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Abstract

In this paper we present a novel approach to quantifying genetic architecture that combines recombinant inbred lines (RIL)
with line cross analysis (LCA). LCA is a method of quantifying directional genetic effects (i.e. summed effects of all loci) that
differentiate two parental lines. Directional genetic effects are thought to be critical components of genetic architecture for
the long term response to selection and as a cause of inbreeding depression. LCA typically begins with two inbred parental
lines that are crossed to produce several generations such as F1, F2, and backcrosses to each parent. When a RIL population
(founded from the same P1 and P2 as was used to found the line cross population) is added to the LCA, the sampling
variance of several nonadditive genetic effect estimates is greatly reduced. Specifically, estimates of directional dominance,
additive x additive, and dominance x dominance epistatic effects are reduced by 92%, 94%, and 56% respectively. The RIL
population can be simultaneously used for QTL identification, thus uncovering the effects of specific loci or genomic regions
as elements of genetic architecture. LCA and QTL mapping with RIL provide two qualitatively different measures of genetic
architecture with the potential to overcome weaknesses of each approach alone. This approach provides cross-validation of
the estimates of additive and additive x additive effects, much smaller confidence intervals on dominance, additive x
additive and dominance x dominance estimates, qualitatively different measures of genetic architecture, and the potential
when used together to balance the weaknesses of LCA or RIL QTL analyses when used alone.
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Introduction

Understanding the genetic basis of complex phenotypes, i.e.

genetic architecture, is of fundamental importance both for

modeling evolutionary change and for genetic manipulation of

crop plants. Genetic architecture is a broad term for all factors that

influence the determination of phenotype from genotype. It

includes all genetic effects on traits: the number of genes, allelic

effects, epistasis, pleiotropy, and genotype x environment interac-

tions [1]. Knowledge of genetic architecture can inform us about

the propensity to evolve (i.e. ‘variability’ sensu [2]) on all timescales.

Studies of genetic architecture have revealed that epistasis, i.e.

interactions between loci, is a common component of most

quantitative traits. For example, biomedical studies have shown an

epistatic genetic basis for many human diseases [3] including

diabetes [4,5], Alzheimer’s disease [6], obesity [7], cardiovascular

disease [8] and schizophrenia [9]. Knowledge of the genetic basis

of these diseases is important because epistatic traits can evolve in

a fundamentally different way than additive traits [10–13].

Knowledge of gene interactions and genetic architecture is also

important for building and evaluating models of evolutionary

processes. All models of adaptation, population divergence and

speciation assume a particular genetic architecture, but the

assumptions vary wildly among models. At two ends of a

spectrum, selection analyses used commonly in evolutionary

ecology studies implicitly assume an additive genetic architecture

[14,15], while most studies of speciation assume an epistatic

genetic architecture [16–18]. Does trait architecture change from

additive to epistatic over some range of genetic distances or

geographic distances? While patterns of the genetic architecture of

inter-specific differentiation are becoming clear (e.g. Haldane’s

rule, Dobzhansky-Muller incompatibilities [19–21]), the genetic

basis of differences within and among populations is more poorly

understood and the genetic architecture in particular instances

does not appear to correlate with factors such as genetic,

geographic, or even phenotypic differences among populations

[22–26]. We know very little about the genetic architecture of

quantitative traits. This limits theoretical and practical advances in

evolutionary genetics and plant breeding.

Line cross analysis (LCA) is a well established method of

quantifying genetic architecture with a long history of use in

agriculture. Because of its utility for gene discovery, much recent

work has focused on understanding genetic architecture at the

level of individual loci or QTL. LCA in contrast measures the

summed, i.e. directional, effects of all loci contributing to a trait.

Line crosses have become more popular in recent years as interest

in quantifying epistasis in quantitative traits has increased; this

method offers far greater statistical power than variance

PLoS ONE | www.plosone.org 1 April 2010 | Volume 5 | Issue 4 | e10200



component analyses previously used to measure epistasis [27].

Traditionally the nearly exclusive realm of plant and animal

breeders, LCA have also been used recently to address more

broadly evolutionary issues with genetic architecture [28], and are

likely to continue to become more common in evolutionary

research for several reasons. Demuth and Wade [29], refined by

[30], have shown how line crosses between populations can be

used to study speciation and Haldane’s rule. Directional

dominance effects are a requirement for inbreeding depression

([31], p. 257). Hansen and colleagues [2,32,33] have shown that

the directional epistasis revealed by line cross analysis may be a

key to understanding continued response to long term selection,

and empirical work in corn and chicken is consistent with this

theoretical prediction [34,35,12]. The selection responses in corn

oil concentration and chicken body weight are also consistent with

a large number of loci each with several alleles of small effect

[36,37] and with a large input of new variation from mutation

[38]. Clearly we need empirical measures of both locus-specific as

well as directional genetic architecture estimates (particularly

positive directional epistasis, [2]) to determine the relative roles of

these hypothesized factors.

In this paper we present a novel approach to quantifying genetic

architecture that combines recombinant inbred lines (RIL) with

line cross analysis. When RIL are used in line cross analyses,

scaling tests can be constructed for non-additive genetic effects

with far more precision than traditional methods of estimation.

The RIL can be simultaneously used for QTL identification.

These two uses of a RIL population yield qualitatively different

information about genetic architecture and can be used in a

powerful and complementary manner.

Materials and Methods

Line cross analyses typically begin with two inbred parental

lines that are crossed to produce an F1 generation. F2s,

backcrosses, and other generations can be produced as well; the

directional genetic effects (also called ‘composite genetic effects’) to

be estimated are limited by the number of generation means

measured. For example, estimating the mean, additive, domi-

nance, and 3 pairwise epistatic effects requires at least 6 generation

means for estimation and 7 for hypothesis testing.

Line cross analyses are primarily carried out using frameworks

based on the F2 model of Cockerham [39] or on the F-infinity

model of Hayman and Mather [40]. Here we follow line cross

theory based on the F2 model as described by Lynch [41] and

Lynch and Walsh [31]. We refer to it as the F2 model for

simplicity. In this model, the F2 is the reference generation relative

to which all genetic effects are derived by linear contrasts. Line

crosses use linear combinations of generation phenotypic means to

estimate composite genetic effects and carry out significance tests.

Each generation mean can be written as a function of two

coefficients, the source index (hS) and the hybridity index (hH),

multiplied by the additive (A), dominance (D) or epistatic

interaction effects (AA, AD, DD, etc.) that potentially differentiate

the parental lines (equation 1).

Generation mean~m: z hSA z hHD z hS
2AA

z hShHAD z hH
2DD:::

ð1Þ

m. = the mean of the F2 generation. The source index hS

determines the coefficients of the additive effects’ contribution to

each generation’s phenotypic mean. The source index is scaled

from one to negative one and indicates the proportion of genes in

the generation that came from parent one (P1), with +1 indicating

100% and 21 indicating 0%. P1’s hS = +1 while for F1s, F2s, and

RILs hS = 0.

The hybridity index determines the contribution of the

dominance effects to each generation mean. The hybridity index

is also scaled from +1 to 21, with +1 indicating that every locus is

heterozygous and 21 indicating that every locus is homozygous.

F1s thus have hH = +1, while parents have hH = 21. Figure 1

shows the source and hybridity indices for the P1, P2, F1, F2, B1

(back-cross to P1), B2 (back-cross to P2).

To this traditional set of line cross generation means, the mean

of a RIL generation can be added. In this context, ‘RILs’ or a ‘RIL

population’ is a set of genotypes of highly inbred F2 lines. If these

genotypes were replicated, the means of each genotype can be

used as individuals for calculating the overall RIL generation

mean. RILs asymptotically approach complete homozygosity for

all loci as the number of generations of inbreeding approaches

infinity. In practice, the convention is to use six to eight

generations of inbreeding, resulting in ,99.84 to 99.96%

homozygosity respectively. A major advantage of RILs is that

the descendents of any one RIL are genetically identical, hence

‘‘immortal’’ (ignoring mutation accumulation), allowing RILs to

be marker-genotyped once and phenotyped repeatedly in multiple

labs and experiments. In the framework of LCA, RIL can be used

to greatly improve power in estimating non-additive genetic

effects.

The F2 generation has a value of zero on both the source and

hybridity indices. All genetic effects are scaled relative to this F2

generation mean, thus the linear contrasts used to estimate the

genetic effects are sometimes called F2 scaling tests. The expected

mean of the F2 and RIL generations are identical and their source

indices are both zero (the actual source index for RIL can be

approximated from marker data as 2*(number of P1 marker alleles

among all lines/total number of alleles)-1, assuming equal spacing

of markers throughout the genome. In the absence of segregation

distortion, this will be very close to zero). However the F2

hybridity index has zero value, while the RIL hybridity index is in

contrast approximately negative one. (Figure 1 and Table 1).

Products of the source and hybridity indices determine the

coefficients for interactions between additive and dominance

effects (i.e. epistasis). For example, the product of the additive

coefficient (source index) and the dominance coefficient (hybridity

index) is the coefficient for the additive x dominance epistatic

effect. The coefficients for additive, dominance and pairwise

epistatic effects for 7 commonly used generation means are given

in Table 1. The RIL generation mean can used in estimating non-

additive effects, since in contrast to the F2 it has a non-zero

hybridity coefficient.

Using equation (1) and the first six generations in Table 1,

Lynch and Walsh ([31]: Table 9.3, p. 214) produced equations to

estimate the following composite genetic effects:

m:~zF2

A~zB1{zB2

D~{zP1=4{zP2=4zzF1=2{2zF2zzB1zzB2

AA~{4zF2z2zB1z2zB2

AD~{zP1=2zzP2=2zzB1{zB2

DD~zP1=4zzP2=4zzF1=2zzF2{zB1{zB2

ð2Þ

zXi indicates the phenotypic mean of the Xi
th generation (eg.

X = B, i = 1 for the B1 generation):

Line Cross Analysis with RIL
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Note the equations for D and AD in Lynch & Walsh ([31] Table

9.3) estimate 2D and 2AD so we have included the corrected

equations here.

By incorporating the RIL generation’s equation (for the

contributions of the various genetic effects to the RIL generation

mean) in the F2 scaling tests, we can construct tests for non-

additive genetic effects with fewer terms than traditional tests,

shown by contrasting equations (2) and (3). Incorporating the RIL

means equalizes the number of generation means necessary to

estimate the additive and dominance effects, and the number of

generation means necessary to estimate the AA, and DD epistatic

effects. This is important in providing equanimity in the power of

tests for both intra- and interlocus additive vs. dominance effects;

estimates of A and D both require two generation means while AA

and DD both require three generation means. AD is the sole

equation which retains four generation means in its estimator

because the RIL mean cannot be used to simplify the equation.

m:~zF2

A~zB1{zB2

D~(zF1{zRIL)=2

AA~(zP1zzP2)=2{zRIL

AD~{zP1=2zzP2=2zzB1{zB2

DD~(zF1zzRIL)=2{zF2

ð3Þ

T-tests can be used to test the null hypothesis that a genetic

effect equals zero, assuming that the test statistic is normally

distributed under the null hypothesis. The test statistic is simply the

estimated genetic effect estimate divided by the standard error of

the estimate. For example, the test statistic for the composite

dominance effect (using eq. (2)) is

Table 1. Source and hybridity indicies and coefficients of
directional genetic effects.

Line S H hS hH m A D AA AD DD

P1 1 0 1 21 1 1 21 1 21 1

P2 0 0 21 21 1 21 21 1 1 1

F1 1/2 1 0 1 1 0 1 0 0 1

F2 1/2 1/2 0 0 1 0 0 0 0 0

B1 3/4 1/2 1/2 0 1 1/2 0 1/4 0 0

B2 1/4 1/2 21/2 0 1 21/2 0 1/4 0 0

RIL 1/2 0 0 21 1 0 21 0 0 1

Source and hybridity indices and the resulting coefficients for the genetic effects
in line cross equations, including all two-way epistatic interactions, after (Lynch
and Walsh 1998, Chapter 9). Lines are created by crossing inbred parent 1 (P1) with
inbred parent 2 (P2) to produce the F1 and F2 generations as well as reciprocal
backcrosses to P1 (B1) and P2 (B2). Recombinant inbred lines (RIL) are formed by
repeatedly selfing the F2s. The meaning of the columns: S = proportion of genome
from P1; H = proportion of heterozygous loci; hS = source index, indicating the
relative contributions of P1 and P2 to the generation genome; hH = hybridity
index, indicating expected heterozygosity of the generation’s genome on a scale
of 1 to 21. m= the mean phenotype of the F2 generation. The values in the
remaining columns indicate expected contribution of the column’s genetic effect
to the phenotype of the row’s generation. The effect types: A = additive;
D = dominance; AA = dominance by dominance interaction; AD = additive by
dominance interaction; DD = dominance by dominance interaction.
doi:10.1371/journal.pone.0010200.t001

Figure 1. Source and hybridity indices for the various generations of a line cross population. The vertical axis indicates each generation’s
source index. A source index value of +1 indicates that all genes originate with P1 while 21 indicates that all genes originate with P2. The horizontal
axis indicates a generation’s hybridity index such that +1 indicates heterozygosity at every locus, while 21 indicates homozygosity at all loci. The RIL
values represent an ideal in which an infinite number of generations of selfing preceded measurement of the RIL population. Real RIL populations
asymptotically approach this value as the number of generations of inbreeding increases.
doi:10.1371/journal.pone.0010200.g001

Line Cross Analysis with RIL
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DD~
DD̂DDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var D̂D
� �r

~
D
D{

zP1

4
{

zP2

4
z

zF1

2
{2zF2zzB1zzB2

D
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½zP1�
16

z
Var½zP2�

16
z

Var½zF1�
4

z4Var½zF2�zVar½zB1�zVar½zB2�
r

ð4Þ

DD follows a t distribution with 1 df. Similar test statistics can be
constructed for each genetic effect following the same format.

The effect of reducing the number of terms becomes clear when

we look at the new RIL-based test statistic for the composite

dominance effect:

DD~
DD̂DDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(D̂D)

q ~
D(zF1{zRIL)=2Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½zF1�
4

z
Var½zRIL�

4

r ð5Þ

Recall that the variance of a sum equals the sum of the

variances multiplied by the square of the coefficients, i.e. Var (cA +
dB) = c2 * Var (A) + d2 * Var (B), provided that the terms being

summed are independent. We can compare the variances

associated with the traditional formulae for D, AA, and DD from

equations (2) with the corresponding RIL equations (3). For these

comparisons, we assume that all generation means have equal

variance (i.e. s2 = Var (P1) = Var (P2) = Var (F1) = Var (F2) = Var

(B1) = Var (B2) = Var (RIL)).

Based on this assumption, the RIL-based equation for D, AA, and

DD have 92%, 94%, and 56% reductions in variance respectively

relative to the traditional equations (Table 2). The variance

reductions occur for two reasons. First, when fewer generation

means are summed to estimate a genetic effect, fewer sources of error

are summed into this estimate as well. Second, the RIL equations

have smaller coefficients for each generation mean than traditional

equations. Since these coefficients are squared when summing the

variances, lower coefficients can drastically reduce the variances of

the genetic effects. Further variance reductions can occur in RIL

based estimates due to the sample size of RIL. Since the number of

lines composing the RIL generation is typically large since this

determines the power of QTL mapping with RIL populations, the

genetic effect variance reduction from using RIL equations is even

greater than the reductions using equal variances for all generations

illustrated in Table 2. These reductions in variance produce a

substantial increase in power to detect dominance and epistasis and to

compare dominance-influenced vs. additive effects.

Frequently, line cross experiments are analyzed using joint

scaling tests (e.g. [42–44]). The joint scaling test is a weighted least

squares regression technique for estimation and significance testing

of various models of genetic architecture. A description of this

method can be found in [31] (p.215–219, see also: [29,45]).

Briefly, one starts with a vector of generation means (Y), a design

matrix (X) of coefficients derived from the source and hybridity

indices, and a vector of composite genetic effects (b) to be

estimated. Initially, b contains the mean and the composite

additive effect and X contains two corresponding columns. An

estimate of b is calculated using (XTX)21XTy (or

(XTV21X)21XTV21y, where V21 is a diagonal matrix of squared

standard errors for generation means if sample sizes are unequal).

This estimate of b is premultiplied by X to produce a vector of

predicted generation means Ŷ, given an additive genetic

architecture. Ŷ is then compared with the observed Y using a

chi-squared test. If the observed and predicted Y’s are significantly

different, then the additive model is rejected and an additive and

dominance model is tested next. A new b vector containing the

mean, the composite additive effect, and the composite dominance

effect is estimated and multiplied by an X matrix with 3 columns

to produce a new Ŷ. Increasingly complex models of genetic

architecture are tested until the predicted and observed vector of

generation means is not significantly different.

To illustrate the advantages of using RIL in a joint scaling

context, we used seven generation means to estimate a model of

additive, dominance and pairwise epistatic effects:

Y = X b, where

P1

P2

F1

F2

B1

B2

RIL

2
666666666664

3
777777777775

Y

~

1 1 {1 1 {1 1

1 {1 {1 1 1 1

1 0 1 0 0 1

1 0 0 0 0 0

1 1=2 0 1=4 0 0

1 {1=2 0 1=4 0 0

1 0 {1 0 0 1

2
666666666664

3
777777777775

X

�

m

A

D

AA

AD

DD

2
666666664

3
777777775

b

ð6Þ

The general formula for solving linear equations is

b = (XTX)21XTy. When we used Mathematica [46] to solve for

b in terms of the generation means, the solution is:

m:~(16zB1z16zB2z19zF2{4zP1{4zP2z8zRIL)=51

A~zB1{zB2

D~(4zB1z4zB2z51zF1{8zF2{zP1{zP2{49zRIL)=102

AA~2(zB1zzB2{2zF2z4zP1z4zP2{8zRIL)=17

AD~(2zB1{2zB2{zP1zzP2)=2

DD~({12zB1{12zB2z17zF1{10zF2z3zP1z3zP2z11zRIL)=34

ð7Þ

Table 2. Comparison of variances of directional genetic effects with and without recombinant inbred lines.

Effect RIL equation
Variance of
RIL-based estimate Traditional equation

Variance of
Traditional estimate

Variance
reduction

D (zF1{zRIL)=2 0.5(s2) {zP1=4{zP2=4zzF1=2{2zF2zzB1zzB2 6.375(s2) 92%

AA (zP1zzP2)=2{zRIL 1.5(s2) {4zF2z2zB1z2zB2 24(s2) 94%

DD (zF1zzRIL)=2{zF2 1.5(s2) zP1=4zzP2=4zzF1=2zzF2{zB1{zB2 3.375(s2) 56%

RIL-based traditional line cross equations and variance reduction under the assumption of equal variances in the estimate of the means in all generations. Typically, RIL
populations will have a lower variance for the estimate of the mean because of their larger sample size. zXi = the phenotypic mean of the Xith generation (eg. zF1 = mean
of the F1 generation).
doi:10.1371/journal.pone.0010200.t002

ð4Þ
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As in the individual scaling tests, the variance of the dominance

effect and the additive x additive effect in RIL models are reduced

by 92% and 94% respectively relative to the traditional equations.

When the genetic effects are estimated simultaneously using RILs

in the model above, the variance of DD is now reduced by 79%

(c.f. 56% in individual scaling tests) and the variance of the

estimate of the mean is reduced by 63%.

More precise estimation of non-additive genetic effects will help

distinguish whether these non-additive effects are rarely detected

within micro-evolutionary studies because they are uncommon or

because experimental designs have lacked sufficient statistical

power to detect them.

Results and Discussion

Phylogenetically broad crosses have gained increasing impor-

tance in both plant breeding and evolutionary genetic studies (e.g.

[47–49]). Directional gene interactions appear to be increasingly

important as the genetic distance between lineages increases.

However, even when genetic distances between crossed lines are

small, the extent of epistatic interaction can be surprisingly large

[25,42]. Line cross analysis is consequently receiving increased

attention as a method for detecting directional gene interactive

effects.

We show in this paper that the inclusion of a RIL generation in

line cross analysis can greatly increase the accuracy with which D,

AA, and DD interactions are estimated. The accurate estimation

of gene interaction effects can be of substantial value for those

interested in describing genetic architecture and its role in a

variety of evolutionary processes [50].

A reviewer has pointed out that one research group has

previously incorporated RIL into line cross analysis. Kusterer et al.

[51] crossed Arabidopsis thaliana C24 and Col-0 genotypes to

produce F7 recombinant inbred lines, then crossed these RIL to

both parents and F1 in what is known as a triple test cross (TTC)

design. RIL, RIL X C24, RIL X Col-0, and RIL X F1 generations

were all used in line cross analysis and their results suggested that

pairwise and higher order epistasis are important components of

the genetic architecture of heterosis for biomass in C24 X Col-0

Arabidopsis lines. While the TTC design allows one to estimate non-

additive genetic variance components, these additional crosses are

not necessary to reap benefits of using RIL in LCA. We suggest

purchasing RIL from stock centers to reduce the time consuming

crosses necessary for more complex breeding designs.

The reductions in variance used as an illustration in this paper

are predicated on the assumption of equal variances in the

estimate of every generation line mean. This is not necessarily a

realistic assumption, particularly for the RIL generation. First,

RIL populations are perforce large. The best RIL populations in

many species contain 200–400 RILs and these are often grown

and measured in multiple replicates for the purpose of QTL

analysis. Line cross generation means are typically calculated with

far fewer measures and hence degrees of freedom. Thus we might

expect the variance of the mean to be substantially smaller for the

RIL mean than for other generations. However, RIL populations

very often show transgressive segregation, even when the parents

are phenotypically similar. In fact Rieseberg et al. [49] report that

155 of 171 segregating hybrid populations they examined

manifested transgressive segregation. We should therefore expect

that the F2 and the RIL generations might show higher

phenotypic variance than for example the P1, P2, or F1

generations (all three of which are genetically identical within

generations and thus will have low variance relative to other

generations), and this effect will be exaggerated in RIL compared

to the F2 because all individuals are homozygous at virtually all

loci. There are thus two offsetting effects on the variance

associated with the phenotypic mean of the RIL generation: large

sample size reducing the variance of the mean and transgressive

segregation and homozygosity increasing the mean’s variance.

The net effect can only be determined empirically.

If a RIL population is used within a line cross analysis, little

extra work is required for QTL mapping. The QTL mapping

results will give qualitatively different information on genetic

architecture, information that compliments the results of the line

cross analysis. QTL mapping can potentially find the number of

regions with additive effects (QTL) and the magnitude of those

effects, as well as additive x additive epistatic regions responsible

for the composite effects detected in line cross analysis.

Additionally, QTL mapping may detect loci with equal and

opposite effect that are invisible to LCA. For example, if the P1

allele at locus A adds 5 units to the phenotype but the P1 allele at

locus B reduces the phenotype by 5 units, LCA will not detect this

zero net additive difference between parents. Such canceling

effects are clearly often present, evidenced by RIL population

parents having very similar phenotypes but widely transgressive

segregation in the inbred F2 descendents (reviewed in [52]).

Comparison of additive and additive x additive effects in LCA

and QTL analysis can be used to cross validate each result. One

would expect that QTL effects summed across the genome will

produce a total equal to the composite directional effect produced

in LCA. In practice, this may not be the case. QTL analyses are

widely known to produce biased results, with QTL number being

underestimated and magnitude being over estimated, especially

when the number of RIL is small [53,54]. Differences between

composite A and AA effects from LCA and from the summed

effects of all QTL discovered may indicate that such biases are

present. Additionally, when QTL effects are directional but are

too small to be detected by QTL analysis, their sum may still be

detected as a difference between means in the line cross analysis.

Finally, line cross analysis complements QTL mapping by

detecting genetic architecture invisible to QTL analysis. LCA

can detect dominance effects and epistatic effects containing

dominance that cannot be detected using RIL based QTL

mapping.

In summary line cross analysis is a powerful method based on

linear contrasts of generation means. Using recombinant inbred

lines as a generation in LCA greatly increases the power to detect

non-additive genetic effects. Line crosses can detect additive,

dominant and epistatic genetic effects of any kind as long as the

number of generation means matches or exceeds the number of

genetic effects to be estimated. Line cross analysis may detect small

genetic effects missed by QTL mapping when effects are

directional. QTL mapping using recombinant inbred lines has

the ability to detect effects (QTL) of opposite sign invisible to line

cross analysis. It can also detect additive and additive by additive

epistatic QTL. It can be used to find the location of QTL for

effects detected in line cross analysis. Recombinant inbred lines

can be purchased from stock centers so that the time and work

required to produce them is avoided. QTL studies that wish to

incorporate additional line crosses will only require small increase

in sample size on the order of 20%. On the other hand, line cross

studies will require adding a much larger sample size to add a set

of RIL lines large enough for QTL mapping. But these additional

organisms phenotyped will not require the time-consuming

crosses. Adding line crosses to a QTL experiment or a RIL

population to a line cross experiment results in a large increase in

ability to measure genetic architecture that will more than justify

the modest increase in research effort and cost. Increased statistical

Line Cross Analysis with RIL
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power, qualitatively different measures, cross-validation of results,

and potential to overcome weaknesses of each approach alone

makes this a very powerful approach to gaining a fuller under-

standing of genetic architecture.
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