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Abstract: Cytolysin A (ClyA) is a pore-forming toxin that is produced by some bacteria from the
Enterobacteriaceae family. This review provides an overview of the current state of knowledge re-
garding ClyA, including the prevalence of the encoding gene and its transcriptional regulation, the
secretion pathway used by the protein, and the mechanism of protein assembly, and highlights
potential applications of ClyA in biotechnology. ClyA expression is regulated at the transcriptional
level, primarily in response to environmental stressors, and ClyA can exist stably both as a soluble
monomer and as an oligomeric membrane complex. At high concentrations, ClyA induces cytolysis,
whereas at low concentrations ClyA can affect intracellular signaling. ClyA is secreted in outer
membrane vesicles (OMVs), which has important implications for biotechnology applications. For
example, the native pore-forming ability of ClyA suggests that it could be used as a component
of nanopore-based technologies, such as sequencing platforms. ClyA has also been exploited in
vaccine development owing to its ability to present antigens on the OMV surface and provoke a
robust immune response. In addition, ClyA alone or OMVs carrying ClyA fusion proteins have been
investigated for their potential use as anti-tumor agents.

Keywords: cytolysin A; pore-forming toxin; outer membrane vesicles; biotechnology application

Key Contribution: This review provides a comprehensive overview of the current state of knowl-
edge regarding Cytolysin A, an important bacterial toxin with promising applications in the field
of biotechnology.

1. Introduction

Toxins play an important role in pathogenicity in the host–pathogen interaction, and
especially during the process of infection. These virulence determinants can inhibit protein
synthesis, help the pathogen evade host immune responses, and cause damage to the target
cell membrane in multiple ways [1,2]. Depending on the nature, structure, and mode of
action, bacterial toxins can be classified into several functional groups [3,4]. The largest
group of protein toxins is the pore-forming toxins (PFTs), which form pores on a target cell
membrane, increasing membrane permeability and creating an ion imbalance [5–7]. Based
on the secondary structures of the domains that form the transmembrane pores, PFTs can
be broadly classified into two structural families [8,9]: those containing helices (α-PFT),
such as the colicins produced by Escherichia coli [10], and those containing sheets (β-PFT),
such as alpha-hemolysin produced by Staphylococcus aureus [11].

Cytolysin A (ClyA, also known as HlyE or SheA) is a 34-kDa α-PFT that is produced
by some bacteria from the Enterobacteriaceae family, including E. coli and Salmonella enterica.
This toxin was first reported at around the same time by both the Ludwig and Oscarsson
groups, who observed that overexpression of the Salmonella enterica subsp. enterica serovar
Typhimurium regulatory protein SlyA in the E. coli strain K-12 resulted in the synthesis of a
novel hemolysin/cytolysin that conferred a hemolytic phenotype on the recombinant E. coli
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strain [12,13]. Since its initial discovery, the structure and function of the ClyA toxin, as
well as its role as a virulence factor, have been explored in numerous studies. Structural
studies using X-ray crystallography and electron microscopy have shown that ClyA is one
of only a few α-PFTs that can exist as both a soluble monomer and as a transmembrane
pore (undergoing large-scale conformational changes) [14–16]. These findings provided
detailed structural information that has accelerated the subsequent structural analysis of
other α-PFTs [17–19]. Another remarkable finding is that ClyA is secreted from bacterial
cells via a vesicle-mediated pathway [20]. Currently, one of the most intriguing research
areas regarding this toxin is its potential utility in applied research, such as in the clinical
setting. A recent report demonstrating that recombinant ClyA can be displayed on the
surface of bacterial cells or released by membrane vesicles suggests that ClyA could be
used in applications such as vaccine development and tumor therapy.

This review first presents a brief summary of the current state of knowledge regarding
ClyA (including the prevalence of the encoding gene and its transcriptional regulation, the
secretion pathway used by the protein, and the mechanism of protein assembly into the
final form). The unique functional features of ClyA are highlighted, and recent research
exploring its potential use in biotechnology applications (vaccine development, tumor
therapy, and nanopore formation) are discussed.

2. General Features of ClyA
2.1. Prevalence of the clyA Gene in Bacteria

The clyA gene is a chromosomal gene that was first identified in the E. coli strain
K-12 [12,13]. Although the gene is widely distributed in various E. coli strains, sequencing
analysis showed that it was disrupted in half of the tested strains, and that the defec-
tive forms could be classified into several inactivation patterns based on different inser-
tions and/or deletions [21–23]. In addition, this inactivated clyA gene is found exclu-
sively in E. coli phylogroup B2 strains, including enteropathogenic E. coli and extraintesti-
nal pathogenic E. coli, while the intact gene is relatively conserved in strains from other
phylogroups [23].

Homologs of ClyA are also found in the pathogenic bacteria Salmonella and Shigella [24,25].
Shigella strains often harbor nonfunctional copies of clyA that have been inactivated either
by the integration of insertion sequence elements (S. dysenteriae, S. boydii, and S. sonnei)
or by a frameshift mutation (S. flexneri), similar to the inactivated forms of clyA observed
in E. coli [26]. Regarding Salmonella, von Rhein et al. reported that the S. Typhi and
S. Paratyphi A strains they tested each harbored an intact copy of clyA [27]. However,
it has been shown that the clyA gene is absent in strains of S. enterica serovar Paratyphi
B and serovar Paratyphi C, in various non-typhoidal S. enterica subsp. enterica serovars
(Typhimurium, Enteritidis, Choleraesuis, Dublin, and Gallinarum), and in S. enterica subsp.
arizonae and Salmonella bongori. Thus, the clyA gene and its homologs are conserved in some
bacteria from the Enterobacteriaceae family.

2.2. Transcriptional Regulation

The transcriptional regulation of clyA, which has been well-studied, is somewhat
complex in that it involves several known regulators and is subject to the influence of
environmental factors (Table 1).

Transcription of clyA is normally prevented by the heat-stable nucleoid-structuring
(H-NS) protein [28,29], which is a global transcriptional regulator that influences the
expression of approximately 5% of all genes in E. coli. The direct influence of H-NS on
transcription is almost universally negative, often regulating gene expression in response
to environmental conditions [30–32]. Therefore, clyA transcription is only derepressed and
activated in H-NS-deficient strains, which is why ClyA is sometimes called the “silent
hemolysin”. In addition to derepression in the context of H-NS deficiency, S. Typhimurium
SlyA and E. coli MprA, both of which are members of the MarR family of transcriptional
regulators, activate clyA transcription [12,13,24]. H-NS and SlyA share a binding site in
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the clyA promoter region; therefore, overexpression of SlyA can activate clyA expression
by antagonizing H-NS-mediated transcriptional repression [28,33]. It has recently been
reported that (p) ppGpp, an important nucleotide that acts as a secondary messenger in the
stringent response to stress, also affects clyA expression in a SlyA-independent manner [34].
Two other transcriptional regulators, cyclic AMP receptor protein (CRP) and fumarate and
nitrate reduction regulator (FNR), also positively regulate clyA expression by binding at the
same site in response to two distinct environmental signals, oxygen starvation (for FNR)
and glucose starvation (for CRP) [23,29,33,35]. The ClyA-derived hemolytic activity of
E. coli has been shown to be strongly enhanced under anaerobic conditions [23]. In S. Typhi,
clyA is part of an operon that also contains the taiA gene and is located in the Salmonella
pathogenicity island, and clyA expression is activated by the PhoPQ two-component
system [36]. Another study showed RpoS-dependent transcriptional upregulation at a low
pH or high osmolarity, as well as oxygen depletion-independent regulation, of clyA [37].
In addition, CRP can downregulate clyA expression in S. Typhi [37]. Later work by Jofre
indicated that RpoS is the central regulator in the clyA regulatory network, integrating the
CRP and PhoP signaling pathways [38]. Thus, the mechanisms regulating clyA expression
seem to differ among bacterial species, at least between E. coli and S. Typhi. In addition,
clyA expression is modulated by several global regulators via a variety of complicated
mechanisms and is influenced by multiple environmental signals.

Table 1. List of major transcriptional regulators for clyA gene expression.

Gene Product/Function Organisms Relevant Descriptions References

hns heat-stable
nucleoid-structuring protein E. coli

strongly repress the transcriptional
expression of clyA gene under

laboratory condition
[12,13,28,29,39]

slyA MarR-family
transcriptional regulator

E. coli
S. Typhimurium

activate the expression of clyA gene
by antagonizing the H-NS–mediated

transcriptional repression when
overexpressing SlyA

[12,13,28,29,39]

mprA MarR-family
transcriptional regulator E. coli

activate the expression of clyA gene
by antagonizing the H-NS–mediated

transcriptional repression when
overexpressing MprA

[24]

fnr fumarate and nitrate
reduction regulator E. coli activate the expression of clyA gene

in response to oxygen depletion [33,35]

crp cyclic AMP receptor protein

E. coli activate the expression of clyA gene
in response to glucose starvation [33]

S. Typhi
repress the transcriptional

expression of clyA gene (on SPI-18)
via down-regulating rpoS

[37]

phoP
transcriptional regulator

(two-component regulatory
system PhoP/PhoQ)

S. Typhi
up-regulate the expression of clyA

gene (on SPI-18) via rpoS under low
pH and low Mg2+

[36,38]

fis DNA-binding protein S. Typhi

down-regulate the expression of
clyA gene (on SPI-18) in

CRP-independent
glucose-dependent manner

[38]

rpoS RNA polymerase sigma factor S. Typhi

relate to the transcriptional
upregulation of clyA gene (on

SPI-18) in low pH and high
osmolarity condition (predicted

central regulator in the clyA
regulatory network)

[36,38]

2.3. Secretion Pathway

Bacterial toxin transport across bacterial membranes to reach their targets is mediated
by a variety of cotranslational and posttranslational modifications. Toxin transport occurs
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by multiple mechanisms, which have been characterized in both Gram-negative and Gram-
positive bacteria [1]. For example, the E. coli hemolysin HlyA has a signal sequence at the
C-terminus and is secreted by a type 1 secretion system (T1SS) in a single step directly
from the cytosol to the extracellular space [40,41]. However, ClyA lacks a canonical signal
sequence and undergoes no N-terminal processing during secretion [24,39]. In addition,
substantial amounts of periplasmic proteins have been detected in culture supernatants
from ClyA-overproducing cells [39], implying that ClyA secretion is accompanied by
leakage of periplasmic contents. These findings indicated that ClyA is not secreted by
general secretion machinery, such as a T1SS system, raising the question of how ClyA
reaches the extracellular space.

In addition to known secretion systems, most bacteria also utilize membrane vesicle–
mediated transport to secrete various toxins and deliver them to target cells. Bacterial
membrane vesicles are spherical blebs with an average diameter of 20–300 nm that are natu-
rally released from both Gram-negative and Gram-positive bacteria, and are often referred
to as outer membrane vesicles (OMVs), especially in Gram-negative bacteria [42–44]. Re-
cent studies have identified many bacteria-derived biomolecules, including toxin proteins,
as OMV cargoes, and it has been reported that OMVs and their cargoes induce various
biological effects in host cells [45–48]. For example, heat-labile toxin, one of the main
enterotoxins produced by enterotoxigenic E. coli, is secreted via OMVs [49]. OMVs released
by enterohaemorrhagic E. coli O157 cause cell death by delivering a cocktail of virulence fac-
tors, such as Shiga toxin 2a, cytolethal distending toxin V, and flagellin, into host cells [50].
ClyA has been identified as being an E. coli OMV cargo protein that is exported in a manner
independent of canonical secretion systems [20]. Wei et al. demonstrated that ClyA is
exposed on the surface of bacterial cells and accumulates in OMVs using immunofluores-
cence, electron microscopy, and atomic force microscopy. They concluded that the ClyA
protein is translocated to the periplasmic space in its monomeric (inactive) form, and then
oligomerizes to form active pore assemblies within the OMVs (Figure 1). This OMV-ClyA
has been recently applied as a powerful tool in biomedical and bioengineering fields, as
described in further detail below.

2.4. Assembled Form

A common feature of PFTs is their ability to assemble from a soluble, monomeric state
into oligomeric, annular membrane complexes [7,51]. ClyA is one of the very few α-PFTs
for which high-resolution structural information is available for both the soluble monomer
and the annular pore complex [14,16,52,53]. ClyA is therefore considered the prototype
of a subfamily of α-PFTs (often referred to as the ClyA family), and its structure has been
well-characterized in numerous reports.

Briefly, the ClyA monomer consists of two domains: a tail domain composed of a
bundle of five α-helices, and a head domain with a small β-hairpin (β-tongue) flanked by
two short α-helices [14,16]. Molecular analysis has indicated the importance of the N- and
C-terminal regions, and a partial hydrophobic sequence, in the process of ClyA translo-
cation to the periplasm. In addition, a long α-helix (αA1) is crucial for transmembrane
channel formation and function [54]. As shown in Figure 1, once ClyA reaches the target
membrane, the monomer first undergoes a conformational change to a protomer and then
predominantly assembles into an octameric [53] or 13-meric (redox state–independent) [55]
pore complex. Alternatively, soluble ClyA monomers can assemble into 400-kDa dode-
cameric pores after binding to the detergent, n-dodecylmaltoside [14]. The structural
mechanism of ClyA and ClyA-like pore formation has been well described in previous
reports and reviews [17,51,56–58].
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to form the active pore assemblies within OMVs in a redox state-dependent manner [20]. In the 
assembly process, once ClyA reaches the target membrane, the monomer first undergoes a confor-
mational change to a protomer and then predominantly assembles into an octameric [53], 13-meric 
(redox state-independent) [55], or dodecameric [14] pore complex by contact with membrane lipids 
or the detergent, n-dodecylmaltoside (DDM). 

3. Mode of Action of the ClyA Toxin as a Virulence Factor 
ClyA is a widely known PFT. Unlike E. coli HlyA and EhxA, which are posttransla-

tionally modified by the addition of fatty acids [59–61], ClyA does not require posttrans-
lational modification to be active. However, ClyA activity is tightly controlled at the tran-
scriptional level under certain conditions and by regulation systems involving several reg-
ulators, as described above (see Section 2.2), and is also influenced by structural changes 
or environmental signals. 

As described in Section 2.3, ClyA oligomerization is essential for full activity. For 
example, the structural change from the monomeric to the oligomeric form is crucial for 
ClyA activity and is involved in the altered redox status [20]. However, another study has 
shown that the intrinsic hemolytic activity of ClyA is independent of its redox state, and 
that assembly of both reduced and oxidized ClyA into the ring-shaped oligomer is trig-
gered by contact with membrane lipids or a detergent [55]. ClyA harbors a cholesterol 
recognition and consensus (CRAC) motif, which typically stabilizes structural intermedi-
ates in assembly pathways that occur in the presence of cholesterol. The ClyA region con-
taining this CRAC motif, which comprises residues L24-Y27-K29 (N-terminal helix), is 
conserved in ClyA homologs from several bacterial species (E. coli, S. Typhi, S. Paratyphi, 
Bacillus subtilis, and S. sonnei), and the presence of cholesterol stimulates pore formation 
by selectively stabilizing a protomer-like conformation, leading to hemolysis [62]. 

Figure 1. Schematic representation of the OMV-mediated secretion pathway for ClyA and the pre-
dicted pore assembly pathway. ClyA protein is secreted by OMVs and the monomer oligomerizes to
form the active pore assemblies within OMVs in a redox state-dependent manner [20]. In the assembly
process, once ClyA reaches the target membrane, the monomer first undergoes a conformational
change to a protomer and then predominantly assembles into an octameric [53], 13-meric (redox
state-independent) [55], or dodecameric [14] pore complex by contact with membrane lipids or the
detergent, n-dodecylmaltoside (DDM).

3. Mode of Action of the ClyA Toxin as a Virulence Factor

ClyA is a widely known PFT. Unlike E. coli HlyA and EhxA, which are posttranslation-
ally modified by the addition of fatty acids [59–61], ClyA does not require posttranslational
modification to be active. However, ClyA activity is tightly controlled at the transcriptional
level under certain conditions and by regulation systems involving several regulators, as
described above (see Section 2.2), and is also influenced by structural changes or environ-
mental signals.

As described in Section 2.3, ClyA oligomerization is essential for full activity. For
example, the structural change from the monomeric to the oligomeric form is crucial for
ClyA activity and is involved in the altered redox status [20]. However, another study
has shown that the intrinsic hemolytic activity of ClyA is independent of its redox state,
and that assembly of both reduced and oxidized ClyA into the ring-shaped oligomer is
triggered by contact with membrane lipids or a detergent [55]. ClyA harbors a cholesterol
recognition and consensus (CRAC) motif, which typically stabilizes structural intermediates
in assembly pathways that occur in the presence of cholesterol. The ClyA region containing
this CRAC motif, which comprises residues L24-Y27-K29 (N-terminal helix), is conserved in
ClyA homologs from several bacterial species (E. coli, S. Typhi, S. Paratyphi, Bacillus subtilis,
and S. sonnei), and the presence of cholesterol stimulates pore formation by selectively
stabilizing a protomer-like conformation, leading to hemolysis [62].
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ClyA-mediated cell lysis involves a complex series of steps in which ClyA must recog-
nize and bind to the target cell and then assemble to form a functional pore. A complete
prepore is assembled on the target membrane (or, in the non-classical pathway, a soluble
prepore forms within the OMVs); the membrane then becomes distorted, and a functional
pore is formed by the insertion of α-helices into the lipid bilayer, resulting in hemolysis-like
cell lysis [14,16,20,52,53]. In addition to hemolysis, it has been reported that ClyA has
other cytotoxic effects on target cells. Oscarsson et al. demonstrated experimentally that
highly purified ClyA exhibited cytotoxic activity toward J774 murine macrophage-like
cells, which was associated with morphology changes and a substantial decrease in the
detachment of target cells [63]. They speculated that membrane cholesterol may stimulate
ClyA lytic action, and this effect was investigated in a subsequent study conducted by
Sathyanarayana et al. [62]. Another group also demonstrated that purified ClyA and a
ClyA-expressing E. coli strain were cytotoxic to both human and murine macrophages, and
that this cytotoxicity was dose and time dependent. Their findings also suggested that ClyA
induces massive apoptosis, as indicated by host-cell DNA fragmentation [64]. Thus, the
pore-forming activity of ClyA is responsible for the induction of apoptosis in target cells,
similar to the pore-forming S. aureus α-toxin and E. coli HlyA [65,66]. In addition, Fuentes
and coworkers showed that ClyA assisted S. Typhi to invade human epithelial cells in vitro
and promoted the colonization of deep organs in mice when expressed heterologously in
S. Typhimurium [67].

Toxins can have different biological effects on target cells, depending on the concen-
tration. Sublytic concentrations of some bacterial hemolysins can induce variations in the
concentrations of eukaryotic second messengers that result in changes in host cell physiol-
ogy, evidenced by changes in cellular morphology, as well as other responses [68–71]. At
high concentrations, ClyA induces cytolysis of nucleated target cells, which is useful for
lysing cells (e.g., epithelial cells) to allow bacterial cells to penetrate tissues at the intestinal
phase of infection. However, at low (non-lytic) concentrations, ClyA can affect intracellular
signaling processes regulating physiological responses. The low concentrations of ClyA
delivered by OMVs affect Ca2+ homeostasis in epithelial cells by inducing slow intracellular
Ca2+ oscillations, a signaling event that is linked to the expression of proinflammatory
cytokines [69]. The ClyA protein and its pore assemblies are non-immunogenic, while
proinflammatory responses can be induced by LPS (TLR4-dependent) or other components
present in the OMVs. However, a recent report showed that ClyA exerts an indirect effect
on innate immune signaling pathways by promoting the secretion of LPS-induced IL-1β in
human macrophages through the TLR4 signaling and NLRP3-inflammasome pathways [72].
At present, our understanding of the biphasic activity of this toxin and its related physiolog-
ical effects, which are the result of multiple factors, including extra-environmental signals,
structural changes, and transcriptional regulation, is incomplete. The detailed mechanism
by which ClyA contributes to bacterial virulence in vivo and in vitro needs to be addressed
in further studies to elucidate the physiological role that this toxin plays in the process of
bacterial infection.

4. Potential Applications in Nanopore Technology, Vaccine Development, and
Tumor Therapy

Bacterial toxins clearly contribute to pathogenicity as virulence factors, but also have
the potential for use in biotechnological applications [2,73]. ClyA is a virulence factor in
terms of bacteriology, as described above. However, ClyA has also been used in various
research fields, including biotechnology, and the number of studies related to this aspect
has recently increased. In this section, recent research into the use of ClyA in biomedical
and bioengineering applications, and future directions in these fields, are discussed.

4.1. Nanopore Technology

The structural properties (protein channels) of PFTs, including ClyA, are widely
utilized as biological “nanopore” systems that enable single-molecule analysis without la-
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beling, chemical modification, or surface immobilization [73,74]. In 1996, Kasianowicz et al.
established the proof of concept of nanopores, an architectural type of biological machinery,
using a membrane-embedded α-hemolysis channel [75]. One of the most recognized ex-
amples of the use of nanopores is the “MinION” sequencer (Oxford Nanopore Technology
Ltd., Oxford, UK), which is integrated with a nanopore, and is used for genome DNA
sequencing to obtain long read sequences [76–78]. Although the quality of the obtained
sequences at present is not high compared with that of short reads from the Illumina plat-
form, this nanopore sequencing technology enables simpler and more rapid determination
of complete genome sequences, especially for organisms with small replicon sizes, such as
bacteria and viruses [79–82].

The Maglia group first demonstrated that ClyA can accommodate natively folded
proteins within its nanopore lumen [83] and have subsequently reported the utility of ClyA
as biological nanopore for the detection of single macromolecules in multiple advanced
studies [84–88]. In a study by Wang et al., ClyA was used to develop an electrode-free
nanopore sensing method that enables optical monitoring of single-molecule events without
any electrical connections [89]. Thus, recent studies have shown the potential for ClyA to
serve as a biological nanopore, which in the future could be integrated into miniaturized,
low-cost devices for use in medicine, industry, environmental monitoring, or for single-
cell analysis.

4.2. Vaccine Development

ClyA is useful in vaccine development because surface-exposed or secreted antigens
are often more immunogenic than cytoplasmic antigens, which is an important factor
in developing effective vaccines to protect against pathogens. Galen et al. successfully
engineered a recombinant protein comprising ClyA fused to the Bacillus anthracis protective
antigen (domain 4 moiety) and demonstrated that this fusion protein was exported and
exhibited immunostimulatory activity in mice [90]. Their findings showed that ClyA could
be an attractive export system for displaying foreign (heterologous) antigens in attenuated
bacterial strains, which paved the way for exploring this feature of ClyA in numerous
subsequent studies.

Importantly, ClyA is secreted by OMVs, and is therefore a good fusion partner and
an ideal scaffold for delivering exogenous proteins or antigens to OMVs, which are then
presented on the surface of released OMVs. Kim et al. demonstrated that fully functional,
recombinant beta lactamase, GFP, and anti-digoxin antibody fused to the C-terminus of
ClyA were secreted in OMVs. This work highlighted the flexibility of recombinant protein
display on the OMV surface [91]. A subsequent study showed that an antibody response
directed against GFP was induced in mice immunized with OMVs expressing recombinant
GFP fused to ClyA [92]. These seminal studies opened a new research avenue for the
development of next-generation therapies that take advantage of the genetic flexibility
offered by the ClyA-OMV system.

The engineered ClyA-OMV system has been recently applied in the development of
vaccines against various pathogens, including SARS-CoV-2 [93]. For example, it has been
reported that the successful expression and localization of ClyA-M2e fusion proteins in
OMVs led to protection against a lethal dose of H1N1 influenza A virus [94]. Another
successful example of the use of ClyA in vaccine development was a study in which a
complete Acinetobacter baumannii Omp22 protein fused to ClyA was displayed on the
surface of E. coli OMVs. Immunization with the engineered OMVs induced a strong
antigen-specific humoral immunity response in mice and protected mice from a lethal
challenge with a clinical A. baumannii isolate [95]. During the ongoing COVID-19 pandemic,
messenger RNA has been widely used to generate immunogens in SARS-CoV-2 vaccines,
which have been very effective in preventing COVID-19 [96–99]. However, the current
vaccines against SARS-CoV-2 have several issues, including low yields, transportation
difficulties, high manufacturing costs, and complex and delicate manufacturing processes.
In recent work, Yang et al. reported the development of bacterial biomimetic vesicles (BBVs)
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loaded with a fusion protein comprising ClyA and the SARS-CoV-2 spike protein receptor
binding domain (RBD), called RBD-BBV [100]. Combining this strategy with high-pressure
homogenization technology further enhanced the presentation of the RBD on BBVs and
the yields of RBD-BBVs. When injected subcutaneously, these RBD-BBVs accumulated in
lymph nodes, promoted antigen uptake and processing, and elicited SARS-CoV-2-specific
humoral and cellular immune responses in mice. Thus, it is expected that the ClyA-OMV
system could be used in the development of vaccines against emerging pathogens, such
as SARS-CoV-2.

4.3. Tumor Therapy

Historically, bacterial infection and bacterial products, including toxins, have been
used as challenges in cancer treatment. For example, Coley’s toxin, which is a cocktail of
heat-killed bacteria, has been used to stimulate an anti-cancer immune response [101,102].
The ClyA protein alone and the ClyA-OMV system have been investigated as potential
anti-tumor agents or tools. Ryan et al. first demonstrated that the cytotoxic properties of
ClyA, in combination with a hypoxia-inducible promoter, increased necrosis in hypoxic
regions of tumors and inhibited tumor growth in mice, indicating the potential of ClyA as
an anti-tumor agent [103]. It has been suggested that E. coli OMVs have a potential role
in tumor immunotherapy, as intravenous injection of these OMVs induced strong IFN-γ-
and T cell-mediated anti-tumor responses [104]. In another study, the use of a ClyA-OMV
system successfully achieved presentation of the ectodomain of the programmed cell death
protein 1 (PD-1). The engineered OMVs bound to the PD-1 ligand 1 on tumor cell surfaces,
thereby facilitating PD-1 ligand 1 internalization and reducing the expression levels on
tumor cells [105]. A very recent study by Thomas et al. showed that ClyA served as an
anchoring protein for hyaluronidase (Hy) in hypervesiculating E. coli Nissle-produced
OMVs and potentially exerted a cytotoxic effect against cancer cells [106]. These engineered
OMVs helped distribute Hy more effectively and uniformly inside the tumors, permitting
the penetration of drugs and potentiating their effects by considerably decreasing the levels
of hyaluronic acid in the tumor tissues. These results indicated that the ClyA-OMV system
could be an effective tool for stromal remodeling, cytolytic therapy, and improving the
activity of anti-cancer targeted therapeutics. Similar to this approach, ClyA has been used
as a leader protein for presenting human epidermal receptor 2 (HER2; expressed at high
levels in breast cancer cells) affibodies on the surface of OMVs. The engineered OMVs
delivered a loaded therapeutic siRNA cargo to ovarian and breast cancer cells expressing
HER2, subsequently inducing cancer cell death without appreciable side effects [107]. In a
recent study using advanced techniques, a flexible tumor vaccine platform based on OMVs
expressing ClyA as a fusion partner for tumor antigens in conjunction with a “plug-and-
display” system [108] comprising tag/catcher protein pairs [109] was established. This
approach enabled the display of various tumor antigens linked to protein tags on the OMV
surface, rapidly and simultaneously, as the protein catchers were fused to ClyA. The OMV-
mediated tumor antigens were effectively delivered to lymph nodes and then presented
to dendritic cells, resulting in the induction of antigen-specific T-lymphocyte-mediated
anti-tumor immune responses in murine tumor models.

Cancer is a global health issue, and researchers continue to explore strategies for cancer
treatment from various perspectives. The ClyA-OMV system could further accelerate
research in this field and help develop a new generation of more effective cancer therapies.

ClyA can be fused to a foreign protein and stably anchor it on the surface of bacterial
cells. This feature enables the facile functional display of a variety of different prokaryotic
and eukaryotic proteins. In addition, ClyA elicits this ability to the fullest in combina-
tion with OMVs. For example, surface-exposed antigens facilitated using ClyA are more
effectively immunogenic than cytoplasmic antigens and thus are useful for vaccine devel-
opment [90,95,100]. In tumor therapy, ClyA serves as a fusion partner for tumor antigens
and can form part of the OMV-based delivery platform for anti-tumor agents against
specific cancer cells [105–107]. Although the ClyA protein has the potential for versatile
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applications, the biphasic activity of this toxin and its related physiological effects in vivo
remain unclear. In addition, OMVs enclose various bacterial proteins and other molecules
(e.g., LPS and outer membrane proteins) that might have unwanted biological effects on
normal cells [46,47]. Therefore, the potential side effects, including the intrinsic toxicity of
ClyA, must be carefully considered in the future development of platforms using ClyA,
especially in vaccine development and tumor therapy.

5. Conclusions

The properties of ClyA, including its function, activity, secretion, and structure, have
become increasingly well characterized since its discovery a quarter of a century ago. How-
ever, more work is needed to investigate the physiological roles of ClyA and understand
the detailed effects of this toxin on host cells. Determining the structure of ClyA and how it
is secreted were noteworthy findings that had a substantial impact on subsequent studies.
While bacterial toxins are major virulence determinants that can cause considerable damage
to the host, understanding how they function can also lead to the development of various
practical applications that take advantage of the toxin’s unique characteristics. Recent
studies have demonstrated the ways in which ClyA’s unusual features can be exploited to
develop cancer therapies, nanopores, and vaccines, showing its versatility. Other known or
newly identified toxins may also be as useful as ClyA in applied fields, and I hope that this
review will inspire future studies that expand the utility of bacterial toxins.
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