal cortex (DLPFC)
(Basten et al., 2011; Basten et al., 2012; Barker et al., 2020; Fales et al.,
2008; Karch et al., 2008) and the anterior cingulate cortex (ACC)
(Comte et al., 2015) and reduced functional connectivity between the
DLPFC and the ACC in people with high trait anxiety (Barker et al.,
2018; Comte et al., 2015). Such dysconnectivity could contribute to
inefficient processing during attentional control tasks in people with
anxiety as the ACC is thought to be important for ‘reactive’ or ‘com-
pensatory’ processes (Braver et al., 2009) that update the DLPFC when
increased attentional control is required (Basten et al., 2011;
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Moran et al., 2015). The ACC and the DLPFC are also hubs in wider
attentional networks that show altered function in people with anxiety
(Sylvester et al., 2012). The ACC is part of the cingulo-opercular net-
work (CON), important for error monitoring, while the DLPFC is part of
the fronto-parietal network (FPN) or executive control network im-
portant for goal-directed attentional control. ACT predicts imbalance
between goal-directed and stimulus driven and/or reactive attentional
systems in people with high trait anxiety (HTA) (Eysenck et al., 2007)
which may in part be reflected by reduced functional connectivity be-
tween DLPFC and ACC (Barker et al., 2018; Basten et al., 2011). Con-
sequently, reduced DLPFC-ACC functional connectivity may be a me-
chanism that underlies inefficient attentional control in people with
HTA.

Moreover, the FPN and CON interact with the default mode network
(DMN), a network of regions involved in emotional regulation
(Sylvester et al., 2012; Menon, 2015) with major hubs in the medial
PFC and posterior cingulate gyrus. The DMN also shows altered RSFC
linked to anxiety (Servaas et al., 2014; Weissman et al., 2006) and
functional activity within the DMN is thought to be anti-correlated with
activity in attentional control networks such as the FPN (Fox et al.,
2005). This is important because a failure to sufficiently deactivate the
DMN may interfere with attentional network engagement leading to
inefficient attentional control (Pletzer et al., 2015; Weissman et al.,
2006).

Over recent decades, researchers have attempted to design beha-
vioral protocols to train attentional control and reduce symptomatology
in people with anxiety. The vast majority of these interventions use
versions of attentional or interpretative bias modification (e.g., Bar-
Haim, 2010; Cristea et al., 2015; Linetzky et al., 2015). However, these
protocols have yielded mixed or negative results (Bar-Haim, 2010;
Cristea et al., 2015). Thus, new approaches are needed that could en-
hance attentional control in anxious individuals. Real-time fMRI neu-
rofeedback (rt-fMRI-nf) is a recent development in neuroscience that
enables participants to monitor and self-regulate their own brain ac-
tivity in targeted brain regions (e.g., Caria et al., 2007; deCharms et al.,
2005; Sherwood et al., 2016; deCharms et al., 2005; Zilverstand et al.,
2015)). Recent work also shows the potential of rt-fMRI-nf to train

functional connectivity between brain regions (e.g., Koush et al., 2013;
Liew et al., 2016; Megumi et al., 2015). Neural changes induced by rt-
fMRI-nf interventions have been associated with improvements in
clinical anxiety in people with spider phobia (Zilverstand et al., 2015),
PTSD (Zotev et al., 2018; Gerin et al., 2016) and contamination anxiety
(Scheinost et al., 2013). Similarly, rt-fMRI-nf has been used to reduce
non-clinical forms of anxiety by regulating brain activity (Paret et al.,
2016) and increasing functional connectivity between amygdala and
prefrontal cortex (Zhao et al., 2019). In addition, it has been shown that
rt-fMRI-nf training can affect RSFC (e.g., Megumi et al., 2015;
Gerin et al., 2016; Scheinost et al., 2013), and changes in RSFC patterns
across networks i.e., in the FPN, CON and DMN; all networks linked to
impaired attentional control in people with anxiety (Sylvester et al.,
2012). Thus, we chose to investigate, if rt-fMRI-nf targeting functional
connectivity between regions in the FPN (i.e., DLPFC) and CON (i.e.,
ACC) would affect wider RSFC in these networks and RSFC in DMN
regions which have also been implicated in anxiety (Sylvester et al.,
2012) and impaired attentional control (Weissman et al., 2006).

Given the role of DLPFC - ACC functional connectivity in attentional
control (Basten et al., 2011; Comte et al., 2015) and the importance of
these regions in functional networks (Sylvester et al., 2012) we sought
to examine the potential of connectivity-based rt-fMRI-nf, targeting
DLPFC - ACC functional connectivity, for improving attentional control
and reducing anxiety levels in trait anxious individuals. Specifically, we
hypothesized that connectivity-based rt-fMRI-nf training would in-
crease functional connectivity between the DLPFC and ACC and that
changes in DLPFC and ACC functional connectivity over the rt-fMRI-nf
training period would be associated with reduced anxiety levels. We
also examined if the effects of rt-fMRI-nf training would transfer to
improve attentional control during a color word Stroop task. Finally, we
examined if rt-fMRI-nf training would alter RSFC in attentional control
and/or default mode networks in trait anxious individuals.

Fig. 1. (A) Study design. (B) Example of visual gauge presented to participants during rt-fMRI-nf training. (C) Combined binary ROI across all subjects in the bilateral
ACC and left DLPFC registered to standard MNI template.
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2. Methods

2.1. Design

Participants underwent fMRI and offline assessment using a mixed
between- and within-subjects experimental design. Participants with
high levels of trait anxiety were recruited using an online screening
survey and subsequent phone interview before being pseudo- randomly
assigned to an Experimental (EG) or Control Group (CG). The EG re-
ceived veridical rt-fMRI-nf based on ACC-DLPFC functional con-
nectivity, while the CG received sham feedback (see below). Assessment
measures (i.e., psychometric, offline behavioral task and resting state
fMRI data) were collected at both pre- and post-rt-fMRI-nf training time
points, just before and after rt-fMRI-nf training. The full experimental
design is illustrated in Fig. 1a. The Consensus on the reporting and
experimental design of clinical and cognitive-behavioral neurofeedback
studies (CRED-nf checklist) was used and can be found in Supplemen-
tary Materials.

2.2. Participants and assessments

Thirty-two high trait anxious participants were recruited from 603
respondents who completed the State-Trait Anxiety Inventory (STAI,
(Spielberger et al., 1983)) online to assess levels of trait anxiety. The
online survey was administered using Qualtrics (Provo, UT) survey
software. High trait anxiety was operationalized as STAI-Trait scores in
the upper quartile of the sample population distribution (≥ 49). Two
participants did not complete the full study protocol so consequently
full data for 30 participants were available. Participants (22 female)
ranged from 18 to 33 years of age (M = 21.00 years, SD = 3.67) and
had a mean estimated IQ of 109.24 (SD = 5.09) as measured by the
National Adult Reading Test (NART; Nelson and J.R, 1991; Bright et al.,
2018). There were 28 right-handed and 2 left-handed participants as
assessed by self-report. Participants were recruited from the University
of Roehampton, Royal Holloway University of London and from the
general public. Participants had no prior neurological or medical illness
and were not using medication for anxiety or depression. The Uni-
versity of Roehampton Ethics Committee gave ethical approval and all
participants gave written informed consent prior to taking part in the
study.

The Depression Anxiety Stress Scales (DASS; (Lovibond and
Lovibond, 1995)) was used pre-rt-fMRI-nf training, and again post-rt-
fMRI-nf training to assess short-term changes in affective states. This
42-item scale measures affective states over the previous seven days
and is therefore more sensitive to change in affect than the STAI trait
measure (Page et al., 2007). The DASS is also designed to distinguish
between feelings of depression, anxiety and stress allowing for a spe-
cific measure of changes in anxiety as opposed to depression and/or
stress. The DASS has excellent reliability and displayed good con-
vergent and discriminant validity in a large non-clinical sample (see
Crawford and Henry, 2003). Reliability of the three subscales in this
sample was determined using Cronbach's Alpha.

2.3. Behavioral assessment: Stroop task

Behaviorally, attentional control pre- and post-rt-fMRI-nf training
was measured using a color-word Stroop task (Stroop, 1992). Partici-
pants responded with one of four fingers of their right hand to the font
color (Red, Blue, Green, & Yellow) of the word presented in the middle
of the screen (Red, Blue, Green, & Yellow). The presentation time for
each stimulus was 1000 ms and participants were allowed 2000 ms
from stimulus onset to respond (i.e., responses were registered from the
onset of each stimulus trial). Participants were instructed to ‘respond as
quickly and as accurately as possible’ while reaction times (RT) and error
rates (ER) were recorded. The task consisted of 48 Congruent (color
word and font color did match) and 48 Incongruent (color word and

font color did not match) trials. Trials were presented in a randomized
order and each trial took between 4000 and 6000 ms (inter trial in-
terval 2000 to 4000 ms).

2.4. MRI data acquisition

MRI scans were acquired on a 3T Siemens Magnetom TIM Trio
scanner (Siemens, Erlangen, Germany) using a 32-channel head coil at
the Combined Universities Brain Imaging Centre (CUBIC: http://www.
cubic.rhul.ac.uk). Structural T1 weighted Magnetization Prepared
Rapid Acquisition Gradient Echo (MPRAGE) images, used for co-regis-
tration, were acquired with a spatial voxel resolution of 1 mm × 1
mm × 1 mm, in plane resolution of 256 × 256 × 176 slices and
scanning time of approximately 5 min.

A multi-band frequency protocol was used for both the functional
localizer task and for rt-fMRI-nf runs 1 - 4 with a TR/TE/flip angle = 1
s/33 ms/70°, field of view 192 mm × 192 mm, slice thickness of 3 mm
giving a voxel size of 3 mm× 3 mm× 3 mm and whole brain coverage
of 48 interleaved slices. 360 volumes were acquired in the functional
localizer with a scanning time of 6 min. 420 volumes were acquired in
each of the rt-fMRI-nf runs (4 runs in total), each rt-fMRI-nf run had a
scanning time of 7 min.

Resting state scans were acquired at both time points using a full-
brain, anterior-to-posterior, T2* weighted, BOLD-sensitive gradient
echo planar sequence with the following parameters: TR/TE/flip
angle = 2 s/40 ms/70°, field of view 192 mm × 192 mm and slice
thickness of 4 mm giving a voxel size of 3 mm × 3 mm × 4 mm and
whole brain coverage of 28 interleaved slices. Three hundred volumes
were collected during the 10-min resting state scan.

2.4.1. Functional localizer task
Pre-rt-fMRI-nf (see Fig. 1) all participants (both EG and CG) per-

formed a variation of the color word Stroop task to localize functional
activation in the left DLPFC and ACC regions of interest (ROI) and to
calculate individual task-specific connectivity levels for rt-fMRI-nf. This
task was additional to the offline Stroop task used for pre- and post -
behavioral assessment. Behavioral responses in this functional localizer
Stroop task were not analysed. The ROIs were chosen because of the
role of DLPFC-ACC connectivity in attentional control. Both left and
right DLPFC have been implicated in top-down attentional control and
altered functioning in high trait anxiety (e.g., Basten et al., 2011;
Silton et al., 2010), we used the left DLPFC in all subjects for con-
sistency.

This variation of the Stroop task used Incongruent color word trials
only (e.g., the word “RED” printed in blue) to elicit activation in regions
engaged during attentional control. Thirty-second Rest and Task blocks
were alternated with a total of six blocks per condition. At the begin-
ning of each block, instructions were presented visually (2000 ms) in-
structing participants to either “REST” or “ATTEND”. During task
blocks participants responded to Incongruent Stroop trials via a button
press, each trial lasted 5000 ms with an inter-stimulus interval of 3000
ms. Participants were instructed to ‘respond as quickly and as accurately
as possible’.

2.4.2. Neurofeedback training
All participants underwent 4 × 7-min rt-fMRI-nf runs during two

separate MRI scanner visits approximately 1 week apart. Two rt-fMRI-
nf runs were undertaken during the first visit and a further two runs
during the second visit (Fig. 1a). All participants were informed that the
study aimed to optimize attentional control by training connectivity
between two frontal brain areas. Whilst in the MRI scanner, participants
were presented with a visual gauge (Fig. 1b) and instructed to ‘try to
move the gauge on the screen upwards’. No specific examples of strategies
were given (Sulzer et al., 2013), and participants were encouraged to
change strategy until they could successfully move the visual gauge that
represented increases in functional connectivity between the DLPFC-
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ACC ROIs. Participants were informed about the delay in the haemo-
dynamic response and that they may be in the CG and thus could be
receiving sham-neurofeedback. The researchers were not blinded to the
participants group identify, however the CG received identical in-
structions to the EG, while the feedback display that they viewed re-
sponded to yoked feedback from a previous participant in the EG.
Participants were informed of their group identity in a follow-up call
two weeks after the experiment. All participants were interviewed after
each session, to determine which strategy they used and which strategy
they thought was the most successful for them. Participants’ responses
are available at Open Science Framework (DOI 10.17605/OSF.IO/
SYNEU).

Each rt-fMRI-nf run consisted of 6 Rest (25s) and 6 Regulate blocks
(45s). During Regulate blocks the number of lines in the gauge display
would vary from 0 to 10, depending on the sliding windowed (20 s/
TRs) partial correlation between DLPFC and ACC ROI activation, while
accounting for general brain activation in a nuisance ROI (rDLPFC-
ACC.noise). A greater number of lines indicated an increased partial
correlation coefficient between ROIs. The feedback was scaled to the
individuals’ range in functional connectivity during a localizer scan and
was updated every second.

2.5. Data analysis

Unless stated otherwise, all psychometric and behavioral data were
analysed using R 3.4.3 (R Core Team, 2017) and a significance
threshold of p < .05 was applied.

2.5.1. Power analysis
We used G*Power to test if analyses were sufficiently powered.

Power calculations suggest that, with independent group sizes of
n = 15 (EG & CG), the experiment would have sufficient power to
detect a significant group difference (using a repeated measures
ANOVA) for effect sizes > .6 (medium to large), sufficient power to
detect differences within groups over time for effect sizes of > .34
(small to medium) and sufficient power to detect a group x time in-
teraction for effect sizes of > .34 (medium). Thus, as we were testing
the interaction term, the sample size was sufficient to detect medium
effect sizes.

2.5.2. Psychometric data
Questionnaire data were considered normally distributed after vi-

sual inspection. For each subscale of the DASS independent t-tests were
performed to test for baseline differences. Furthermore, mixed-mea-
sures ANOVA were used with a between-subjects factor (EG vs. CG) and
time point (pre vs. post) as a within-subjects factor. Significant results
were explored further with pairwise comparisons and reported at p
<.05.

2.5.3. Stroop task performance
Participants’ mean ERs and RTs for the Stroop task were calculated

for each condition (Congruent vs. Incongruent) and time point (pre vs.
post). Mixed ANOVAs for ER and RT were performed. Within-subjects
factors were Stroop task conditions (Congruent vs. Incongruent) and
time point (pre vs. post). Group (CG vs. EG) was included as a between-
subjects factor. Significant results were explored further with pairwise
comparisons and reported at p<.05.

2.5.4. Online real-time fMRI analysis
Real-time online analysis of fMRI data was performed with Turbo-

Brain Voyager (TBV), Version 3.2 (BrainInnovation B.V., Maastricht,
Netherlands) and custom Python scripts (Python Software Foundation,
www.python.org). For both the functional localizer and rt-fMRI-nf data
(runs 1–4) the reconstructed DICOM images were directly transferred to
an analysis computer that was securely networked with the MR scanner
operating system. Using TBV, pre-processing was performed on all

transferred images, including Gaussian spatial smoothing with a
smoothing kernel of 4 mm full width half maximum (FWHM) and
motion correction. The functional data was registered to the anatomical
scan of the respective session.

ROI definition during localizer functional localizer scan:After online
pre-processing in TBV, the BOLD signal acquired during the functional
localizer task was submitted to GLM contrasting Task vs. Rest blocks
(Task > Rest) to identify subject-specific ROIs in bilateral ACC and left
DLPFC where activation was greater during Incongruent Stroop trials
relative to Congruent trials. Based on the resulting t-maps and com-
bined with anatomical landmarks identified on the co-registered T1
image ROIs were defined manually in the left DLPFC and bilateral ACC.
A default statistical threshold of t = 2.40 was initially applied for ROI
definition and voxel resolution was the same as the fMRI data during
the functional localizer and rt-fMRI-nf runs. ROIs for two control par-
ticipants were defined based on the greatest overlap in all other parti-
cipants, as they could not be defined based on the functional localizer
due to technical issues. Across participants, the mean number of voxels
in the left DLPFC ROI was 121.80 (SD = 39.90, range 23–198) and
108.80 (SD = 21.74, range 69–135) for the bilateral ACC ROI (Fig. 1c).
A third ROI (nuisance) to account for general brain activation and
global scanning effects was drawn independently of the GLM covering a
large area in the right lateral occipital cortex, superior parietal lobe and
cerebral white matter; the mean number of voxels in the nuisance ROI
was 324.47 (SD = 62.33, range 179–432).

In the EG, time course data for all ROIs was extracted during task
blocks and partial correlations between left DLPFC and bilateral ACC
ROIs (while controlling for the nuisance ROI) were calculated using a
custom Python script. Correlation coefficients below 0 and outliers
(more than 2 SD from the mean) were removed. The minimum and
maximum coefficients of the resulting values were used as references to
calculate rt-fMRI-nf signal. The mean minimum (ConnectivityBaseline)
was a partial correlation of 0.17 (SD = 0.18, range 0.00–0.54) and the
maximum (ConnectivityMax) was 0.81 (SD = 0.18, range 0.38–0.99).

The same ROIs were used in both rt-fMRI-nf sessions (in all 4 rt-
fMRI-nf runs) and were registered to the anatomical scan from the re-
spective session. ROIs based on the mean ROI of the sample were used
for a Psychophysiological Interaction analysis (PPI) in these partici-
pants.

For offline fMRI data analysis, single subject ROI image files in the
left DLPFC and bilateral ACC were registered to respective functional
data and the single-subject level and then transformed into MNI stan-
dard space. For offline ROI analysis, the individual ROIs were overlaid
to form one binarized mask while non-brain voxels and voxels in white
matter were excluded.

Calculation of neurofeedback signal:After pre-processing, the BOLD
signal from each rt-fMRI-nf run (1–4), i.e., the mean values for each TR
within each of the three ROIs, were extracted for stimulus presentation
in real-time. A custom Python script was used to calculate and present
feedback to participants according to Formula I:

=
−

−

×Number of Lines r ConnectivitBaseline
ConnectivityMax ConnectivityBaseline

10DLPFCACC noise.

(1)

The Number of Lines displayed in the visual gauge display was
rounded to the next integer and values ≥ 10 resulted in the maximum
feedback display of 10. Values ≤ 0 resulted in the minimum feedback
display of 0. The feedback was updated with every second (i.e., every
TR).

2.5.5. Offline analysis of time course of neurofeedback signal
The neurofeedback signal received by participants in the EG during

rt-fMRI-nf training was calculated and the average for each run was
scaled to DLPFC-ACC connectivity during the functional localizer Task.
This allowed us to calculate the signal received by participants in the
EG based on the percentage change in connectivity over each run
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relative to baseline connectivity during the localizer task (Fig. 2b). In
two participants the neurofeedback signal could not be scaled to con-
nectivity during the functional localizer task, so this data was excluded.
No secondary analyses were performed on these values. As participants
in the CG received yoked feedback no neurofeedback signal was cal-
culated in this group.

2.5.6. Offline fMRI analysis
fMRI data processing was conducted using FEAT (FMRI Expert

Analysis Tool) Version 6.00, part of FSL (FMRIB's Software Library,
www.fmrib.ox.ac.uk/fsl). Significant results are reported at a threshold
of p < .05 (Family Wise Error (FWE) -peak-level). A binarized grey
matter mask based on the MNI structural atlas was used to exclude
voxels in white matter.

Registration to high-resolution structural and/or standard space
images was carried out using FLIRT (Jenkinson and Smith; 2001;

Jenkinson et al., 2002). Registration from high resolution structural to
standard space was then further refined using FNIRT nonlinear regis-
tration (Andersson et al., 2007a,b). The following pre-processing pi-
peline was applied; motion correction using MCFLIRT (Jenkinson et al.,
2002), non-brain removal using BET (Smith, 2002), spatial smoothing
using a Gaussian kernel of FWHM 6.0 mm; grand-mean intensity nor-
malization of the entire 4D dataset by a single multiplicative factor;
high pass temporal filtering (Gaussian-weighted least-squares straight
line fitting, with sigma = 50 s). Time-series statistical analysis was
carried out using FILM with local autocorrelation correction
(Woolrich et al., 2001).

Functional localizer task:For Functional Localizer task data were not
available in one control participant due to time constraints, hence the
sample size in this task was N = 29 (EG = 15, CG = 14). A General
Linear Model (GLM) was used to model data at the 1st level based on
Task vs. Rest blocks. A Gamma convolution with a SD of 3 s and a mean
lag of 6 s was applied and three motion correction parameters were
included as regressors of no interest in all 1st level models. 1st level
contrast images were created for each participant and then combined in
a group Level analysis to evaluate the effect of Task > Rest.

Neurofeedback training runs: PPI:For rt-fMRI-nf runs 1–4 data were
incomplete in one participant and were excluded from the analysis,
hence the sample size was N = 29 (EG = 15, CG = 14). A General
Linear Model (GLM) was used to model rt-fMRI-nf data at the 1st level
using regressors for Regulate and Rest blocks. A Gamma convolution
with a SD of 3s and a mean lag of 6s was applied and six motion cor-
rection parameters were included as regressors of no interest. 1st level
contrast images were created for each rt-fMRI-nf run in each participant
to examine the main effect of neurofeedback (Regulate > Rest). We
conducted a PPI to examine rt-fMRI-nf related changes in functional
connectivity between ROIs using the left DLPFC ROI as a seed region.
Additional 1st Level models were computed including the time series in
the left DLPFC ROI in each participant and the interaction of this time
series with Regulation vs. Rest blocks. A second level contrast, con-
trasting rt-fMRI-nf runs within each group was then specified in each
subject (including variance across all 4 rt-fMRI-nf runs) and the contrast
run 1 vs. run 4 was submitted to a third level independent t-test to
establish the interaction between group (EG vs. CG) and rt-fMRI-nf run
(run 1 vs. run 4). ROI analysis with the ACC ROI was performed to
specifically test for changes in connectivity between the left DLPFC seed
region and the bilateral ACC. The same analysis was performed ex-
amining the interaction between group (EG vs. CG) and rt-fMRI-nf run
(run 1 vs. run 4) based on activation during rt-fMRI-nf training
(Regulate > Rest) and is reported in Supplementary Materials.

To examine the association between changes in anxiety and func-
tional connectivity during rt-fMRI-nf between left DLPFC seed region
and bilateral ACC ROIs in the EG, difference in DASS anxiety scores
between (post – pre) were entered as a regressor into a model con-
taining all rt-fMRI-nf runs (runs 1–4) in the EG. An ROI was performed
based on the bilateral ACC ROI. The same analysis was performed ex-
amining changes in anxiety and activation during rt-fMRI-nf training
(Regulate > Rest) and is reported in Supplementary Materials.

Resting state functional connectivity:Resting State data was not
available in two participants, hence the sample size was N = 28
(EG = 13, CG = 15). Resting State fMRI data was analysed using
MELODIC (FMRI Expert Analysis Tool) Version 3.14. Probabilistic
Independent Component Analysis (Beckmann et al., 2009) was applied
to the pre-processed data. The resulting single subject components were
manually classified as either meaningful components or noise compo-
nents (Griffanti et al., 2017) to remove artefacts from the data. We
further used FAST (Zhang et al., 2001) segmentation to identify tissue
classes at subject level and regress WM and CSF from the data.

Pre-processed data that has been cleared of artefacts was subse-
quently put into higher level analysis using multi-session temporal
concatenation in MELODIC with an a-priori defined number of 15
output components. The resulting components were classified manually

Fig. 2. (A) Mean DASS Anxiety scores by time-point and group, error bars show
95% confidence interval. (B) Time course of neurofeedback signal over training
runs in percent change relative to functional localizer.
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and by correlation with reference maps of validated connectivity net-
works using the Yeo 17 network solution (Sacchet et al., 2016;
Yeo et al., 2011). As we were specifically interested in network inter-
actions between the DMN and attentional control networks, suitable
components were analysed and tested for significance. Remaining
components were discarded. The spatial maps from the group-average
were used to generate subject specific versions of the spatial maps and
associated time series using dual regression (Beckmann et al., 2009;
Filippini et al., 2009). We then tested for a time x group interaction
using randomize non-parametric permutation testing (5000 permuta-
tions) with threshold-free cluster enhancement (Smith and
Nichols, 2009).

3. Results

3.1. Psychometric and behavioral results

The EG and CG did not differ on STAI trait anxiety scores (t
(28) = 1.07, p = .296; d = 0.39, EG Mean = 55.33, SD = 5.19; CG
Mean = 57.60, SD = 6.40) or STAI state anxiety scores (t(28) = 0.34,
p = .733; d = 0.13, EG Mean = 45.07, SD = 9.32; CG Mean = 46.33,
SD = 10.75) at the time of recruitment. The STAI trait anxiety scores in
both EG and CG were above the 70th percentile of the distribution based
on published norms (Spielberger et al., 1983). Reliability analysis of the
DASS showed good to excellent reliability of all DASS subscales at both
time points (α ≥ .87 for all subscales at both time points). There were
no pre- rt-fMRI-nf training group differences in DASS Anxiety and Stress
scores, however DASS Depression Scores were significantly higher in
the EG at the pre- training time point (Supplementary Table s1).

ANOVA revealed a non-significant effects of group (EG vs. CG) (F(1,
28) = 0.01, p = .938, ηpart² < .001), and time point (pre- vs. post – tr-
fMRI-nf training) (F(1, 28) = 1.64, p = .211, ηpart² = .055) for DASS
Anxiety scores. However, there was a significant interaction between
group and time point (F(1, 28) = 4.93, p = .035, ηpart² = .150)
showing that post-rt-fMRI-nf training the EG had reduced DASS anxiety
scores relative to pre- training (t(14) = 2.34, p = .035, d = 0.60), an
effect not seen in the CG (t(14) = -0.71, p = .490, d = 0.12; Fig. 2a).
Furthermore, this effect was specific to DASS Anxiety scores as no in-
teraction between group and time point were seen in DASS Depression
Scores (F(1, 28) = 2.61, p = .117, ηpart² = .085) or DASS Stress scores
(F(1, 28) = 2.33, p = .138, ηpart² = .077).

ANOVA of Stroop Task performance revealed a significant effect of
condition (F(1, 28) = 15.60, p < .001, ηpart² = .358) with greater RT
during incongruent trials and a significant effect of time point (F(1,
28) = 108.69, p < .001, ηpart² = .795), revealing an improvement in
RT post- training across groups. However, interaction between group,
task condition and time point (F(1, 28) = 0.41, p = .526, ηpart² = .014)
was non-significant, indicating that RT for Incongruent trials did not
significantly improve in the EG relative to the CG post- rt-fMRI-nf
training (see Supplementary Table s2). For ER ANOVA also revealed a
significant effect of task condition (F(1, 28) = 6.64, p = .016,
ηpart² = .192) with consistently greater ER in the Incongruent
Condition. However the effects of group (F(1,28) = 0.35, p = .562,
ηpart² < .001) and time point (F(1,28) = 0.93, p = 344, ηpart² = .032)
were both non-significant as was the three-way interaction between
group, task condition and time point (F(1,28) = 0.48, p = .493,
ηpart² = .017), indicating that ER for incongruent trials did not sig-
nificantly reduce in the EG relative to the CG post rt-fMRI-nf (see
Supplementary Table s2).

3.2. Functional localizer task and time course of neurofeedback signal

Whole brain analysis of fMRI data showed that during the
Functional Localizer task (incongruent Stroop trials > Rest) activation
was seen in the bilateral ACC (peak x/y/z = 6/18/32, Z = 9.78) and in
the left (peak left x/y/z = -38/42/16, Z = 5.76;) and right (peak right

x/y/z = 36/50/28, Z = 6.91) DLPFC in the middle frontal gyrus.
Whole brain analysis also revealed activation across further cortical,
subcortical and cerebellar regions (see Supplementary Table s3). The
neurofeedback signal received by participants in the EG across the 4 rt-
fMRI-nf runs was derived from the partial correlation between DLPFC
and ACC ROI activity and was scaled to baseline connectivity para-
meters during the Functional Localizer Task. Fig. 2b shows that in the
EG, the neurofeedback signal increases across rt-fMRI-nf runs 1–3 be-
fore reducing during run 4.

3.3. Functional connectivity during neurofeedback training: PPI

PPI analysis was performed with the left DLPFC ROI as a seed re-
gion. Relative to the CG, the EG group showed increased functional
connectivity between the left DLPFC ROI (seed) and the bilateral ACC
ROI across rt-fMRI-nf training runs (peak x/y/z = -6/34/26; Z = 5.16).
Compared to the CG, we also observed decreased functional con-
nectivity in the EG between the left DLPFC seed region and the sup-
plementary motor area (SMA) which was partially covered by the bi-
lateral ACC ROI (x/y/z = -12/0/44; Z = 4.59). (Fig. 3, Supplementary
Table s4).

A regression analysis was then used to examine the relationship
between changes in functional connectivity and DASS Anxiety scores. In
the EG and within the ACC ROI, changes in DASS anxiety scores were
positively associated with increased functional connectivity in the bi-
lateral ACC/paracingulate sulcus (peak left x/y/z = -10/28/36;
Z = 4.31, peak right x/y/z = 8/40/36; Z = 4.15) and with reduced
functional connectivity in a more inferior region of the bilateral ACC
ROI (peak x/y/z = -4/32/28; Z = 4.25; Fig. 4; Supplementary Table
s5).

3.4. Resting-state functional connectivity (RSFC)

From the 15 components derived in a group ICA, independent
component 4 was selected based on our a-priori hypothesis for testing
group differences between pre- and post-rt-fMRI-nf training (Fig. 5a) in
attentional and default mode networks. This component explained

Fig. 3. PPI analysis using left DLPFC seed region (purple) showing increased
(red) and decreased (blue) functional connectivity in bilateral ACC ROI. Bar
graphs show z-values from peak voxels separated by EG and CG. Results are Z-
maps displayed at a threshold of p < .05 uncorrected for illustrative purposes.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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7.03% of variance in the dataset and shows overlap with attention,
central executive and default mode networks assessed according to the
Yeo 17-network solution (Sacchet et al., 2016; Yeo et al., 2011). More
specifically, the component shows positive RSFC in ACC (peak x/y/
z = 4/14/28) and bilateral anterior insula (left peak x/y/z = -34/4/0;
right peak x/y/z = 36/2/0), thus resembling the topological structure

of the CON. Independent component 4 also shows positive RSFC in the
bilateral inferior prefrontal cortex (left peak x/y/z = -44/30/10; right
peak x/y/z = 46/32/4), which are hubs within FPN. Negative RSFC
was also seen in DMN; bilateral Angular Gyrus (left peak x/y/z = -44/-
62/40; right peak x/y/z = 44/-62/44), bilateral superior frontal gyrus
(left peak x/y/z = -18/24/48; right peak x/y/z = 20/26/48) and

Fig. 4. Regression between PPI estimate of
changes in functional connectivity between
left DLPFC seed region and bilateral ACC
ROI and changes in DASS Anxiety scores
over rt-fMRI-nf training in the EG. Brain
map shows positively (red) and negatively
associated areas (blue). Results are Z-maps
displayed at a threshold of p < .05 un-
corrected for illustrative purposes. Scatter plot
showing association between changes in
DASS anxiety scores (Post – Pre training)
and extracted PPI parameters from peak
voxels in the ACC (based on 6 mm sphere).
*A sphere of 4 mm was used to extract the
parameters for this plot, as a 6 mm sphere
had overlap with significant results in the
opposite direction. (For interpretation of
the references to color in this figure legend,
the reader is referred to the web version of
this article.)

Fig. 5. (A) Z-map for selected component based on group ICA analysis showing RSFC in CON, FPN and DMN regions (thresholded at ∣Z∣>2.5). (B) Increased RSFC in
EG pre vs. post-rt-fMRI-nf training in the PCC (p-map, FWE corrected).
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Posterior Cingulate Cortex (PCC; peak x/y/z = -2/-44/28)
(Sylvester et al., 2012; Menon, 2015; Yeo et al., 2011). Comparing pre
and post rt-fMRI-nf resting-state scans, relative to the CG, the EG
showed increased RSFC in the posterior DMN in the bilateral PCC (post
> pre rt-fMRI-nf training) (peak x/y/z = 0/-24/38, t = 5.55,
p = .025, Fig. 5b).

4. Discussion

Using a between-subjects controlled experimental design we sought
to examine the potential of connectivity-based rt-fMRI-nf for enhancing
connectivity in attentional control networks and reducing anxiety levels
in high trait anxious individuals. We also examined if connectivity
based rt-fMRI-nf training would improve performance during an offline
attentional control task. We targeted functional connectivity between
left DLPFC and bilateral ACC as coupling between these regions is
known to be important for attentional control and is reduced in people
with high levels of trait anxiety (Barker et al., 2020; Moran et al.,
2015). Whilst no performance improvement on an offline attentional
control task was seen, relative to the CG, the EG showed a decrease in
anxiety levels post-rt-fMRI-nf training that was not seen in the CG. This
effect appeared to be specific to anxiety as no post-training effects were
seen for depression and stress levels. Furthermore, PPI analysis showed
that high trait anxious individuals successfully enhanced functional
connectivity between the left DLPFC and bilateral ACC when provided
with veridical visual feedback compared to sham feedback. An area in
the bilateral SMA also showed decreased connectivity over the training
period. Importantly, in the EG, increased functional connectivity be-
tween the DLPFC and ACC was associated with reduced anxiety levels
over the rt-fMRI-nfb training period. However, in a more inferior region
of the ACC ROI, we observed an association between reduced DLPFC -
ACC functional connectivity and decreased anxiety levels. Together
these results show that participants in the EG were able to self-regulate
DLPFC – ACC functional connectivity, guided by veridical rt-fMRI-nf
feedback resulting in altered functional connectivity in attentional
networks that was associated with reduced anxiety levels.

Whilst these findings suggest that connectivity-based rt-fMRI-nf
may be a feasible approach for reducing anxiety levels in anxious in-
dividuals, we did not observe any behavioral effects on an offline task
assessing attentional control at a post- (vs. pre-) rt-fMRI-nf training time
point. However, this finding is not inconsistent with the performance
effectiveness prediction of ACT which proposes that task performance is
sometimes maintained in anxious individuals albeit with reduced pro-
cessing efficiency, i.e., the quality of performance relative to use of
processing or cognitive resources. Several studies have shown increased
DLPFC activation in people with high trait anxiety without concomitant
improvements in performance effectiveness (i.e., processing in-
efficiency; (Basten et al., 2011,2012; Fales et al., 2008)). Thus, in-
creased DLPFC-ACC functional connectivity seen during rt-fMRI-nf
training in the EG may have improved attentional network processing
efficiency, leading to a reduction anxiety levels, but without a de-
monstrable effect on task processing effectiveness. However, it should
be noted that it is also possible that our study may not have produced a
large enough effect in task performance to detect a significant change in
performance over the rt-fMRI-nf training period. Results of previous
studies comparing high and low trait anxiety groups on performance in
the color Stroop task have varied between small to medium effect sizes
(Basten et al., 2011; Morgenroth et al., 2019) and this study was not
sufficiently powered to detect small effect sizes. Future studies would
need to recruit larger samples or use a more sensitive attentional con-
trol task, while it may also be of value to examine changes in brain
activation during attentional control tasks to better understand per-
formance efficiency versus effectiveness.

Given that anxiety is thought to affect connectivity within and be-
tween functional networks (Sylvester et al., 2012), we examined if
connectivity based rt-fMRI-nf training would also alter network RSFC in

trait anxious individuals. Using the Yeo 17 Network solution we first
identified an independent component containing resting state networks
encompassing regions within the CON, FPN and DMN (Menon, 2015;
Chiong et al., 2013; Goulden et al., 2014), all functional networks
thought to be affected by anxiety (Sylvester et al., 2012).

Our analysis of RSFC data showed that post-rt-fMRI-nf training,
relative to the CG, the EG groups had increased RSFC in the PCC, a
major hub within the DMN. Anxiety is thought to be associated with
decreased functioning in DMN (Sylvester et al., 2012) that can effect
emotional regulation and interactions with FPN during cognitive tasks
and regulation (Delgado et al., 2008). Furthermore, recent fMRI studies
have shown that worry, a cognitive component of trait anxiety
(Gros et al., 2007), and mind wandering both involve the DMN
(Fox et al., 2015), and that anxiety and worry are associated with al-
tered DMN activation (Servaas et al., 2014). Whilst a range of functions
have been ascribed to the PCC, Pearson and colleagues (Pearson et al.,
2011) propose a broader view of the PPC being a key node in the DMN
for adapting behavior in changing environments. In terms of attentional
control, the PCC is described as a hub mediating interactions between
the ACC and DLPFC. Moreover, the PCC has been implicated in atten-
tional control and modulating the interaction between DMN and at-
tentional control networks (Leech et al., 2011; Lin et al., 2016). A re-
cent study to address the relationship between DMN activity and
behavioral performance reports that the degree of connectedness of the
PCC with other areas can predict performance during an attention task
(Lin et al., 2016). In line with this, Weissman et al. (2006) have shown
that less efficient stimulus processing during attentional lapses is
characterized by less deactivation in the DMN, particularly the PCC.
Failure to deactivate the PCC during attentional task may results in less
efficient attentional control. Increased RSFC in this area, brought about
by rt-fMRI-nf training, may facilitate more efficient interactions be-
tween DMN and attentional networks.

In addition to rt-fMRI-nf related increases in functional connectivity
and RSFC, we also observed reduced functional connectivity between
the left DLPFC and a SMA (a region that fell within the bilateral ACC
ROI). Whilst the SMA is anatomically close to the ACC, it is a distinct
area within a distinct RSFC network that is usually reported as being
negatively associated with DLPFC activity (Zhang et al., 2012), al-
though more anterior parts of the dorsomedial cortex may be positively
associated with DLPFC activity (Margulies et al., 2007; Kim et al.,
2010). Therefore, it is possible that increased DLPFC – ACC connectivity
due to rt-fMRI-nf training, also resulted in a reduced functional con-
nectivity between the DLPFC and SMA. Furthermore, reduced func-
tional connectivity between the DLPFC seed region and a small area of
the ACC was also associated with a reduction in anxiety levels. Whilst
the reasons for this result are unclear it is likely that our ACC ROI
contained functionally distinct areas of the medial cortex that may have
responded differently to rt-fMRI-nf training. Some of the factors driving
these effects may also be related to the descriptive observation that the
neurofeedback signal did not consistently increase over the training
runs.

The time course of the neurofeedback signal increased over the first
three runs before decreasing in the final run. The interpretation of these
results is unclear; however, descriptively participants do not seem to
have learned to up-regulate the neurofeedback signal over the four
runs. Nevertheless, this measure does not consider the time course
within each run or differences between EG and CG. Whilst it is unclear
why the neurofeedback signal decreased at run 4, it is possible that 3
runs were sufficient to establish optimal functional connectivity in this
network and that further training introduced noise and inefficiency into
already learnt strategies. However, other outcome measures and their
development over time after rt-fMRI-nf training must be considered in
evaluating the optimal number of neurofeedback runs (i.e., Rance et al.,
2018).
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4.1. Limitations

While our sample size is comparable to other rt-fMRI-nf studies in
healthy populations (see Emmert et al., 2016, Thibault et al., 2018),
this study was only powered to detect medium to large effect sizes.
Thus, however promising our results, they need to be interpreted with
some caution and replication in a larger sample is needed. It should also
be noted that two of the 30 study participants were left-handed and
both were in the EG. It is not clear if and how laterality may have
affected the results. Furthermore, it is important to acknowledge the
possibility that some of the effects we observed may be due to the
neurofeedback task rather than real self-regulation of brain con-
nectivity between the ACC and DLPFC. Emmert et al. (2016) report a
distinct pattern of brain activation that is associated with attempts of
self-regulation that is independent of target area and direction of reg-
ulation. Nevertheless, the randomized controlled nature of the study
and the specificity of the effects suggest that our results are likely due to
successful self-regulation. The CG was provided with yoked feedback,
which controls for the experience of reward. However yoked feedback
may not control for effects of veridical rt-fMRI-nf learning or any target
specific effects. Therefore, any confounding effects of true rt-fMRI-nf
learning or effects specific to the rt-fMRI-nf targets cannot be excluded
(Lubianiker et al., 2019; Sorger et al., 2019).

Using pre- and post-rt-fMRI-nf training resting-state scans further
demonstrates that self-regulation had effects on functional connectivity
beyond the neurofeedback task. However, pre- and post-rt-fMRI-nf as-
sessments were only one week apart and taken directly before and after
rt-fMRI-nf training. Thus, the longevity of reduced anxiety brought
about by rt-fMRI-nf training is unclear and it is possible that measured
improvements may not have lasted for very long. The durability of this
effect will need to be examined in future, larger trials.

5. Conclusion

In conclusion, we have demonstrated the feasibility of using con-
nectivity-based rt-fMRI-nf training (based on functional connectivity
between left DLPFC and the ACC) to reduce anxiety levels and alter
activation in wider networks. Rt-fMRI-nf training resulted in reduced
anxiety levels and increased DLPFC-ACC functional connectivity (al-
though some decreases were also observed) as well as increased RSFC in
the DMN. Importantly, it was demonstrated that changes in functional
connectivity between rt-fMRI-nf target regions were associated with
reduced anxiety levels in the EG. Our findings could be interpreted as a
pattern of increased efficiency in brain circuitry that is important for
attentional control which, whilst not leading to measurable improve-
ments in task effectiveness, did lead to reduced levels of anxiety. Here
we provide a proof-of-concept but these results need to be replicated in
larger samples and more work is needed to better understand the re-
lationship between efficient processing in attentional control networks
and anxiety. Rt-fMRI-nf training could also be used to target other brain
networks and regions associated with attentional control. Future re-
search is needed to further explore interactions between functional
networks and how these translate to behavioral changes.
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