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Abstract
Background: Nuclear localization signals (NLSs) are stretches of residues within a protein that
are important for the regulated nuclear import of the protein. Of the many import pathways that
exist in yeast, the best characterized is termed the 'classical' NLS pathway. The classical NLS
contains specific patterns of basic residues and computational methods have been designed to
predict the location of these motifs on proteins. The consensus sequences, or patterns, for the
other import pathways are less well-understood.

Results: In this paper, we present an analysis of characterized NLSs in yeast, and find, despite the
large number of nuclear import pathways, that NLSs seem to show similar patterns of amino acid
residues. We test current prediction methods and observe a low true positive rate. We therefore
suggest an approach using hidden Markov models (HMMs) to predict novel NLSs in proteins. We
show that our method is able to consistently find 37% of the NLSs with a low false positive rate
and that our method retains its true positive rate outside of the yeast data set used for the training
parameters.

Conclusion: Our implementation of this model, NLStradamus, is made available at: http://
www.moseslab.csb.utoronto.ca/NLStradamus/

Background
Eukaryotic cells are defined by the presence of their
nucleus. The nuclear membrane enclosing the genetic
material of the cell is selective in its import of material
through its nuclear pores and this translocation is medi-
ated by cellular mechanisms [1,2].

Proteins entering the nucleus must do so through proteins
forming the nuclear pores: the nuclear pore complex
[3,4]. The pores allow the passive diffusion of small pro-

teins, but bigger proteins entering the nucleus are usually
bound by karyopherin complexes on their nuclear locali-
zation signal [5]. Although there are many nuclear import
pathways in eukaryotic cells, most of these have not been
characterized in detail. The best understood is the classical
NLS pathway. The recognition of classical NLSs on nuclear
proteins is done by the importin-α subunit which in turn
is recognized by the importin-β subunit. This trimer
(cargo, importin-α and importin-β) is then imported to
the nucleus after series of enzymatic steps [1,6]. Other
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families of NLSs are independent of importin-α, and may
bind directly to one of the members of the importin-β
superfamily [1].

Classical NLSs show characteristic patterns of basic resi-
dues loosely matching two consensus sequences, K(K/
R)X(K/R) and KRX10–12KRXK, termed the 'monopartite'
and 'bipartite' classical NLS [1,2]. PSORT [7] accurately
predicts protein localization by including heuristic scores
based on residues frequencies, protein domains as well as
motifs. PSORT will then offer, based on the cNLS consen-
sus sequences, various possible NLSs on nuclear proteins.

However, many known NLSs do not match any of the
consensus sequences described above. Therefore, other
computational methods have been proposed to predict
NLSs based on amino acid sequences. One method, Pre-
dictNLS [8], employs a database of regular expressions to
predict the various types of NLSs.

Here we sought to test the power of these methods to pre-
dict NLSs in Saccharomyces cerevisiae. We compiled a list of
experimentally verified NLSs in yeast and found that Pre-
dictNLS [8] predicts 10% of the NLSs in this set. Based on
an analysis of the residues frequencies in the NLSs in this
set, we developed a simple hidden Markov model [9] that
can be used to predict the nuclear localization signal in
proteins, achieving true positive rate of 37%. We also
explored using specific models for the monopartite and
bipartite NLSs, but surprisingly, found no significant
improvement in positive predictive value. Finally, we also
show that our method fares well in species other than
yeast, consistent with the conservation of import mecha-
nisms.

Results
A set of experimentally verified nuclear localization signals 
in yeast
In order to test the predictive power of computational
methods to predict NLSs in S. cerevisiae, we sought to
identify a set of experimentally confirmed NLSs. We
searched the literature for papers in which specific
stretches of amino acids have been shown to act as func-
tional NLSs in yeast. While many approaches have been
used to characterize and identify nuclear localization sig-
nals in proteins, we took as the NLS the minimal sequence
in the protein that was proven to be either necessary or
sufficient for nuclear import.

To categorize NLSs into their respective import pathways,
we looked for evidence of their respective pathways which
includes receptor binding or pathway dependency. How-
ever, only half of our proteins had a clear reference to
these, and many remain unknown.

In all, we found 60 NLSs. Of these, 16 had evidence of
importin-α dependence or binding and we here refer to
these as cNLSs. In addition, we found 15 NLSs which
depend on other import pathways, which we term non-
cNLSs. Finally, for 29 of our sequences, we failed to find
information about the mechanism of import. The NLSs
and references are listed in Tables 1 and 2.

Current NLS prediction methods show little predictive 
power on our yeast data
In order to test the power of NLS prediction methods, we
first used the consensus sequence-based approach Pre-
dictNLS [8] and found that it was generally too specific:
only 10% (6/60) of our characterized NLSs were identi-
fied by their genome wide analysis of the yeast proteome
(see Figure 1a). These results were surprising, considering
that this method had been reported to find 100% of the
experimentally characterized NLSs considered in the gen-
eral study [8]. We suggest that PredictNLS might be under-
estimating the true variability of NLSs, as few yeast NLSs
(9) were included in that study. PredictNLS also produced
6 predictions that were not characterized NLSs, suggesting
a positive predictive value of 50%.

Probabilistic models have been widely used to predict
domains in proteins (E.g., Pfam [10]). Profile HMMs
model a linear series of states which approximately corre-
sponds to the pattern of residues in a consensus motif.
These models can account for length variation using inser-
tion and deletion states.

NLSs with different import mechanisms are unlikely to
share a consensus motif. Therefore, we tried a profile
HMM approach to predict only cNLSs. We manually
aligned the labelled cNLSs using a proposed biological
model of binding specificity of importin-α [9] (Figure 2)
and built an HMM model using HMMbuild [11] (see
Methods). We used this model to predict cNLSs using
HMMsearch, and assessed the predictive power at differ-
ent E-value thresholds using a leave-one-out cross-valida-
tion (see Methods). The results are displayed as ROC
curves in Figure 1b (see Methods) and indicate that
HMMer obtains a similar positive predictive value (PPV)
as PredictNLS at varying true positive rate (TPR).

Taken together, our results indicate that both frameworks
show some positive predictive value but PredictNLS
shows a low true positive rate, and both methods show
PPV of around 50% in our data.

The nuclear localization signal shows a strong statistical 
difference in residue frequencies
While the NLSs can be divided in many functional catego-
ries depending on their pathways, we observed that most
NLSs had an enrichment of basic residues. We first ana-
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lyzed the residue content of the characterized cNLSs. Con-
sistent with the definition of classical NLSs, we observe
significant frequency differences (see Methods) mainly in
lysine (7.3% for the genome vs 29.3% for the cNLSs, P-
value < 10-10) and arginine (4.4% for the genome vs
15.7% for the cNLSs, P-value < 10-10).

To determine whether there were differences between the
different types of NLSs, We then compared the set of cNLS
to all other NLS (non-cNLS and unknown) and surpris-
ingly found no significant differences in their residue fre-
quencies. Thinking that maybe the unknown set of NLSs
might have been mostly composed of cNLSs, we also com-
pared the cNLS residue frequencies to the non-cNLS resi-
due frequencies and also found no significant differences
in residue frequencies. Thus, in our data set the three cat-
egories of NLSs (cNLS, non-cNLS and unknown) show no
difference in residue frequencies.

Because the most apparent statistical difference lies in the fre-
quencies of lysine (K) and arginine (R), we plotted each NLS
in respect to number of K and R residues and their length
(Figure 3), and consistent with the previous residue frequen-
cies test, we found that there were generally no discernable
differences between the three categories of NLSs.

Interestingly, we also observe two groups of NLSs on this
plot, the first showing an average length of 8 amino acids
containing an average of 3.9 basic residues while the other
showing an average length of 20 amino acids containing
an average of 7.3 basic residues. We suggest that these
regions correspond to monopartite and bipartite NLSs [1].
We note that even NLSs known not to be importin-α
dependent showed this pattern.

A simple Hidden Markov Model shows better predictive 
performance
Motivated by the idea that all NLSs in our set shared a sim-
ilar bias in lysines and arginines, we created a simple two-

Table 1: non-cNLS and cNLS sets

ORF Gene name Start Stop Necessity or Sufficiency (PMID) Receptor binding or pathway dependency (PMID)

YBR009C HHF1 4 21 11694505 11694505b

YBR010W HHT1 10 28 11694505 11694505b

YDL007W RPT2 11 15 15210724 15210724a

YDL007W RPT2 33 37 15210724 15210724a

YDR103W STE5 49 66 10481914 10481914b

YDR146C SWI5 636 655 7615496/1652372 18485366a

YDR208W MSS4 347 364 12912920 12912920b

YDR224C HTB1 30 36 3123916 15679097b

YEL009C GCN4 231 246 12455686 18485366a

YER040W GLN3 388 394 12624103 12624103/18485366a

YFR034C PHO4 141 166 9732266 9732266b

YGL071W AFT1 202 207 14523005 14523005b

YGL071W AFT1 352 355 14523005 14523005b

YGL071W AFT1 332 335 14523005 14523005b

YGL097W SRM1 3 23 18485366 18485366a

YHR079C IRE1 645 657 17035634 17035634a

YIL075C RPN2 811 832 15210724 15210724a

YIL150C MCM10 512 527 13680157 18984568a

YIL150C MCM10 435 451 13680157 18984568a

YJL194W CDC6 27 33 18485366 18485366a

YLR103C CDC45 209 228 18485366 18485366/18984568a

YLR182W SWI6 157 169 14998990 14998990a

YML007W YAP1 5 59 11274141 11274141b

YMR127C SAS2 19 35 15788653 15788653b

YMR239C RNT1 461 466 15090619 15337846a

YNL027W CRZ1 394 422 11535618 11535618b

YNL027W CRZ1 612 615 11535618 11535618b

YOL123W HRP1 522 534 18343812 18343812b

YOL127W RPL25 18 28 1920406 9182759/9687515b

YOL127W RPL25 11 17 1920406 9182759/9687515b

YPL153C RAD53 785 807 15972895 15972895a

YPR119W CLB2 183 200 18485366 18485366a

Characterized yeast nuclear localization signals used in our analysis for which import pathway is known. a corresponds to classical NLSs, b 

corresponds NLSs known not to dependent on the classical NLS import pathway. See text for details of how NLSs were classified. Numbers in the 
last two columns indicate references using pubmed IDs (PMID).
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state HMM. In this model, sequence is generated either
from a background model (with residue frequencies equal
to those in the genome) or an NLS model, whose residue
frequencies are equal to those in all of the characterized
yeast NLSs (Figure 4a). To assess the positive predictive
value of the model, we performed a leave-one-out cross
validation, as above (see Methods), of the HMM. We
assessed its predictive strength in two ways, either using
the most probable path (the Viterbi algorithm) or by com-
puting the posterior probability and counting predictions
when it passed a certain threshold (see Methods). Relative
to PredictNLS, the results show significantly improved
positive predictive value (PPV = 88% vs. PPV = 50%, P-
value < 0.05), and higher true positive rate (TPR = 37% vs.
TPR = 10%, P-value < 0.001, Figure 5) while producing
only 3 false positives. Our results were specific to the
experimentally defined NLSs. We defined a residue-level
correlation coefficient (analogous to nucleotide level cor-
relation coefficient [12,13] for DNA motifs) and found
that our model yielded a coefficient of 0.36. We also com-
puted the Matthews Correlation Coefficient [14] and
found that it was 0.55, similar to recent results for a pre-
dictor of nuclear export signals [15].

We were surprised to observe that a single, simple model
could achieve increased performance even though our
training data spanned a large diversity of NLSs, e.g., some
cNLSs and others not, both bipartite and monopartite.
Nevertheless, we found that our method showed similar
positive predictive value on each set of NLSs when we ana-
lyzed them individually (data not shown). While perhaps
surprising, these results are consistent with the similar res-
idue compositions of each sets of NLSs (Figure 3).

A more complex model does not improve prediction
We observed two main regions within our K-R content plot
where NLSs seemed to aggregate and this is consistent for the
bipartite and monopartite classes of cNLSs, but we were sur-
prised to see that this was also observed in the other sets. To
test whether or not we could improve our predictions using
this information, we created a four state HMM by modelling
a 'spacer' state between two patches of basic residues (Figure
4b, see methods) and analyzed its predictive power using a
leave-one-out cross-validation. This model is able to recog-
nize the two basic stretches of the NLS separated by a spacer
region, which we model using the background residue fre-
quencies. We refer to this model as the 'bipartite model'. In
some cases, this model accurately identifies the boundaries

Table 2: unknown NLS set

ORF Gene name Start Stop Necessity or Sufficiency (PMID)

YAL040C CLN3 559 580 11509671
YBL105C PKC1 810 813 15643058
YBR098W MMS4 244 263 14642571
YCL017C NFS1 312 316 11110795
YCL067C HMLALPHA2 1 13 1976249
YCL067C HMLALPHA2 141 159 1976249
YCR039C MATALPHA2 2 13 8757785
YCR039C MATALPHA2 141 159 8757785
YDR034C LYS14 190 250 10975256
YEL032W MCM3 766 772 16093348
YEL061C CIN8 994 1000 11694576

YGL103W RPL28 24 30 2104804
YGL103W RPL28 7 14 2104804
YGR027C RPS25A 11 36 10386617
YGR027C RPS25A 87 95 10386617
YIR006C PAN1 1024 1040 17967424
YIR006C PAN1 1145 1161 17967424
YJL157C FAR1 11 30 10485850
YJL157C FAR1 38 48 10485850
YJL187C SWE1 304 310 18562688
YJL190C RPS22A 21 29 10386617

YKL112W ABF1 624 628 15522095
YLR079W SIC1 77 89 16294029
YML024W RPS17A 2 7 3939318
YMR036C MIH1 31 33 18562688
YOR063W RPL3 1 21 3931077
YOR274W MOD5 408 424 9872948
YPR189W SKI3 306 314 2660461

Characterized yeast nuclear localization signals used in our analysis, for which we could not find evidence for a specific import pathway. Numbers in 
the last column are pubmed IDs for references. See text for details of how NLSs were classified.
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of these regions (Figure 6a, c). For comparison, we also
trained a model using only the shorter NLSs, which we refer
to as the 'monopartite model'. We refer to the initial model
that uses the frequency of all of the NLSs as the 'combined
model'.

To test these models, we defined bipartite and monopar-
tite NLSs based on the two classes we had observed in Fig-
ure 3. We tested the bipartite model on the bipartite NLSs
only. Surprisingly, the positive predictive value and true
positive rate of the bipartite model was exactly the same as
the combined model (TPR = 61%, same FPR), as the com-
bined model can also identify bipartite NLSs (Figure 6b,
d). Similar predictive power was also observed when com-
paring the monopartite model to the combined model on
only monopartite NLSs. However, a small increase in true
positive rate was observed for the monopartite model
(TPR = 41% vs 38%, same FPR) but this difference was not
significant.

Applying the model to other organisms
We were concerned that our predictor might have a bias
for yeast proteins. We therefore tested our method on the

set of NLSs used to train PredictNLS [8]. This set of data
contains NLSs that have been shown to function in verte-
brate cells. We found that our method has a similar true
positive rate in this data as it does in yeast, finding 37% of
the characterized NLSs at the same posterior threshold.
However we do note an increased false positive rate
(228% increase, P-value = 0.08), and modest reductions
in the nucleotide-level correlation coefficient to 0.30
(from 0.36, Figure 7) and the Matthews Correlation Coef-
ficient to 0.48 (from 0.55).

Seeking to understand the elevated rate of false predic-
tions, we explored them further and found that 7 of the 15
vertebrate false positives occur on only three proteins.
When we searched the literature for more information on
these proteins we found that one of our 'false' predictions
had actually been identified as an NLS [16,17]. We identi-
fied on another protein two patches of amino-acid
repeats, and finally on the last protein two nucleolar local-
ization signals, which are long stretches of basic amino
acid residues, and it is not yet clear if these signals should
be considered as NLSs [18,19].

True positive and false positive rate of consensus and alignments based methodsFigure 1
True positive and false positive rate of consensus and alignments based methods. a) True positive and false positive 
rate of a consensus-based method on all NLSs from our dataset. The false positive rate is shown as the error rate per amino 
acid residue. The diagonal line depicts a ratio of one true prediction per false prediction per amino acid residue. b) True posi-
tive and false positive rate of consensus and alignment based methods on classical NLSs from our dataset. The false positive 
rate is shown as the error rate per amino acid residue. The diagonal line depicts a ratio of one true prediction per false predic-
tion per amino acid residue.
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Alignment of characterized classical nuclear localization signalsFigure 2
Alignment of characterized classical nuclear localization signals. Alignment of the residues thought to contribute to 
NLS binding to importin-α. The residues aligned on the cNLS major binding site were then used as model for a profile HMM 
approach using HMMer.

Minor cNLS binding site Spacer Major cNLS binding site

P1 P2 P3 P4 P1 P2 P3 P4 P5

YLR103C CDC45 K R G N SSIGPNDLS K R K Q R KK

YPR119WCLB2 K K R P I STIVEQEL P K K F KYPR119WCLB2 K K R P I STIVEQEL P K K F K

YDR146C SWI5 K K Y E NVVIKRSP R K R G R PRK

YGL097W PRP20 K R T V ATNGDASGAHRA K K M S K

YEL009C GCN4 K R A R NTEAARRS - R A R K

YIL075C RPN2 KARA K K T K KEKGPNEEE - K K K E

YIL150C MCM10 K K S T ALSRELG - K I M R RRYIL150C MCM10 K K S T ALSRELG - K I M R RR

YIL150C MCM10 K K K T VINDLLHY - K K E K

YPL153C RAD53 K R I H SVSLSQSQIDP S K K V K RAK

YJL194W CDC6 RP L K R K K

YER040WGLN3 P I R S R K K

YHR079C IRE1 RKRGSRG G K K G R KYHR079C IRE1 RKRGSRG G K K G R K

YMR239C RNT1 K N K K R K

YLR182W SWI6 ELGSP L K K L K IDT

YDL007W RPT2 K K K K K

YDL007W RPT2 R K K R K

Alignment to HMMer

Lysine and arginine content of characterized nuclear localization signalsFigure 3
Lysine and arginine content of characterized nuclear localization signals. Plot of the lysine and arginine content of 
characterized nuclear localization signals with respect to their length. The plot shows the three 'types' of NLSs present in our 
study.
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We noted in total three false predictions composed of
amino-acid repeats, which were largely absent from our
yeast training set. Such repeats are problematic because
they violate an assumption of our simple hidden-Markov
model, namely, that adjacent residues are independent
given the value of the hidden state.

Taken together, this analysis of vertebrate NLSs demon-
strates that the true positive rate of our method is not con-
fined to our training data set. However, we did note an
increase in false positives, which might be explained by
additional undiscovered NLSs in this data set, or repetitive
sequences in vertebrate proteins.

Discussion
Analysis of residue frequency clearly shows that there is a
bias in key residues in the NLS, and while previous studies
have shown that there exists some position requirement
in these residues [20], the NLSs do not clearly align and
therefore we believe that the signal simply do not obey a
clear consensus sequence rule. Our results are consistent
with the model that NLSs may simply be regions of high
positive charges with only minor spatial requirements
[20]. This idea is consistent with the model that the NLS
can be masked by phosphorylation [21], by inhibiting the
activity of the signal due to addition of negative charges.

There is abundant evidence that cNLSs bind at specific
positions on importin-α and this binding is mediated by
two sites which bind monopartite or bipartite cNLSs
[22,23], which suggests that the bipartite cNLS is not sim-
ply a bigger monopartite cNLS. We were, however, unable
to exploit this knowledge to create a stronger predictor.
While each basic patch in the bipartite cNLS does not rep-
resent a monopartite cNLS, the combination of both
patches is sufficient for recognition by our predictor.

By examining some false negatives, we find at least two
reasons why our method fails to predict them. First, there
are examples that do not seem to show an enrichment of

basic residues. Second, other NLSs are simply too small to
be identified reliably, due to a lack of statistical signal.

We note that unlike PSORT which is based on the cNLS
consensus motifs, our method does not attempt to predict
NLSs belonging to a particular pathway. We observed that
all NLSs show an excess of basic residues, and therefore we
have developed a simple HMM that can identify stretches
of basic residues in protein sequences. It is somewhat sur-
prising that this method performs reasonably well. This
suggests that the consensus patterns for different import
pathways may be more similar than currently anticipated.

We believe that obtaining a higher positive predictive
value is certainly possible by combining other biological

True positive and false positive rate of our modelFigure 5
True positive and false positive rate of our model. 
True positive and false positive rate of various methods, 
including our HMM at various posterior threshold and the 
Viterbi algorithm on our dataset. The false positive rate is 
shown as the error rate per amino acid residue. The diagonal 
line depicts a ratio of one true prediction per false prediction 
per amino acid residue.
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Schematic of our two state and four state HMMFigure 4
Schematic of our two state and four state HMM. a) The two state HMM models two states which are represented by 
the 'background', which emits residues with the same frequency as the genome, and by the 'NLS' state, which emits residues 
with the same frequency as the NLSs from our characterized data. b) The four state HMM models four states which are repre-
sented by the 'background', which emits residues with the same frequency as the genome, two 'NLS' states, which emit resi-
dues with the same frequency as our characterized NLSs, separated by a 'spacer' state which emits residues with the same 
frequency as the genome.
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Posterior trace of Swi5p and Ste5p for our two HMMsFigure 6
Posterior trace of Swi5p and Ste5p for our two HMMs. a) Posterior trace of Swi5p, a characterized bipartite cNLS, 
using our four state model. Output was generated by NLStradamus and highlighted region shows the region of characterized 
NLS. Black (i) and blue (iii) lines represent the two patches of basic residues while the pink line (ii) represents the spacer. 
Green line represents the sum of the three NLS states. Red line is shown as a reference for a threshold of 0.6. b) Posterior 
trace of Swi5p, a characterized bipartite NLS, using our simple two state model. Output was generated by NLStradamus and 
highlighted region shows the region of characterized NLS. Horizontal red line depicts the chosen posterior threshold of 0.6. c) 
Posterior trace of Ste5p, a characterized bipartite importin-β dependent NLS (non-cNLS), using our four state model. Output 
was generated by NLStradamus and highlighted region shows the region of characterized NLS. Black (i) and blue (iii) lines rep-
resent the two patches of basic residues while the pink line (ii) represents the spacer. Green line represents the sum of the 
three NLS states. Red line is shown as a reference for a threshold of 0.6. d) Posterior trace of Ste5p, a characterized bipartite 
non-classical NLS, using our simple two state model. Output was generated by NLStradamus and highlighted region shows the 
region of characterized NLS. Horizontal red line depicts the chosen posterior threshold of 0.6.
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knowledge; however, this is still under study. For exam-
ple, some of our false predictions might either be real
NLSs that have not yet been characterized, or simply part
of other undiscovered protein domains.

Conclusion
In conclusion, we offer a simplified approach to predict-
ing nuclear localization signals and show that this
method can be applied to multiple species. This agrees
with the notion that important regulatory mechanisms
are conserved, although it is possible that differences in
positive predictive value can be attributed to the existence
of multiple importin-α,β homologues in other species
[24] or differences in proteins lengths between species.

Methods
Creation of alignments and assessment of consensus 
sequence based methods
Based on recent studies on the binding sites of the impor-
tin-α [9], we created an alignment of our cNLS based on
the major site of the importin (Figure 2). This alignment
was run through HMMer [11] using HMMbuild and cali-
brated using HMMcalibrate. Using HMMsearch and a
leave-one-out cross-validation [25], we assessed its predic-
tive power. The leave-one-out cross-validation of the
HMMer framework was done by removing all the charac-
terized NLSs of one of the proteins from the alignment
and then applying the above method on the protein.

Analysis of residue frequency in the nuclear localization 
signal and statistical significance
We first verified if the NLS containing proteins had differ-
ent residue frequencies than the genome to verify if our
proteins were different than expected in the genome and
found that this was the case. We used a sampling analysis
(data not shown) and a two-tailed Fisher's exact test. We
computed

where aij is the number of counts in ith row and jth column
of a 2 × 2 table, R1, R2, C1 and C2 are the row and column
totals, respectively, and N is the total number of observa-
tions. To calculate the two-tailed P-value using Fisher's
exact test, we summed the probabilities of all the matrices
below and equal to the Pcutoff. If the P-value was below
than 0.01 we considered that residue significant.

Creation of a Hidden Markov model
We created a simple two state HMM as well as a four state
HMM to assess the difference between monopartite and
bipartite motifs. The two state HMM receives two sets of
states based on the background and NLS residue frequen-
cies, while the four state HMM assumes that the spacer res-
idue frequencies are equal to the 'background' residue
frequencies. A four state HMM where the spacer residue
frequencies were taken directly from our characterized
data was also done (data not shown). Transition probabil-
ities were approximated by summing the number of times
that a transition occurs divided by the total amount of
transitions from a given state in our data set. The starting
state was assumed to be the same as the 'background'
state. Further analysis using the Baum-Welch algorithm
[26,27] was used but did not yield significant predictive
power difference. Outputs are both the most probable
path and posterior probabilities. This HMM is publically
accessible from our web page.

The transition probabilities between each state were calcu-
lated as:

Where akl is the transition probability from state k to state
l and Akl is the observed frequency of this transition in the
characterized data.

The posterior probability at a given position was calcu-
lated as in [26]:
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True positive and false positive rate of our model on other speciesFigure 7
True positive and false positive rate of our model on 
other species. True positive and false positive rate of vari-
ous methods, including our HMM at various posterior 
threshold and the Viterbi algorithm on the PredictNLS data-
set. This ROC curve was created by counting overlaps. The 
false positive rate is shown as the error rate per amino acid 
residue. The diagonal line depicts a ratio of one true predic-
tion per false prediction per amino acid residue.
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The posterior probability is the probability that the ith

amino acid in the given sequence (x) is produced by state
k (πi = k). This is calculated using the forward algorithm,
which is the probability of all the sequences up to and
including the ith amino acid requiring that the ith amino
acid is produced by state k (fk(i)), multiplied by probabil-
ity of all sequences after the ith amino acid when the ith-
amino acid is produced by state k (bk(i)), given by the
backward algorithm, and divided by the probability of the
whole sequence given the model (P(x)).

Signal detection, optimizing true positive rate and ROC 
curve
We used several thresholds on the posterior probability
and any segment over the threshold is labelled as a signal
for the two state model. The four state model instead sums
the two NLS states as well as the spacer state and estab-
lishes a signal when this sum is over the threshold. Using
signal/true motif overlaps, we assess the true positive rate
and positive predictive value using a leave-one-out cross-
validation [25]. The leave-one-out cross validation was
done systematically by removing a protein from the train-
ing set, and testing the predictor on this protein.

The threshold whose ratio is furthest from a ratio of one
true positive prediction per false prediction was deemed
to be the strongest. This ratio, one true positive per false
prediction, is shown in our ROC curves as a dotted diago-
nal line. We note that this diagonal is not indicative of a
random predictor as in traditional ROC curves. We also
calculated a residue correlation coefficient (rCC) [12] to
assess performance of the model.

The rCC is the Pearson product-moment coefficient of
correlation, where TP and TN are the number of true pos-
itives and true negatives, while FP and FN are the number
of false positives and false negatives, taken at the nucle-
otide level as opposed to the signal level. Because our pre-
dictions are done on protein sequences, this was done at
the residue level instead of nucleotides as is done for DNA
motifs [12].

A Matthews' correlation coefficient is calculated similarly
to the calculation of the rCC, however this is taken at the
signal level and taking as the number of true negatives the
number of predictions made at a threshold of 0.001. This
is a similar method as used by predictNES [14,15]. This
number of true negatives was also used to assess signifi-
cance of false positive rate differences in a Fisher's test as
above.

True positive rate (TPR) is calculated as the number of true
predictions divided by the number of total possible true

positives, while the false positive rate (FPR) is calculated
as the number of false positives divided by the sum of the
length of all our characterized proteins. The false positive
rate is therefore given at the residue level, while the true
positive rate is given at the level of individual NLSs. Posi-
tive predictive value (PPV) is assessed as the ratio of true
positive predicted NLSs to the total number of predicted
NLSs.

Availability
The HMM-based prediction method, NLStradamus, for
predicting nuclear localization signals can be accessed
directly at: http://www.moseslab.csb.utoronto.ca/
NLStradamus/. Both two state and four state HMMs are
available for use and posterior decoding at different
thresholds is also possible.
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