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Working memory (WM) is the active retention and processing of information over a

few seconds and is considered an essential component of cognitive function. The

reduced WM capacity is a common feature in many diseases, such as schizophrenia,

attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and

Alzheimer‘s disease (AD). The theta-gamma neural code is an essential component

of memory representations in the multi-item WM. A large body of studies have

examined the association between cross-frequency coupling (CFC) across the cerebral

cortices and WM performance; electrophysiological data together with the behavioral

results showed the associations between CFC and WM performance. The oscillatory

entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains

the key method to investigate the causal relationship between CFC and WM. The

frequency-tuned non-invasive brain stimulation is a promising way to improve WM

performance in healthy and non-healthy patients with cognitive impairment. The WM

performance is sensitive to the phase and rhythm of externally applied stimulations.

CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in

neuroscience that could alter cognitive outcomes. The studies that investigated (1) the

association between CFC and WM and (2) the brain stimulation protocols that enhanced

WM through modulating CFC by the means of the non-invasive brain stimulation

techniques have been included in this review. In principle, this review can guide the

researchers to identify the most prominent form of CFC associated with WM processing

(e.g., theta/gamma phase-amplitude coupling), and to define the previously published

studies that manipulate endogenous CFC externally to improve WM. This in turn will

pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The

CFC-tACS protocols need to be thoroughly studied before they can be considered as

therapeutic tools in patients with WM deficits.
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INTRODUCTION TO BRAIN OSCILLATIONS
AND WORKING MEMORY

The brain (neuronal) oscillations arise from the simultaneous
interactions between the neuronal networks and are divided
into five frequency bands: delta (0.5–3.5Hz), theta (3.5–
7Hz), alpha (8–13Hz), beta (18–25Hz), and gamma (30–
70Hz) (Düzel et al., 2010; Başar, 2013; Merker, 2013; Luo
and Guan, 2018). The brain oscillations can be detected by
scalp electroencephalography (EEG) or directly in the cortex
(Electrocorticography, ECoG, or intracranial EEG). Similarly,
the neuronal oscillations originating from the sulci can be
detected with scalp magnetoencephalography (MEG) (Marzetti
et al., 2019; Andersen et al., 2020). The EEG frequency bands
reflect the rhythmic and synchronized postsynaptic potentials
that arise from the pyramidal neuronal assemblies (Jensen et al.,
2014). Moreover, brain oscillations are predictive of information
processing and are involved in selective communication and
information transmission (Fries et al., 2001; Fries, 2015). The
power of the oscillation bands and the coupling between the
brain regions constantly change in response to task demands
(Klimesch, 2018). For instance, gamma-band synchronization
is triggered by stimuli and is essential for cortical computation
(Fries, 2009). All the studies suggest an important role of
neuronal oscillations in brain functions (Engel et al., 2001;
Niebur, 2002; Buzsáki and Draguhn, 2004; Mann and Paulsen,
2005).

The neuronal oscillations play different roles in
cognition/psychology: delta bands are associated with deep
sleep and long-range coordination between the neuronal
networks (Hiltunen et al., 2014; Leszczyński et al., 2015);
theta bands are represented in shallow sleep, meditative
states, coordination of memory encoding and maintenance
(hippocampal theta), and long-range coordination of cognition
(cortical theta) (Sederberg et al., 2003; Axmacher et al., 2010;
Sauseng et al., 2010; Cohen, 2014); alpha bands are commonly
associated with rest, relaxation, memory, and motor inhibition
(Sauseng et al., 2009; Roux and Uhlhaas, 2014); beta bands are
linked to awareness and attention (Egner and Gruzelier, 2004;
Buschman and Miller, 2007). In contrast to delta, theta, and beta
oscillations, the high-frequency gamma oscillations arise from
the negative feedback between the GABAergic interneurons
and pyramidal neurons; gamma oscillatory activities perform
different computations and represent different information
patterns (Fries et al., 2007; Jensen and Colgin, 2007).

Cross-Frequency Coupling
Cross-frequency coupling (CFC) is the interaction between
the brain oscillations on different frequency bands (Jirsa and

Abbreviations: WM, working memory; ADHD, attention deficit hyperactivity
disorder; MCI, mild cognitive impairment; AD, Alzheimer‘s disease;
CFC, cross frequency coupling; PAC, phase amplitude coupling; EEG,
electroencephalography; MEG, magnetoencephalography; iEEG, intracranial
electroencephalography; STM, short term memory; tACS, transcranial alternating
current stimulation; tDCS, transcranial direct current stimulation; TMS,
transcranial magnetic stimulation; TGC, theta gamma coupling; DMN, default
mode network.

Müller, 2013; Sotero, 2016; Siebenhühner et al., 2020). From
a theoretical perspective, there are four ways in which CFC
can occur: phase-to-amplitude, power-to-power, phase-to-phase,
and phase-to-frequency interactions (Jensen and Colgin, 2007;
Helfrich et al., 2016). In power-to-power coupling: the changes
in the power of the faster oscillations are correlated with the
power changes in the lower frequency bands; in phase to phase
coupling: phase-locking occurs between oscillations at different
frequencies and their phase relationship remains constant; in
phase to power coupling: the power of the fast oscillations
is modulated by the phase of the slow oscillations (Schack
et al., 2002; Bruns and Eckhorn, 2004; Lakatos et al., 2005;
Mormann et al., 2005; Canolty et al., 2006). The phase-amplitude
coupling (PAC) is a widely observed model of CFC in which the
high-frequency amplitudes are modulated by the low-frequency
phases (Canolty and Knight, 2010; Siems and Siegel, 2020).
Abnormal CFCs have been reported by several studies conducted
in patients with Parkinson’s disease, Alzheimer’s disease (AD),
schizophrenia, mental disorders, and anxiety (Allen et al., 2011;
De Hemptinne et al., 2013; Alegre, 2016; Lynn and Sponheim,
2016; Wang et al., 2017). The neural modulations/entrainments
are classically divided into three approaches: sensory, non-
invasive electrical/magnetic, and invasive electrical entrainment
(Thut andMiniussi, 2009; Calderone et al., 2014; Herrmann et al.,
2016; Hanslmayr et al., 2019).

Working Memory
Workingmemory (WM) is the active retention andmanipulation
of information over a few seconds and is considered an essential
component of cognitive function (Aben et al., 2012; Cowan,
2014, 2017; Persuh et al., 2018). Although the storage capacity
of WM is inherently limited (Fougnie et al., 2015), several
studies have found that the WM capacity can be altered by
training (Botvinick and Watanabe, 2007; MacOveanu et al.,
2007; Edin et al., 2009). Neural activity in the prefrontal cortex
and the strength of connectivity between the prefrontal and
parietal cortices have been shown to be improved by training, as
suggested by the studies in the humans and non-human primates
(Klingberg et al., 2002; Jaeggi et al., 2008; Siegel et al., 2012;
Constantinidis and Klingberg, 2016). Training has a primary
benefit on tasks that are very similar to the training tasks and
does not improve overall WM capacity (Hulme and Melby-
Lervåg, 2012). From a theoretical perspective, the two terms
have been used extensively to describe the temporal storage of
information: Short-term memory (STM) and WM. STM is an
essential component for holding motion, sensory, and cognitive
information for a short interval of time. STM describes the
process of passively maintaining the information over a short
period of time, while the WM concept depicts the processes
of maintaining and manipulating the information for a short
period of time. Thus, information manipulation is the main
difference between the two concepts (Aben et al., 2012; Cowan,
2017). Despite the differences between STM and WM, the
two terms are still used interchangeably in the literature. It
has been suggested that the two concepts represent the same
cognitive process (Baddeley, 1992; Gathercole and Alloway, 2006;
Unsworth and Engle, 2007; Klingberg, 2010; Nadel and Hardt,
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2011). The tasks involving only item maintenance have often
been used to test STM, such as word span, digit span, and
delayed match-to-sample tasks, while the tasks involving item
maintenance and manipulation have classically been used to
test WM, such as n-back, computation span, mental control,
and letter-number sequencing tasks (Engle et al., 1999; Kane
et al., 2004; Ackerman et al., 2005; Conway et al., 2005; Colom
et al., 2006). In addition, the mental arithmetic tasks have been
considered as the primary tasks in WM assessment, since the
solution of problems in these tasks activates theWM components
(DeStefano and LeFevre, 2010). All the neuronal oscillations are
important for the cognitive and memory processes, particularly
theta (Klimesch, 1999; Gathercole et al., 2003; Kane et al., 2007;
Hsieh and Ranganath, 2014) and gamma bands (Roberts et al.,
2013; Roux and Uhlhaas, 2014). The causal relationship between
the brain oscillations and memory processes can be tested by
modulating the endogenous brain oscillations and assessing the
behavioral effects of such modulation.

Several models have been proposed to illustrate the underlying
mechanisms behind WM (Kamiński et al., 2011; Van Vugt et al.,
2014; Vosskuhl et al., 2015; Wolinski et al., 2018; Sauseng et al.,
2019). Two models were adopted; one model states that each
memory item is translated into a fast and transient wave that
can be detected electro-physiologically (gamma wave). Several
individual gamma waves fit into a single theta cycle and the
limited WM capacity can be explained by the finite number
of gamma waves that can fit into a single theta cycle (Lisman
and Idiart, 1995; Jensen and Lisman, 1996). Moreover, the WM
capacity of seven items has been reported in the studies that
used immediate verbal recall tasks (Gignac, 2015), while the
studies that used rehearsal of verbal items, spatial, and visual tasks
suggested the STM/WM capacity of four items (Cowan, 2001;
Vogel et al., 2001). Theoretically, the STM/WM capacity can be
improved by increasing the theta cycle length, or by increasing
the gamma frequencies, which increases the number of gamma
waves that fit within a given theta cycle (Kamiński et al., 2011).
Contrary to the expectations, Malenínská et al. (2021) found no
association between the theta/gamma ratio and performance on
digit span task (Malenínská et al., 2021).

Vosskuhl et al. (2015) artificially slowed theta frequency
to increase the number of gamma waves per single theta
cycle and found that the verbal STM capacity was improved
compared with the sham stimulation (Vosskuhl et al., 2015).
In another study, Wolinski et al. (2018) examined the effect of
transcranial alternating current stimulation (tACS) administered
at a slow theta (4Hz), a fast theta frequency (7Hz), and in a
placebo condition over the right parietal cortex while performing
visuospatial WM task. They found that tACS administered at
4Hz had a positive effect on the WM performance, while tACS
administered at 7Hz had a detrimental effect (Wolinski et al.,
2018).

In contrast to the first model which assumes that each gamma
wave represents a single memory item, the secondmodel assumes
that each memory item is encoded by the entire gamma burst
(Herman et al., 2013; Van Vugt et al., 2014). After a certain period
of time, the memory items need to be refreshed through the new
gamma bursts. This reactivation occurs after a few theta cycles,

which could explain the limited WM capacity (Van Vugt et al.,
2014). Based on this model, a slowing down theta cycle means
that fewer memory items could be activated in a given period of
time. Thus, one might expect a decrease rather than an increase
in the WM capacity. However, the increase in the WM capacity
reported by Vosskuhl et al. (2015) and Wolinski et al. (2018)
could mean that the gain in memory fidelity due to the greater
activation with the longer gamma burst displaces the memory
decay resulting from the slowing down theta cycles (Vosskuhl
et al., 2015; Wolinski et al., 2018). These two models can be used
to predict the increase or decrease in the WM capacity at a given
tACS frequency. Thus, based on these models one could design
a brain stimulation protocol to boost WM (e.g., theta/gamma
CFC tACS).

Differences in the WM capacity between individuals result
in variations in several skills, such as attention, academic
performance, and non-verbal reasoning ability (Gathercole et al.,
2003; Kane et al., 2007). The reduced WM capacity is a common
feature in many diseases, such as schizophrenia, stroke, traumatic
brain injury, attention deficit hyperactivity disorder (ADHD),
mild cognitive impairment (MCI), and AD (Baddeley et al.,
1991; Gagnon and Belleville, 2011; Constantinidis and Klingberg,
2016). In addition, abnormal PACs have been associated with
diseases, such as AD, epilepsy, mental disorders, and Parkinson‘s
disease (Salimpour and Anderson, 2019). Taken together, this
information sheds light on the possible role of CFC inWMand its
potential role as a therapeutic target in such diseases. Improving
the WM performance is a challenge and a hot topic in clinical
practice, especially in patients with AD, MCI, etc., any progress
in this area is beneficial. WM can be manipulated/modulated
by various approaches, and non-invasive brain stimulation with
an electric or magnetic field is one of them. Over the past two
decades, there has been a long list of studies reporting the effects
of frequency-tuned tACS, and transcranial magnetic stimulation
(TMS) on WM (Jaušovec et al., 2014; Hoy et al., 2015, 2016;
Chander et al., 2016; Feurra et al., 2016; Alekseichuk et al., 2017;
Papazova et al., 2020). It is important to emphasize that there are
different forms of tACS, some forms target specific individual
frequency bands, such as theta, gamma, and beta (theta-tACS,
gamma-tACS, beta-tACS, etc.), and CFC-tACS form; where tACS
can modulate the interaction between the two frequency bands,
such as theta and gamma (e.g., theta/gamma 6Hz, 80Hz peak-
CFC-tACS, where gamma bursts at 80Hz were nested into the
peak of theta cycles at a frequency of 6Hz, which is so-called
peak-coupled tACS). Since the topic of this review is CFC of
neuronal oscillations and WM in adult humans, the studies that
have investigated the effect of non-invasive brain stimulation on
CFC (e.g., CFC-tACS), as well as the studies that have investigated
the association between CFC of neuronal oscillations andWM in
adult humans, are thoroughly discussed in this review and listed
in Table 1.

Theta-Gamma Neural Code and WM
The relationship between the brain oscillations andWM capacity
has been investigated in the different brain regions (parietal,
frontal, occipital regions, hippocampus. . . etc.), and several
studies have focused on the association between CFC, particularly
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TABLE 1 | Studies that investigated the association between the cross-frequency coupling (CFC) over different brain cortices and working memory (WM) performance.

References Recording method Study details Task(s) Main findings

Brain cortices

involved

Cross-frequency tACS between theta and gamma frequencies

Alekseichuk et al.

(2016)

EEG

Prefrontal cortex

X 47 participants

X Three experimental sets

were used: subjects

were instructed to

complete tasks during

sham stimulation (first

set), continuous

low-frequency theta

stimulation (second set),

and cross-frequency

coupling tACS between

theta and gamma

frequencies (third set)

Two-back

visual-spatial

match-to-sample

test

- The positive effect of continuous low-frequency entrainment on WM

performance was abolished by synchronizing high gamma bursts with

the troughs of theta cycles

- Significant improvement in WM performance was found when high

oscillation gamma bursts (80–100Hz frequency range) were

embedded in the peaks of theta cycles

Theta/gamma coupling

Canolty et al. (2006) iEEG

Whole cortex

X 5 patients with epilepsy

X Investigated the

relationship between

TGC and

behavioral outcomes

Behavioral tasks - Theta/Gamma PAC distributed throughout the cortex and the strength

of TGC increased in more cognitively demanding WM tasks

- A significant effect was observed when gamma oscillations were

detected in the trough of theta cycles

Axmacher et al. (2010) iEEG

Hippocampus

X 14 patients with epilepsy

X The relationship between

TGC and WM

maintenance was

investigated

X Investigated the

relationship between a

relatively large number of

WM -items and CFC

Sternberg

paradigm

- WM maintenance was associated with TGC in the hippocampus

- Modulation of beta/gamma amplitude and theta activity were

associated with a relatively large number of WM items

Chaieb et al. (2015) iEEG

Hippocampus

X 14 patients with epilepsy

X Investigated

phase-phase couplings

in the hippocampus in

presurgical patients with

epilepsy using

iEEG recordings

Serial Sternberg

WM task

- Theta and beta/gamma phase-phase coupling in the hippocampus

during retention of multiple WM items–Sternberg WM task–in

pre-operative patients with epilepsy

Köster et al. (2014) EEG

Prefrontal-Parietal

cortices

X 26 participants

X Examined and quantified

cross-frequency

coupling during the

pictogram recognition

task using EEG datasets

Pictorial

recognition tasks

- Coupling between prefrontal theta phase and parietal gamma

amplitude was enhanced for the retrieved items.

Holz et al. (2010) EEG

Partial-Occipital

cortices

X 23 participants

X While participants

completed a visuospatial

delayed pattern

matching task, EEG was

recorded

X The relationship between

TGC and WM

performance

was investigated

Delayed

match-to-sample

visual WM task

- Association between TGC and correctly identified items in delayed

visual match-to-sample task WM was found

Griesmayr et al. (2010) EEG

Frontal

Medline-distributed

gamma activity

X 31 participants

X EEG power analysis was

performed together with

CFC analysis to test the

relationship between

TGC and behavioral

Verbal delayed

match to sample

task

- The coupling between frontal midline oscillatory theta and gamma

activities correlated with temporal separation of memory item

- Higher frontal midline theta power might be correlated with rehearsal

processes during verbal delayed match to sample task

(Continued)
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TABLE 1 | Continued

References Recording method Study details Task(s) Main findings

performance in the verbal

delayed matching task

Friese et al. (2013) EEG

Frontal-Posterior

cortices

X 26 participants

X EEG data were collected

while participants

performed the

remember/know task.

Remember/know

procedure

- Theta-gamma PAC in the frontal and posterior cortices was increased

during the encoding process for visual stimuli

- A decrease in prefrontal and occipital alpha-oscillatory activities was

observed during successful encoding

Lee and Yang, 2014 EEG

Frontal-Parietal cortices

X 9 participants

X Theta/gamma coupling

during a visuo-spatial

delayed-matching task

was investigated

Visuo-Spatial

delayed-matching

task

- Significant correlation between correct responses and the

synchronization index in the partial lobe

Park et al. (2011) EEG

Prefrontal-Parietal

cortices

X 31 older adults

X Examined the

association between

TGC and behavioral

outcomes using EEG

➢Spatial delayed

match-to-sample

➢Delayed figure

recall

➢Delayed

verbal recall.

- TGC in parietal cortex was significantly associated with a high score

on delayed figure recall task

- The accuracy rate of the spatial delayed match-to-sample task was

associated with TGC

Park et al. (2013) EEG

Frontal cortex

X 13 participants

X Examined TGC levels

during simple vigilance

and visuospatial

WM tasks

2-back task vs.

simple vigilance

- Theta/gamma coupling increased in the frontal area at 40Hz during

visuo-spatial WM task (2-back task)

Rajji et al. (2017) EEG

Frontal cortex

X 70 subjects

X N back task with 3 levels

of difficulties (ordering

information)

X EEG recording during

n-back tasks

X Event related potential

within each

n-back condition

N-back task - Theta/gamma coupling was significant for tasks requiring

ordering information

Brooks et al. (2020) EEG

Prefrontal cortex

X 311 participants

X 3 groups (healthy

control, mild cognitive

impairment, major

depressive disorder

patients)

X Participants completed

n-back and non-n-back

tasks seven days apart

X The relationship between

TGC and WM

performance (using

different tasks)

was examined

➢N-back task

➢2 tasks require

ordering

information other

than n-back task

➢3 tasks do not

require

ordering information

- Association between TGC and cognitive tasks that require order

information (n-back task and non-n-back task)

- These results were not influenced by clinical diagnosis

- TGC was not associated with tasks that do not require ordering

information

- No association between diagnosis and TGC

Goodman et al. (2018) EEG

Frontal cortex

X 98 participants

X Alzheimer’s dementia,

mild cognitive

impairment patients, and

healthy control

X The association between

theta/gamma CFC and

WM in patients with mild

cognitive impairment and

Alzheimer’s dementia

patients was examined

N-back task - TGC was the lowest in patients with Alzheimer’s dementia, followed

by mild cognitive impairment patients and finally healthy control

(Continued)
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TABLE 1 | Continued

References Recording method Study details Task(s) Main findings

Tseng et al. (2019) EEG

Frontal and parietal

regions

X 36 healthy participants

X Examined theta/gamma

PAC during musical

memory retrieval

Musical memory

task

- Enhanced theta/gamma PAC during musical memory retrieval was

observed in the frontal and parietal cortices

Graetz et al. (2019) EEG

Frontal and occipital

X 22 participants

X To examine the

processes behind

memorization of

repeatedly

presented stimuli

continuous item

recognition task

with up to five

presentations per

item

- At second presentation–theta amplitudes peaked

- After second presentation—reduction in alpha suppression

- After third presentation—in response time and a reduction in frontal

theta/gamma PAC were observed

Fernández et al. (2021) EEG

Frontal and posterior

cortices

X 25 participants

X Studying weather WM

loads affects the

interaction between

brain oscillations in

different brain cortices

Delayed-

matching-to-

sample with

different WM loads

- PAC between theta phase and beta/gamma amplitude was

modulated by WM load

Alpha/gamma coupling

Voytek et al. (2010) iEEG

Whole cortex

X 2 patients with

intractable epilepsy

X Alpha/theta and

gamma coupling

Two non-visual

(verb generation

phoneme and

word repetition,

and phoneme and

word target

detection) and two

visual tasks

(lateralized visual

target detection

task and a visual

context task)

- Theta and alpha phase modulated gamma amplitude

- Over the anterior brain cortices, theta PAC is higher than alpha PAC,

and alpha PAC over visual cortices was high during visual tasks

Pinal et al. (2015) EEG

Frontal and posterior

cortices

X 20 young adults and 20

elderly

X Examined brain

oscillatory activity in

young and elderly during

delayed

match-to-sample task

X Alpha/gamma coupling

Delayed

match-to-sample

task

- In contrast to young participants, elderly participants maintained

synchronization in the resting state network and lacked the ability to

synchronize frontoparietal task-related network activities

(alpha-gamma) during task performance

Park et al. (2016) MEG

Early visual cortex

(occipital lobe)

X 23 participants

X Examined the dynamic

interactions between

alpha and gamma

oscillations implicated in

visual memory process

X

X Alpha/gamma coupling

Visual memory

task (remember or

not remember

presented

pictures)

- Decrease in alpha power and increase in alpha phase and gamma

power during recall of images

Popov et al. (2018) MEG

Early visual cortex

(dorsal and ventral

visual streams)

X 83 participants

X Examined the

relationship between

brain oscillations (fast

and slow frequencies)

and behavioral

outcomes

X Alpha/beta and gamma

power/power coupling

N-back task - Increased alpha/beta and gamma power/power interactions in early

visual cortex (specifically dorsal and ventral visual streams) were

found when n-back task demands were increased

Other types of cross-frequency coupling

Daume et al. (2017a) MEG

Left inferior temporal

cortex

X 27 participants

X Theta/alpha phases and

beta amplitude PAC

Visual delayed

match-to-sample

task

- Interaction between theta/alpha phases and beta amplitude was

demonstrated in left inferior temporal cortex using recordedMEG data.

In this study, while participants completed visual delayed match-to-

sample task, an increase in the power of beta and gamma oscillations

and a decrease in the power of theta/alpha oscillations were observed

in visual sensory areas during the delay period

- The left inferior temporal cortex was connected to the prefrontal

cortex via increased theta/alpha coupling

(Continued)
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TABLE 1 | Continued

References Recording method Study details Task(s) Main findings

Siebenhühner et al.

(2016)

Magneto-

Electroencephalography

Fronto-Parietal, dorsal

attention, and visual

areas

X 12 participants

X Theta and alpha–gamma

coupling

X Alpha and

beta-gamma coupling

Delayed

match-to-sample

visual WM task

- Enhanced couplings between theta and alpha–gamma and between

alpha and beta-gamma bands during WM maintenance in

fronto-parietal, dorsal attention and visual areas

Rodriguez-Larios and

Alaerts (2019)

EEG

Posterior

frontotemporal area

X 51 participants

X Alpha-theta

phase synchrony

Arithmetic task - Increased alpha/theta phase synchrony was associated with

improved arithmetic task outcomes

Dimitriadis et al. (2016) EEG

Parieto-Occipital and

frontal cortices

X 16 young adults

X Investigated the

functional coupling

between WM

sub-systems during

arithmetic task

performance

X Assessed correct and

wrong responses

Arithmetic task

with five cognitive

demand levels

- PAC (frontal theta phase and parieto-occipital alpha amplitude)

strength decreased with increasing difficulty of both correct and

incorrect trials

Daume et al. (2017b) MEG

Left inferior temporal

cortex and medial

temporal lobe

X 29 participants

X Examined whether

increased low-frequency

phase synchronization

between sensory areas

is associated with

audio-visual WM

compared to visual WM

X Theta/beta cross-

frequency coupling

Audio-Visual

delayed

match-to-sample

task

- Increased theta/beta PAC during the WM delay period was observed

in the medial temporal lobe and phase synchronization (theta rage)

was stronger than that of the lateral prefrontal cortex in audio-visual

WM compared to visual WM

- Increased phase synchronization between medial temporal lobe and

temporo-occipital areas in beta-band frequency

iEEG, intracranial electroencephalography; TGC, theta/gamma coupling; PAC, phase- amplitude coupling; WM, working memory; CFC, cross-frequency coupling; EEG,

electroencephalography; MEG, magnetoencephalography; tACS, transcranial alternating current stimulation.

theta-gamma coupling (TGC), and WM performance (Schack
et al., 2002; Demiralp et al., 2007; Mizuhara and Yamaguchi,
2011; Bahramisharif et al., 2018; Biel et al., 2021). Theta/gamma
PAC is found in the hippocampus and other brain structures
(Maris et al., 2011; Belluscio et al., 2012; van der Meij et al.,
2012; Colgin, 2015) and provides a code for representing
and maintaining the multiple WM items-theta/gamma neural
codes (Axmacher et al., 2010; Lisman and Jensen, 2013). The
theta/gamma neural code hypothesis posits that the conserved
memory items are registered via theta-nested gamma cycles in
the sensory regions. Accordingly, the theta-gamma neural code
coordinates communication between the different brain cortices
duringmemory and sensory processes (Lisman and Jensen, 2013)
and is specifically correlated to theWM requirements (Park et al.,
2013).

Several studies have used intracranial EEG data in patients
with epilepsy along with the behavioral outcomes to demonstrate
the association between theta/gamma CFC across different brain
regions and WM performance (Canolty et al., 2006; Rizzuto
et al., 2006; Axmacher et al., 2010; Freunberger et al., 2011;
Chuderski, 2016; Chai et al., 2018). The results of these studies
can be summarized as follows: theta/gamma PAC distributed
across the cortex and the strength of TGC increased with more
cognitively demanding WM tasks. Moreover, a significant effect
was observed when the gamma oscillations were detected in
the trough of theta cycles (Canolty et al., 2006). In general, the

theta troughs and peaks have different functions: WM retrieval
occurs during the peaks, whereas WM encoding occurs during
the troughs (Rizzuto et al., 2006). Axmacher et al. found that the
WMmaintenance is associated with the TGC in the hippocampus
and the modulation of beta/gamma amplitude and theta activity
were associated with a relatively large number of WM items
(Axmacher et al., 2010). On the other hand, Chaieb et al. observed
theta and beta/gamma phase-phase coupling in the hippocampus
during the maintenance of multiple WM items (Sternberg WM
task) in pre-surgical patients with epilepsy (Chaieb et al., 2015).
All these studies are summarized in Table 1.

Cross-frequency coupling supports the organization of brain
rhythms and is present during a range of cognitive functions.
However, little is known about whether and how long-range CFC
across the distant brain regions subserves WM. Here we report
that theta–slow gamma coupling between the hippocampus and
medial prefrontal cortex (mPFC) is augmented in a genetic
mouse model of cognitive dysfunction. This increased CFC
is observed specifically when the mice successfully perform a
spatial WM task. In wild-type mice, increasing task difficulty
by introducing a long delay or by optogenetically interfering
with encoding, also increases the theta–gamma coupling during
correct trials. Finally, the epochs of high hippocampal theta–
prefrontal slow gamma coupling are associated with the increased
synchronization of neurons within the mPFC. These findings
suggest that the enhancement of theta–slow gamma coupling
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reflects a compensatory mechanism to maintain spatial WM
performance in the setting of increased difficulty. The association
between WM and theta-gamma PAC in the frontal, parietal,
occipital, and posterior cortices has been reported in several
studies using the different tasks (pictorial recognition tasks,
delayed match-to-sample visual WM task, verbal delayed match
to sample task, delayed figure recall, n-back task, etc.) to
demonstrate the association of interest by using the EEG
recordings (Griesmayr et al., 2010; Holz et al., 2010; Park et al.,
2011; Friese et al., 2013; Köster et al., 2014; Lee and Yang, 2014;
Graetz et al., 2019; Tseng et al., 2019; Fernández et al., 2021).
The lowest level of TGC coupling was found in the patients
with Alzheimer’s dementia, followed by the patients with MCI
and finally healthy controls (Goodman et al., 2018). All the
studies showed modulations in the theta-gamma CFC related
to correctly identified/retrieved items. Besides that, a decrease
in the prefrontal and occipital alpha oscillatory activities was
observed by Friese et al. (2013). The details of the studies are
summarized in Table 1. The combined effect ofWM training and
transcranial direct current stimulation (tDCS) on the behavioral
changes was investigated using the EEG features and cognitive
task scores, and it was found that an increase in PAC between
the prefrontal theta oscillations and temporo-parietal gamma
oscillations was associated with the improvement in behavioral
task scores, and more prominent improvement was found when
the gamma waves coincided near the theta peaks (Jones et al.,
2020).

The theta/gamma PAC strength is influenced by the oscillatory
activities of other frequency bands; alpha amplitude influenced
TGC in the two intracranial electroencephalography (iEEG)
experiments that used different WM tasks (Leszczyński et al.,
2015). Sauseng et al. found that repetitive TMS at alpha frequency
suppressed distracting information and could influence the STM
capacity (Sauseng et al., 2009). On the other hand, delta-alpha
coupling influenced TGC and supported switching between the
WMmodes in the hippocampal region (Leszczyński et al., 2015).

Alpha-Gamma Coupling and WM
The default mode network (DMN) arises from the medial
prefrontal cortex, the posterior cingulate cortex, and the inferior
parietal cortex (Buckner et al., 2008). It is associated with episodic
memory and self-referential thinking (Buckner et al., 2008;
Knyazev et al., 2011; Weiler et al., 2014). The activity of DMN
is higher during the resting state as compared with the task-
performing state (Buckner et al., 2008). Indeed, an association
between the DMN and WM networks has been suggested where
DMN nodes could be activated during the memory phases (Hahn
et al., 2007; Vilberg and Rugg, 2008; Daselaar et al., 2009).
Moreover, the activity of DMN was mediated by alpha and beta
oscillations, and the connectivity between some DMN parts is
correlated to the alpha oscillatory activities (Hacker et al., 2017;
Tang et al., 2017). A decrease in DMN functional connectivity
and alpha power has been detected in patients with AD (Jeong,
2004; Zhang et al., 2009). In contrast to the young adults, old
adults maintained synchronization in the resting state network

and lacked the ability to synchronize the frontoparietal task-
related network activities during the task performance (Pinal
et al., 2015).

The electrophysiological studies have shown that when the
content of WM changes from multiple items to distinct visual
or spatial information, the oscillatory theta activities are replaced
by alpha ones (Fries et al., 2001; Sauseng et al., 2005). Moreover,
the studies examining the brain oscillations during the WM
delay period found that the theta oscillatory activities occurred
predominantly in the tasks that required sequential multipleWM
item coding, while the alpha-oscillatory activities occurred in
the tasks that required retention of visual or spatial information
presented simultaneously (Roux and Uhlhaas, 2014). CFC
between the parieto-occipital alpha activity and topographically
distributed gamma activity is involved in prioritizing different
visual representations inWM and deficits in the prefrontal cortex
disrupt this process (Davoudi et al., 2021).

Alpha/gamma coupling has been demonstrated during visual
WM maintenance in patients with epilepsy (Voytek et al., 2010).
Park et al. used MEG data from healthy participants who were
asked to recall the displayed images and found a reduction in the
alpha power and an enhancement of alpha/gamma PAC during
the process of recalling the images (Park et al., 2016). Moreover,
alpha/beta and gamma power in the early visual cortex (in the
dorsal and ventral visual streams) were modulated in response to
the demands of the n-back task (Popov et al., 2018). The details
of the studies are summarized in Table 1. Presumably, the theta
and alpha activities are localized across different EEG recording
sites. This assumption is supported by electrocorticography
recordings, which showed that the alpha/gamma coupling was
detected in the parietal–occipital cortices during the tasks
requiring visual information processing, whereas theta/gamma
PAC was predominantly observed in the frontotemporal regions
during non-visual tasks (Voytek et al., 2010).

Other Types of CFC and WM
In principle, PAC can be generated in many ways; one source of
the low-frequency band can be coupled to one or more sources
of high-frequency bands. Thus, PAC is a general phenomenon
and is not restricted to the theta/gamma frequencies. WM affects
PAC in different ways; as WM could increase the PAC strength
in some patterns and decrease it in others (Maris et al., 2011).
CFC between the neural oscillations other than theta/gamma
and alpha/gamma has been demonstrated during the WM
maintenance as follows: (1) enhanced coupling between the
theta/alpha phases and amplitude of beta has been demonstrated
in temporal cortex during the visual delayed match-to-sample
task (Daume et al., 2017a), (2) improved beta-theta PAC in
the medial temporal lobe during the WM delay period (audio-
visual delayed match to sample task) and enhanced phase
synchronization between the medial temporal lobe and temporo-
occipital areas in the beta band frequency range (Daume et al.,
2017b), (3) improved the couplings between theta and alpha–
gamma and between alpha and beta-gamma bands during the
WM maintenance (delayed match-to-sample visual WM task)
in the frontoparietal, dorsal, and visual areas (Siebenhühner
et al., 2016), (4) increased alpha/theta phase synchrony was
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associated with the improved arithmetic task outcomes in
the posterior and frontoparietal regions (Rodriguez-Larios and
Alaerts, 2019), (5) the PAC (frontal theta phase and parieto-
occipital alpha amplitude) strength decreased with increasing
difficulty of both the correct and incorrect responses to the
arithmetic tasks (Dimitriadis et al., 2016). The details of the
studies are summarized in Table 1.

Frequency-Tuned Non-invasive Stimulation CFC and

WM
The non-invasive brain stimulation methods are a potent way
to study the causal relationship between brain activities and
behavioral outcomes. These methods could causally modulate
the behavior using electric or magnetic fields (Walsh and
Cowey, 2000; Miniussi and Ruzzoli, 2013). Several studies have
investigated the effect of frequency-tuned tACS and TMS on
the WM performance with mixed results (Jaušovec et al., 2014;
Hoy et al., 2015; Chander et al., 2016; Alekseichuk et al., 2017;
Kuhnke et al., 2017; Sreeraj et al., 2017; Borghini et al., 2018;
Wolinski et al., 2018; Jones et al., 2019; Beynel et al., 2020; Kehler
et al., 2020; Papazova et al., 2020) and others. In the context of
WM and CFC, a study was conducted to demonstrate the direct
causality between the CFC andWMperformance, the interaction
between theta and gamma bands in the prefrontal cortex was
externally modulated by CFC tACS protocol (Alekseichuk et al.,
2016). The volunteers were instructed to perform the tasks
during the stimulation and were assigned into three groups:
sham stimulation (first group), continuous single-frequency
theta stimulation (second group), and CFC tACS between theta
and gamma frequencies (third group). Based on the behavioral
and EEG data, the positive effect of continuous low-frequency
entrainment on the WM performance was canceled out by
the synchronization of high gamma bursts with the troughs of
theta cycles (Alekseichuk et al., 2016). In contrast, a significant
improvement in the WM performance was found when high
oscillations gamma bursts (80–100-Hz frequency range) were
embedded in the peaks of theta cycles (Alekseichuk et al., 2016).

DISCUSSION

Overall, this review reports the association between the CFC
and WM performance, almost all the studies showed a
relationship between the CFC in different brain regions andWM
performance, especially WMmaintenance. Theta/gamma PAC is
the most commonly reported CFC model in this context. The
causal role of oscillations in memory processes can be realized by
modulating endogenous oscillations and precisely determining
the behavioral effects of such modulation. Entrainment of
oscillations can be achieved by variousmethods and non-invasive
brain stimulation is one of them. Non-invasive brain stimulation
is a robust tool to establish a causal relationship between the
neuronal oscillations at the mesoscopic scale and their role in
cognition (Romei et al., 2011). The disadvantages of non-invasive
brain stimulation methods are (1) high inter-subject variability
(López-Alonso et al., 2014); (2) weak and inconsistent results of
different studies (Ziemann and Siebner, 2015). (30) inconsistent
long-lasting aftereffects (Veniero et al., 2015). Frequency-tuned

non-invasive stimulation is a recent approach in neuroscience,
in which the frequency of transcranially applied electromagnetic
currents is matched to the ongoing oscillatory components with
the aim of altering the behavior (Veniero et al., 2015; Albouy
et al., 2018). WM can be manipulated/modulated by various
approaches, and frequency-tuned non-invasive brain stimulation
with an electric or magnetic field is one of them. Over the
past two decades, there has been a long list of studies reporting
the effects of tACS and TMS on WM (Jaušovec and Jaušovec,
2014; Hoy et al., 2015, 2016; Alekseichuk et al., 2016; Chander
et al., 2016; Feurra et al., 2016; Kuhnke et al., 2017; Jones
et al., 2019; Beynel et al., 2020; Kehler et al., 2020) and others.
In general, theta-tACS improved the WM outcomes in the
majority of studies, whereas the effect of gamma-tACS, alpha-
tACS, etc., on WM appears inconsistent. This is partly due to
the heterogeneity of the experimental setups and stimulation
sites (frontal, parietal, and occipital) used in these studies. The
CFC-tACS protocols have been investigated in several domains
(learning, WM, and verbal-long term memory) (Alekseichuk
et al., 2016; Lara et al., 2018; Turi et al., 2020; Riddle et al.,
2021) and have recently gained popularity among the researchers.
In principle, the peak-coupled tACS (gamma bursts nested into
theta peaks) protocols mimic the endogenous theta-gamma CFC
phase specificity needed for cognitive control (Smith et al., 2015).
Thus, onemight expect that the peak-coupled theta-gamma tACS
would improve cognitive functions compared with the sham
stimulation. In the context of WM, the causal role of CFC was
demonstrated by Alekseichuk et al. (2016) in which exogenously
applied theta and gamma CFC tACS were adjusted to the
intrinsic continuous theta and repetitive gamma waves in the
prefrontal cortices of healthy participants. Interestingly, theta-
gamma tACS boosted working memory more than theta-tACS
alone, and the effect was more pronounced when the gamma
bursts (in the range of 80–100Hz) were over the peak of the
theta cycles (peak-coupled tACS). Alekseichuk et al. (2016)
and Turi et al. (2020) investigated the effect of theta/gamma
CFC tACS protocols aimed at the stimulating frontal and
cingulate cortices on Go/NoGo monetary reward-based and
punishment-based instrumental learning task outcomes. They
used different theta/gamma CFC tACS protocols, in contrast to
the results of (Alekseichuk et al., 2016) This study showed no
consistent reinforcement effect of peak-coupled tACS, whereas
trough-coupled tACS (gamma bursts were nested into theta
troughs) impaired cognitive control (Alekseichuk et al., 2016;
Turi et al., 2020). Furthermore, Riddle et al. found that the
delta/beta peak-coupled tACS (beta oscillations in the prefrontal
cortex were nested into the peak of delta cycles in the prefrontal
cortex) and theta/gamma peak-coupled tACS (gamma bursts in
the parietal-occipital were nested into the peak of theta cycles
in the prefrontal cortex) modulated the cognitive task outcomes
(Riddle et al., 2021). Additionally, Lara et al. examined the
effect of theta/gamma CFC tACS during the verbal long-term
memory encoding, the results of this study were consistent
with those of Lara et al. (2018). Thus, the effect of CFC-
tACS on the brain function outcomes could vary depending
on the domain tested (WM, learning, long-term memory,
etc.), brain regions activated, and experimental setups used. In
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general, the WM performance is sensitive to the phase and
rhythm of externally applied tACS (Alekseichuk et al., 2016),
as well as to the area of stimulation (brain cortices) and the
experimental setups. In the context ofWMandCFC, Alekseichuk
et al. (2016) study opens the way for the promising research
on frequency tuned non-invasive brain stimulation protocols
to modulate the CFC activities instead of only modulating
the narrow banded oscillatory activities. Furthermore, future
studies should investigate the effect of CFC-tACS on WM in
the healthy participants and in the patients with WM deficits
as the two groups differ substantially in their susceptibility
to tACS effect (Hoy et al., 2015, 2016; Dallmer-Zerbe et al.,
2020).

In summary, the association between CFC and WM
has been demonstrated in many studies. The effect of CFC
tACS on the WM outcomes needs to be comprehensively
studied using different brain regions involved in the WM

processing and different experimental setups to achieve
a consistent effect that is associated with the acceptable
behavioral improvement and minimal tACS-induced side
effects. Innovative approaches to validate the tACS effects in
realistic settings are needed before CFC-tACS can modulate
everyday cognitive performance and be used as a promising
therapeutic tool.
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