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Objective: Diabetic kidney disease (DKD) leads to low high albuminuria and gradually
progresses to very high albuminuria with kidney insufficiency. However, about 20–40% of
DKD is normoalbuminuric DKD (NADKD), which has impaired kidney function but normal
urine albumin. This study is to investigate the urine metabolomic profiles of patients with
NADKD and albuminuria DKD (ADKD).

Methods: In total, 95 patients were divided into a simple diabetes mellitus group
(SDM group), an ADKD group, and a NADKD group. All subjects were analyzed for
urine metabolites using non-targeted metabolomics based on ultra-performance liquid
chromatography – tandem mass spectrometry.

Results: The urine metabolomic profiles of the SDM group, NADKD group, and ADKD
group were significantly different, and 65 different metabolites were identified among
the three groups. Metabolic pathway analysis of these differential metabolites found that
the top three significantly changed metabolic pathways were linoleic acid metabolism,
citrate cycle, and, arginine and proline metabolism. There are 12 metabolites enriched in
these three metabolic pathways. In detail, compared with those in the SDM group, the
levels of γ-linolenic acid in the ADKD group were increased significantly, while the levels
of succinic acid, cis-aconitic acid, citric acid, L-proline, L-erythro-4-hydroxyglutamate,
N-methylhydantoin, N-carbamoylputrescine, spermidine, and 5-aminopentanoic acid
were reduced significantly; compared with those in the NADKD group, the levels of
linoleic acid, γ-linolenic acid, and L-malic acid in the ADKD group were increased
significantly (P < 0.05), while the levels of L-proline, L-erythro-4-hydroxyglutamate,
N-carbamoylputrescine, and spermidine were significantly reduced (P < 0.05). However,
there were no significant difference between the SDM group and NADKD group
(P > 0.05).

Conclusion: The urine metabolomic profiles between the NADKD group and the ADKD
group are significantly different. Specifically, these two groups have distinct levels of
linoleic acid, γ-linolenic acid, L-malic acid, L-proline, L-erythro-4-hydroxyglutamate,
N-carbamoylputrescine, and spermidine.
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INTRODUCTION

Diabetic kidney disease (DKD) is the most common
microvascular complication in patients with diabetes mellitus
(DM). Approximately 20–40% of DM patients worldwide will
develop DKD (American Diabetes Association, 2019b; Akin and
Boluk, 2020). Persistent albuminuria [urine albumin – creatinine
ratio (UACR) > 30 mg/g] is one of the clinical characteristics
of DKD patients and also one of the laboratory indicators
used in the clinical diagnosis of DKD. However, recent studies
(Pichaiwong et al., 2019; Viswanathan et al., 2019) have shown
that although many patients with DM have kidney glomerular
filtration dysfunction after kidney injury, they have normal
albuminuria. This is called normoalbuminuric DKD (NADKD)
(Gohda et al., 2018).

There is a significant distinction in physiopathology between
NADKD patients and albuminuria DKD (ADKD) patients.
First of all, NADKD patients are generally female and older
(Lamacchia et al., 2018; Penno et al., 2018). Secondly, NADKD
patients are prone to large vessel damage and atherosclerosis of
the kidney (Ekinci et al., 2013; Penno et al., 2018). Therefore,
some studies speculate that the occurrence of NADKD may
be related to genetic factors, estrogen levels, and kidney injury
patterns in patients with NADKD (Chen et al., 2017; Silva et al.,
2017; Yamanouchi et al., 2019). However, prospective studies
exploring the pathogenesis of NADKD at the metabolomics
level are limited.

Herein, we used ultra-performance liquid chromatography –
tandem mass spectrometry (UPLC–MS/MS) to analyze the
metabolomic profiles of NADKD and ADKD patients. Their
relationship with commonly used renal function indicators
was also analyzed. Our findings may provide insights for the
study of the pathogenesis of NADKD and the screening of
biomarkers for NADKD.

MATERIALS AND METHODS

Ethics Statement
This study was reviewed and approved by the Medical
Ethics Committee of Mianyang Central Hospital (Approval
Nos. S2014048 and S2018085), and all patients signed
informed consent.

Patients
The PASS 11.0.7 software (NCSS, United States) was used to
calculate the sample size and perform power analysis. When
there are three groups, 81 cases are needed for Correlation Power
Analysis, and 27 cases are needed for Multiple Comparisons.
Therefore, a total of 95 patients with DM who were treated
at Mianyang Central Hospital from June to August 2019
were selected. There were 44 females, aged 31–85 (average:
61.73 ± 12.51 years; median: 62 years), and 51 males, aged
33–89 (average: 55.67 ± 12.09 years; median: 53 years).
According to KDIGO 2012 clinical practice guidelines for
the Evaluation and Management of CKD (National Kidney
Foundation, 2013) and the levels of UACR and estimated

glomerular filtration rate (eGFR) levels, DM patients were
divided into three groups: (1) the SDM group (UACR < 30 mg/g
and eGFR ≥ 90 ml/min/1.73 m2, n = 30 cases); (2) ADKD group
(30 ≤ UACR < 300 mg/g and eGFR ≥ 45 ml/min/1.73 m2, n = 30
cases); (3) NADKD group (DKD patients with UACR < 30 mg/g
and 45 ≤ eGFR < 90 ml/min/1.73 m2, n = 35 cases). Inclusion
criteria included (1) age ≥ 18 years; (2) clinical diagnosis of
DM, which was in line with the American Diabetes Association
(ADA) criteria (American Diabetes Association, 2019b), and a
history of DM greater than 5 years; (3) for the DM group,
UACR ≤ 30 mg/g and eGFR ≥ 60 ml/min/1.73 m2; and (4)
a diagnosis of early DKD that met the ADA criteria for DM
microvascular complications (American Diabetes Association,
2019a). Exclusion criteria included (1) age <18 years; (2)
history of DM less than 5 years; (3) primary or secondary
kidney function injury caused by other reasons, such as rapid
rise in UACR in the short term, rapid decline in eGFR, or
non-DM diseases, such as interstitial kidney disease, kidney
stones, and nephrotic syndrome; (4) suffering from diseases that
affected urinary albumin secretion and eGFR, such as benign
and malignant tumors, hypertension, and urogenital infections;
(5) kidney transplantation; (6) menstruating, pregnant, and
lactating women.

Sample Collection
Venous blood (5.0 ml) was collected from each patient after
overnight fasting. Serum was isolated after centrifugation at
3,000 g for 15 min. After blood sample collection, midstream
urine sample of about 10.0 ml was collected. All samples were
collected at approximately the same time each day (between 8 and
10 am every day).

Measurement of Common Kidney
Function Indicators
The levels of serum creatinine (SCr), cystatin C (CysC), and
complement C1q (C1q) were detected using a LABOSPECT
008 AS automatic biochemical analyzer (Hitachi, Japan). The
detection methods were the sarcosine oxidase method for SCr
and transmission turbidimetry for CysC and C1q. The eGFR was
calculated using the eGFR formula developed by our laboratory
based on the Chinese population (Feng et al., 2013), i.e., eGFR
(ml/min/1.73 min) = 78.64 × CysC (mg/L)−0.964.

The urinary albumin and urine creatinine levels were
measured on an A25 automatic specific protein analyzer
(BioSystems, Spain) using transmission immunoturbidimetry
and the sarcosine oxidase method, respectively. The UACR was
calculated as UACR (mg/g) = urinary albumin (mg/L)/urine
creatinine (g/L).

UPLC–MS/MS
The urine sample was mixed with 80% methanol, vortexed, and
centrifuged at 10,000 g at 4◦C for 10 min. The supernatant was
collected, filtered using a 0.22 µm filter membrane, and then
analyzed by UPLC–MS/MS. An UltiMate 3000 high-performance
liquid chromatograph (Thermo, United States) was used for
chromatographic analysis. The chromatographic conditions were
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TABLE 1 | Clinical data of subjects (n = 95).

Group SDM (n = 30) NADKD (n = 30) ADKD (n = 35) χ2/F P

Male/female (n) 14/16 18/12 19/16 1.081 0.583

Age (year) 51.57 ± 1.763 61.87 ± 2.121M 61.49 ± 2.282M 9.188 0.000

UACR (mg/g) 15.585 (8.63, 19.91) 10.79 (8.14, 20.75) 92.10 (69.89, 144.53)MN 65.787 0.000

eGFR (ml/min/1.73 min) 98.70 (93.84, 105.47) 76.43 (60.07, 87.99)M 78.64 (56.86, 86.12)M 43.288 0.000

SCr (µmol/L) 55.95 (45.27, 70.68) 73.70 (62.92, 82.25)M 72.90 (55.10, 84.90)M 15.778 0.000

CysC (mg/L) 0.79 (0.74, 0.83) 1.03 (0.89, 1.32)M 1.00 (0.91, 1.40)M 42.910 0.000

C1q (mg/L) 218.50 (192.25, 246.98) 197.50 (170.25, 214.50) 205.00 (190.00, 233.00) 5.822 0.054

SDM, simple diabetes mellitus; NADKD, normoalbuminuric diabetic kidney disease; ADKD, albuminuria diabetic kidney disease; UACR, urine albumin/creatinine ratio;
eGFR, estimated glomerular filtration rate; SCr, serum creatinine; CysC, serum cystatin C; C1q, serum complement C1q subunit. Compared with SDM group, M P < 0.05.
Compared with NADKD group, NP < 0.05.

FIGURE 1 | Plots of PCA score. (A) PCA score plot in positive ion mode. (B) PCA score plot in negative ion mode.

as follows. Chromatographic separation was performed using an
ACQUITY UPLC R© HSS T3 (1.8 µm, 2.1 × 150 mm) column
(Waters, United States). The column temperature was 40◦C.
The flow rate was 0.25 ml/min. In positive ion mode, mobile
phase A was an aqueous solution containing 0.1% formic acid
(TCI, Japan), and mobile phase B was an acetonitrile (Thermo,
United States) solution containing 0.1% formic acid; in negative
ion mode, mobile phase A was 5 mmol/L of aqueous solution of
ammonium formate (Sigma, United States), and mobile phase B
was 100% acetonitrile. The gradient elution conditions were as
follows: 0–1 min, 98% mobile phase A; 1–9 min, 98–50% mobile
phase A; 9–12 min, 50–2% mobile phase A; 12–13.5 min, 2%
mobile phase A; 13.5–14 min, 2–98% mobile phase A; 14–17 min,
98% mobile phase A (positive ion mode); 14–20 min, 98% mobile
phase A (negative ion mode). The reagents were MS grade. A Q
Exactive Focus mass spectrometer (Thermo, United States) was
used for MS analysis with an ESI ion source. The MS conditions
were as follows: positive ion spray voltage 3.5 kV, negative ion
spray voltage 2.5 kV, sheath gas 30 arb and auxiliary gas 10
arb. Full scan was performed with a resolution of 70,000, and
the scan range was 81–1,000 Da. The secondary cracking was
carried out by high-energy-induced cracking with a collision
voltage of 30 eV.

ProteoWizard software was used to convert the raw data
into mzXML format. The XCMS package was used for
peak detection and normalization. Multivariate statistical

analysis was performed using R. Language ropls package.
The metabolites were identified using databases of Metlin1,
MoNA2, and HMDB3 and verified the metabolites using
the BioDeep metabolome database (BioNovoGene; Suzhou,
China). MetaboAnalyst4 was used for the analysis of
metabolic pathways.

Statistical Analysis
SPSS 25.0 was used for statistical analysis. Data of normal
distribution are expressed as mean ± SD. If there is homogeneity
of variance, ANOVA was used for comparisons among multiple
groups followed by LSD t-test; if not, Welch’s t-test was
performed for comparisons among multiple groups followed by
Dunnet’s T3 test. Measurement data of non-normal distribution
are expressed as median (interquartile range) [M (P25,
P75)]. Differences between groups were compared using the
independent-sample Kruskal–Wallis test. Comparisons of count
data among groups were compared using chi-square test.
Spearman’s correlation was used for correlation analysis. P< 0.05
was considered statistically significant.

1http://metlin.scripps.edu
2https://mona.fiehnlab.ucdavis.edu/
3http://www.hmdb.ca/metabolites
4http://www.Metaboanalyst.ca

Frontiers in Physiology | www.frontiersin.org 3 October 2020 | Volume 11 | Article 578799

http://metlin.scripps.edu
https://mona.fiehnlab.ucdavis.edu/
http://www.hmdb.ca/metabolites
http://www.Metaboanalyst.ca
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-578799 October 2, 2020 Time: 11:42 # 4

Feng et al. Urine Metabolomics of NADKD

FIGURE 2 | Plots of OPLS-DA score and permutation test. (A) OPLS-DA score plot in positive ion mode. (B) OPLS-DA score plot in negative ion mode.
(C) OPLS-DA permutation test plot in positive ion mode. (D) OPLS-DA permutation test plot in negative ion mode. The criterion for evaluating whether there is
overfitting in the OPLS-DA model is that the regression line at a blue Q2 point crosses or is less than 0 from the abscissa.

RESULTS

Clinical Data of Patients
The clinical data comparison of patients is shown in Table 1.
Among all factors, only age showed a normal distribution,
and the remaining factors, including UACR, eGFR, SCr,
CysC, and C1q, were non-normally distributed. Statistically,
there was no significant difference in sex and C1q among
SDM, NADKD, and ADKD (P > 0.05). However, age, UACR,
eGFR, SCr, and CysC had statistical differences among the
groups (P < 0.05). Pairwise comparison analysis showed
that compared with the SDM group, the age and CysC
of the NADKD group increased while eGFR decreased
(P < 0.05). Compared with the SDM group, the age,
UACR, SCr, and CysC of the ADKD group increased, while
eGFR decreases (P < 0.05). Compared with the NADKD
group, the ADKD group had a significant increase in
UACR (P < 0.05). There was no significant difference
between the NADKD group and ADKD group in the
common serum kidney function indicators such as SCr,
CysC, C1q, and eGFR.

Multivariate Statistical Analysis of
Metabolites
The UPLC-MS/MS method was used to detect all samples in
positive and negative ion modes, respectively, and the processed
data were subjected to multivariate statistical analysis. We
showed the original state of all sample data through the PCA
score plot. From the results of the PCA score plot, the sample was
basically within the Hotelling T-squared ellipse, and the urine
components of the SDM group, NADKD group, and ADKD
group did not achieve effective separation (Figures 1A,B).

To screen the significantly differential metabolites, we
performed orthogonal partial least squares-discriminant analysis
(OPLS-DA). The results showed that the SDM group, NADKD
group, and ADKD group could be separated in the positive
and negative modes (Figures 2A,B). The permutation test was
performed to evaluate whether there is overfitting in the OPLS-
DA models. In total, 100 random permutation tests were carried
out by R package ropls, which showed that there was no
overfitting (Figures 2C,D). The results showed that there were
differences in metabolic profiles among the SDM, NADKD,
and ADKD groups.
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FIGURE 3 | Differential metabolite heat map. The columns represent samples, the rows represent metabolites, and the relative content of the metabolites is
displayed by color. The heat map shows differential metabolites among SDM, NADKD, and ADKD groups.

Differential Metabolite Screening
Based on the analysis results of OPLS-DA and using the variable
importance for the projection (VIP) >1 and P < 0.05 as the
screening criteria, we screened out the differential metabolites
using the Metlin, MoNA, and BioDeep metabolome databases.
We found a total of 65 differential metabolites in the SDM,
NADKD, and ADKD groups, which were displayed as a heat
map (Figure 3).

Analysis of Metabolic Pathways
In order to understand the metabolic pathways that may be
involved in the occurrence of DKD, we used the MetaboAnalyst
database to perform pathway enrichment and topological analysis
of differential metabolites in urine. We screened out 43 metabolic
pathways (Figure 4A). According to the −log(P) value and
pathway impact score, the top three metabolic pathways were
selected, which were linoleic acid metabolism, citrate cycle,
and arginine and proline metabolism (Figure 4B). Meanwhile,
the metabolic pathway analysis results also showed that there
were 12 different metabolites enriched in these three metabolic
pathways, which were linoleic acid and γ-linolenic acid of
linoleic acid metabolism; succinic acid, L-malic acid, cis-aconitic

acid, and citric acid of citrate cycle; and L-proline, L-erythro-4-
hydroxyglutamate, N-methylhydantoin, N-carbamoylputrescine,
spermidine, and 5-aminopentanoic acid of arginine and proline
metabolism (Table 2).

Differential Metabolite Analysis
The non-parametric test was used to analyze the differential
metabolites enriched in linoleic acid metabolism, citrate cycle,
and arginine and proline metabolism pathways. Compared with
those in the SDM group, the levels of linoleic acid metabolism-
related metabolites γ-linoleic acid (F = −40.433, P = 0.000)
were increased significantly in the ADKD group, while the
levels of citrate metabolism (citrate cycle)-related metabolites,
including succinic acid (F = 18.019, P = 0.026), cis-aconitic acid
(F = 17.981, P = 0.026), and citric acid (F = 22.395, P = 0.003), and
arginine and proline metabolism-related metabolites, including
L-proline (F = 24.886, P = 0.001), L-erythro-4-hydroxyglutamate
(F = 29.643, P = 0.000), N-methylhydantoin (F = 19.562,
P = 0.013), N-carbamoylputrescine (F = 30.943, P = 0.000),
spermidine (F = 16.971, P = 0.040), and 5-aminopentanoic
acid (F = 19.262, P = 0.015) were reduced significantly in the
ADKD group. Compared with those in the NADKD group,
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FIGURE 4 | Metabolic pathway analysis. (A) Histogram of metabolic pathways. (B) Bubble diagram of metabolic pathways. Each bubble in the bubble diagram
represents a metabolic pathway. Color gradient and circle size indicate the significance of the pathway ranked by P-value (yellow: higher P-values and red: lower
P-values) and pathway impact score (the larger the circle, the higher the pathway impact score). According to the −log(P) value and pathway impact score, the top
three metabolic pathways were identified by name.

TABLE 2 | Analysis of the top three metabolic pathways.

Name −Log(P) Impact Compounds Pathway

Linoleic acid metabolism 2.811 0.656 Linoleic acid and γ-linolenic acid hsa00591

Citrate cycle 6.380 0.176 Succinic acid, L-malic acid, cis-aconitic acid, and citric acid hsa00020

Arginine and proline metabolism 4.122 0.147 L-Proline, L-erythro-4-hydroxyglutamate, N-methylhydantoin,
N-carbamoylputrescine, spermidine, and 5-aminopentanoic acid

hsa00330

the levels of linoleic acid metabolism-related metabolites of
linoleic acid (F = −16.414, P = 0.046) and γ-linolenic acid
(F = −46.967, P = 0.000) and the citrate metabolism-related
metabolite of L-malic acid (F = −18.438, P = 0.022) was
increased significantly in the ADKD group, while the levels
of arginine and proline metabolism-related metabolites of L-
proline (F = 24.152, P = 0.001), L-erythro-4-hydroxyglutamate
(F = 22.743, P = 0.003), N-carbamoylputrescine (F = 24.610,
P = 0.001), and spermidine (F = 16.505, P = 0.048)
were reduced significantly in the ADKD group. However,
there was no significant difference in the levels of these
metabolites between the SDM group and the NADKD group
(Figure 5).

Correlation Analysis of Different
Metabolites and Kidney Function
Indicators
Spearman correlation was used to analyze the correlation
of linoleic acid, γ-linolenic acid, succinic acid, L-malic
acid, cis-aconitic acid, citric acid, L-proline, L-erythro-4-
hydroxyglutamate, N-methylhydantoin, N-carbamoylputrescine,
spermidine, and 5-aminopentanoic acid with common kidney

function indicators. As shown in Table 3, eGFR was significantly
positively correlated with succinic acid, cis-aconitic acid, citric
acid, L-erythro-4-hydroxyglutamate, N-methylhydantoin,
N-carbamoylputrescine, and 5-aminopentanoic acid, while
significantly negatively correlated with γ-linolenic acid. CysC was
significantly positively correlated with γ-linolenic acid, whereas
significantly negatively correlated with succinic acid, cis-aconitic,
citric acid, L-erythro-4-hydroxyglutamate, N-methylhydantoin,
N-carbamoylputrescine, and 5-aminopentanoic acid. SCr
was significantly negatively correlated with succinic acid,
cis-aconitic, citric acid, and 5-aminopentanoic acid. C1q
was significantly positively correlated with γ-linolenic acid,
succinic acid, and L-malic acid. UACR was significantly
positively correlated with linoleic acid, γ-linolenic acid, L-
malic acid, while being significantly negatively correlated
with L-erythro-4-hydroxyglutamate, N-carbamoylputrescine,
spermidine, and 5-aminopentanoic acid. Additionally, cis-
aconitic acid had the strongest correlation with eGFR (r = 0.499,
P = 0.000) and CysC (r = −0.501, P = 0.000); succinic
acid had the strongest correlation with SCr (r = 0.296,
P = 0.000) and C1q (r = 0.265, P = 0.009); and γ-linolenic
acid had the strongest correlation with UACR (r = 0.812,
P = 0.000).
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FIGURE 5 | The box plot of normalized intensity peak areas of differential metabolites. Compared with the SDM group, MP < 0.05. Compared with the NADKD
group, NP < 0.05.

DISCUSSION

Metabolomics is a detection technique with the advantages
of high resolution, high throughput, and high sensitivity.
According to different research purposes, metabolomics can
be divided into targeted and non-targeted metabolomics
analysis. Non-targeted metabolomics is based on limited related
research and background knowledge. It can systematically and
comprehensively analyze the metabolites, thus obtaining a
large amount of metabolite data and identifying differential
metabolites (Johnson et al., 2016). It has been widely used in the
research of many diseases, such as lung cancer (Seow et al., 2019),
pancreatic cancer (Shu et al., 2018), prostate cancer (Jayaraman
et al., 2018), heart disease (Li et al., 2016), and liver disease (Dong
et al., 2017). Recently, the metabolomics related to the occurrence
and development of DKD has attracted much attention (Rhee,
2015). Although there have been some reports on metabolomics
in DKD patients, these studies (Chen et al., 2018; Tang et al.,
2019) have mostly focused on DKD patients with elevated urinary
albumin. However, studies on NADKD patients have been rare.

This study used UPLC-MS/MS to analyze the urine
metabolites of NADKD patients and ADKD patients. PCA
results showed that the urine components of SDM, NADKD,
and ADKD could not be effectively separated. We speculate
that the main reason is that PCA is an unsupervised analysis

method, which pays more attention to differences between
groups. When the differences within groups are too large due
to individual differences in subjects or daily diet and other
factors, PCA cannot eliminate the differences within groups,
leading to omission of differential metabolites between groups
(Bradley and Robert, 2013). Therefore, we further performed
OPLS-DA. The results showed that the SDM group and the
NADKD group could be clearly distinguished from the ADKD
group, indicating that the urine metabolites of the NADKD
group and ADKD group are significantly different. There were
65 different metabolites with significant changes among the
three groups. Subsequently, metabolic pathway analysis of
these differential metabolites found that the top three metabolic
pathways with significant changes were linoleic acid metabolism,
citrate cycle, and arginine and proline metabolism and that there
were 12 different metabolites enriched in these three metabolic
pathways, including linoleic acid, γ-linolenic acid, succinic acid,
L-malic acid, cis-aconitic acid, citric acid, L-proline, L-erythro-4-
hydroxyglutamate, N-methylhydantoin, N-carbamoylputrescine,
spermidine, and 5-aminopentanoic acid.

Mitochondrial dysfunction is one of the mechanisms that
promote the occurrence and development of DKD (Yang et al.,
2017). The levels of metabolites produced during the citrate cycle
are mostly affected by the mitochondria. Studies have found
that compared with DM without renal damage, the levels of
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TABLE 3 | Correlation analysis of differential metabolites and kidney function indicators.

Indicator Statistic eGFR CysC SCr C1q UACR

Linoleic acid r 0.055 −0.056 0.007 0.035 0.328

P 0.598 0.592 0.943 0.738 0.001

γ-Linolenic acid r −0.228 0.229 0.126 0.202 0.812

P 0.026 0.026 0.222 0.050 0.000

Succinic acid r 0.335 −0.336 −0.296 0.265 −0.158

P 0.001 0.001 0.004 0.009 0.126

L-Malic acid r 0.049 −0.048 −0.031 0.257 0.299

P 0.638 0.643 0.766 0.012 0.003

cis-Aconitic acid r 0.499 −0.501 −0.231 0.163 −0.150

P 0.000 0.000 0.024 0.115 0.147

Citric acid r 0.413 −0.413 −0.257 0.063 −0.174

P 0.000 0.000 0.012 0.543 0.091

L-Proline r 0.038 −0.039 −0.048 −0.092 −0.179

P 0.715 0.708 0.642 0.376 0.083

L-Erythro-4-hydroxyglutamate r 0.232 −0.234 −0.170 −0.061 −0.471

P 0.024 0.022 0.100 0.556 0.000

N-Methylhydantoin r 0.241 −0.236 −0.060 0.131 −0.194

P 0.019 0.021 0.561 0.206 0.060

N-Carbamoylputrescine r 0.253 −0.251 −0.125 0.155 −0.367

P 0.013 0.014 0.226 0.134 0.000

Spermidine r −0.061 0.058 −0.112 −0.036 −0.231

P 0.557 0.577 0.281 0.730 0.025

5-Aminopentanoic acid r 0.424 −0.424 −0.243 0.064 −0.222

P 0.000 0.000 0.018 0.540 0.031

UACR, urine albumin/creatinine ratio; eGFR, estimated glomerular filtration rate; SCr, serum creatinine; CysC, serum cystatin C; C1q, serum complement C1q subunit.

metabolites such as citric acid, cis-aconitic acid, glycolic acid,
and aconitic acid in the urine of DKD patients are significantly
reduced, suggesting that DKD patients may have mitochondrial
dysfunction (Sharma et al., 2013; Saulnier et al., 2018). In this
study, we found that compared with the SDM group, the levels of
succinic acid, cis-aconitic acid, and citric acid in the ADKD group
were reduced significantly, which was consistent with previous
reports (Sharma et al., 2013; Saulnier et al., 2018). However, no
significant difference was found between the SDM group and
the NADKD group. Compared with the ADKD group, only the
level of L-malic acid was significantly increased in the NADKD
group. Meanwhile, the correlation analysis showed that there
was no correlation between L-malic acid and eGFR. Moreover,
although L-malic acid had a positive correlation with UACR, it
was a weak positive correlation. Thus, the changes in citrate cycle
were different in the NADKD group and the ADKD group. We
speculate that this may be related to the different pathogeneses of
NADKD and ADKD.

L-Proline is a substrate for collagen synthesis and can be
metabolized in vivo by L-arginine. It participates in tissue
repair with L-arginine and other metabolites. L-Proline and
its analogs can reduce kidney injury caused by toxins or DM
by reducing oxidative stress (Kumari et al., 2016; Li et al.,
2019). In this study, we showed that compared with the SDM
group, the levels of arginine and proline metabolism-related
metabolites, including L-proline, L-erythro-4-hydroxyglutamate,
N-methylhydantoin, N-carbamoyl putrescine, spermidine, and

5-aminopentanoic acid, in the ADKD group were significantly
reduced. Compared with the NADKD group, the levels of L-
proline, L-erythro-4-hydroxyglutamate, and spermidine in the
ADKD group were significantly reduced. Thus, compared with
those in the SDM group and the NADKD group, the levels of
most metabolites related to arginine and proline metabolism
in the urine of the ADKD group were decreased significantly
or showed a downward trend. In addition, except for L-
proline, the other five arginine and proline metabolism-related
metabolites were negatively correlated with UACR; and except
for L-proline and spermidine, the other four arginine and proline
metabolism-related metabolites were positively correlated with
eGFR, while being negatively correlated with CysC. This suggests
that metabolites related to arginine and proline metabolism have
a certain correlation with renal function. At present, studies have
reported that patients with DKD or non-DM kidney diseases
have abnormal metabolism of arginine and proline (Sangeeta and
Pradeep, 2016; Abbiss et al., 2019); however, there is no report
on the correlation between arginine and proline metabolism-
related metabolites and NADKD. Whether there is a relationship
between the metabolism changes of arginine and proline and the
occurrence of NADKD and whether they are markers of NADKD
still need further study.

Linoleic acid and linolenic acid are essential polyunsaturated
fatty acids with anti-inflammatory properties. Proper intake of
these polyunsaturated fatty acids plays an active role in improving
kidney function in patients with DKD (Garman et al., 2009;
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Mali et al., 2016; Dos Santos et al., 2018). However, it is shown
that the levels of free fatty acids such as linoleic acid and
arachidonic acid in the urine of patients with DKD are
significantly increased (Sasaki et al., 2009). Under normal
circumstances, β-oxidation of fatty acids is the main source of
energy for proximal renal tubular cells. Free fatty acids can bind
to albumin, filtered by the glomerulus, and reabsorbed in the
renal tubules (Xu et al., 2015; Khan et al., 2018). When DKD
patients suffer from kidney damage, as the excretion of urinary
albumin increases, the fatty acids filtered by the glomerulus
also increase, resulting in excessive free fatty acids bound to
albumin being overloaded and reabsorbed in the renal tubules
(Kamijo et al., 2002; Cobbs et al., 2018). This will cause severe
tubular interstitial damage. The results of this study showed that
compared with those in the SDM group, the levels of UACR and
γ-linolenic acid in the ADKD group were significantly increased,
which was similar to the results of previous studies (Kamijo et al.,
2002; Sasaki et al., 2009). However, compared with those in the
ADKD group, the levels of UACR, linoleic acid, and γ-linolenic
acid in the NADKD group were reduced. And there was no
significant difference between the SDM group and NADKD
group in the levels of UACR, linoleic acid, and γ-linolenic acid.
It has been reported that the level of free fatty acids in urine can
indirectly reflect renal tubular interstitial damage and is positively
correlated with the degree of tubulointerstitial damage (Sasaki
et al., 2009; Khan et al., 2018). Moreover, studies have found that
perhaps due to the different pathogenesis of ADKD and NADKD,
the degree of renal tubular damage in patients with NADKD is
less severe than that of ADKD (Budhiraja et al., 2013). Thus, in
this study, compared with the SDM group, the ADKD group and
the NADKD group had different changes in the levels of linoleic
acid and γ-linolenic acid; specifically, compared with those in
the ADKD group, the levels of linoleic acid and γ-linolenic acid
were significantly reduced, which may be related to the different
pathogenesis of the NADKD and ADKD, and to confirm whether
this is also related to the degree of damage to the renal tubules
or renal interstitium of the two groups requires research. In
addition, correlation analysis also showed a significant positive
correlation of linoleic acid and γ-linolenic acid with UACR,
and γ-linolenic acid was also the metabolite with the strongest
correlation with UACR among the 12 metabolites. It is suggested
that the UACR levels of DKD patients are related to their urine
linoleic acid and γ-linolenic acid levels. However, the underlying
mechanism still needs further study.

This study found that although there were no significant
differences in the levels of eGFR, SCr, C1q, and CysC between
patients with NADKD and ADKD, metabolomics analysis found
a significant difference in urine metabolites between patients
with NADKD and ADKD. NADKD patients were significantly
different from ADKD patients in linoleic acid, γ-linolenic
acid, L-malic acid, L-proline, L-erythro-4-hydroxyglutamate,
N-carbamoylputrescine, and spermidine. However, no significant
differences were found in these metabolites between the SDM
and NADKD groups. This may be caused by a variety of reasons.
First, urine metabolomics is inevitably affected by factors such
as the subject’s age, diet, medication, and sample size. Second,
it is found that UACR and GFR were normal in some patients

with DM; however, kidney biopsy showed that kidney structure
changes in these patients were similar to those of DKD patients
(Comai et al., 2019). In this study, we did not perform a
histopathological examination on all subjects. Therefore, there
may be undetected NADKD or ADKD patients in the SDM
group. This may cause the non-significant difference in the
metabolomics between the SDM group and the NADKD group.
In addition, metabolic pathway analysis also showed differences
in linoleic acid metabolism, citrate cycle, and arginine and
proline metabolism among the three groups of subjects. However,
whether these differential metabolites and their metabolic
pathways are involved in the pathogenesis of NADKD requires
further investigation. In the future, we will conduct multicenter
studies and more comprehensive metabolomics analysis on
NADKD patients, in order to understand the pathogenesis
of NADKD and identify potential biomarkers for NADKD
diagnosis. In addition, according to previous studies (Lamacchia
et al., 2018; Penno et al., 2018), NADKD patients are mostly
female. However, there was no sex difference in the included
subjects of this study. This may be caused by the different
populations involved. Further studies are needed to explain this.

In conclusion, we found that ADKD patients were
significantly different from SDM and NADKD patients in
the levels of metabolites related to the linoleic acid metabolism,
citrate cycle, and arginine and proline metabolism. However, no
significant difference was found in these metabolites between
the SDM and NADKD groups. In this study, through UPLC–
MS/MS-based metabolomics analysis, we found that there
were significant differences in urine metabolic profiles between
NADKD and ADKD patients, which may be due to the different
pathogeneses of NADKD and ADKD. Additionally, we also
confirmed that UPLC–MS/MS-based metabolomics analysis
has potential to demonstrate the pathogenesis of NADKD and
identify its diagnostic markers.
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