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Abstract

Codon usage bias in prokaryotic genomes is largely a consequence of background substitution patterns in DNA, but highly
expressed genes may show a preference towards codons that enable more efficient and/or accurate translation. We
introduce a novel approach based on supervised machine learning that detects effects of translational selection on genes,
while controlling for local variation in nucleotide substitution patterns represented as sequence composition of intergenic
DNA. A cornerstone of our method is a Random Forest classifier that outperformed previous distance measure-based
approaches, such as the codon adaptation index, in the task of discerning the (highly expressed) ribosomal protein genes by
their codon frequencies. Unlike previous reports, we show evidence that translational selection in prokaryotes is practically
universal: in 460 of 461 examined microbial genomes, we find that a subset of genes shows a higher codon usage similarity
to the ribosomal proteins than would be expected from the local sequence composition. These genes constitute a
substantial part of the genome—between 5% and 33%, depending on genome size—while also exhibiting higher
experimentally measured mRNA abundances and tending toward codons that match tRNA anticodons by canonical base
pairing. Certain gene functional categories are generally enriched with, or depleted of codon-optimized genes, the trends of
enrichment/depletion being conserved between Archaea and Bacteria. Prominent exceptions from these trends might
indicate genes with alternative physiological roles; we speculate on specific examples related to detoxication of oxygen
radicals and ammonia and to possible misannotations of asparaginyl–tRNA synthetases. Since the presence of codon
optimizations on genes is a valid proxy for expression levels in fully sequenced genomes, we provide an example of an
‘‘adaptome’’ by highlighting gene functions with expression levels elevated specifically in thermophilic Bacteria and
Archaea.
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Introduction

Due to non-random use of synonymous codons, protein coding

sequences contain a layer of information on the DNA level that is

not reflected at the protein sequence level. The principal

determinant of codon usage in prokaryotes are nucleotide

substitution patterns [1,2] that vary greatly across genomes, as

evidenced in the range of genomic G+C content spanned by the

sequenced organisms. There is also significant variation in

direction and strength of these nucleotide substitution biases along

the prokaryotic chromosome [3] with a general tendency toward

A+T-enrichment near the replication terminus. Another common

intra-genomic trend in nucleotide composition concerns the

distinction between the two DNA strands where the leading

strand is ‘GC-skewed’, i.e. enriched in G over C and T over A [4]

mostly due to deamination of cytosine in single-stranded DNA

exposed during replication. Such biases in mutational processes

may result from the nature of chemical changes to the nucleotides,

but also from biases in errors of DNA replication and repair, and

appear to be an important contribution to the background

substitution patterns. In addition to the mutational biases, an

adaptive component has also been proposed for specific nucleotide

compositions, e.g. [5] and also for dinucleotides [6]. We refer the

reader to a review of the organizational features of prokaryotic

genomes with respect to local sequence composition and gene

distribution [7].

In addition to the nucleotide substitution patterns, a competing

influence on silent sites is selection acting to make protein

translation more ‘efficient’ (in this context implying ‘faster’) and

more accurate; although the term ‘efficiency’ is technically a

misnomer [8], we use it for sake of consistency with previous

literature. Traditionally, this effect was linked to abundances of

tRNA isoacceptors for a particular codon [9], in agreement with a

model where the speed of translational elongation is limited by

availability of charged tRNA molecules [10]. Translational

selection is also reflected in biased codon use that guards against

missense and nonsense errors in proteins [11]. More recently,

other more subtle translation-related determinants of codon usage

have been observed, for instance the ‘load minimization’ where

codons whose mutated forms cause less structural disruption to

proteins are preferred [12] and the selective charging of tRNAs

which promotes use of starvation-insensitive codons in amino acid

biosynthetic pathways [13]. Some correlations have been observed

between codon usage and protein structural features [14], and a

synonymous mutation in a human gene was shown to produce a

phenotype via an altered protein structure [15].

Selection for translational efficiency and accuracy would be

expected to affect strongly a small set of highly abundant proteins,
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a typical representative being the ribosomal protein (RP) genes.

The portion of a genome undergoing some degree of translational

optimization may, however, be larger, and choice of genes within

this subset was speculated to be related to the environment of a

particular organism [16]. A number of prokaryotic genomes have

been reported to show no influence of translational selection at all,

most notably the slow-growing pathogens Borrelia burgdorferi [17]

and Helicobacter pylori [18] or the insect endosymbionts Buchnera

[19], Wigglesworthia [20] and Blochmannia floridanus [21]. However,

in Buchnera a correlation was found between measured tRNA

abundances and codon composition of highly expressed genes

[22]. Three previous multiple-genome analyses detected evidence

of translational selection in approx. 25% [23], 50% [24] or 70%

[25] of the prokaryotes analyzed, the authors’ conclusions

depending heavily on the mathematical apparatus employed.

A multitude of statistics have been invented specifically for

codon usage analyses and implemented in software [26], and

many of these statistics can be generalized to measures of pairwise

distances between codon frequency vectors. A prominent example

is the popular ‘codon adaptation index’ [27] that measures the

distance to a predefined set of highly expressed genes. Interest-

ingly, several authors that relied on a codon distance measure have

found that gene functions close in codon usage to RP genes in E.

coli also have RP-like codon usage in some of the organisms which

are supposed to lack translational selection, see e.g. the glycolysis

genes in H. pylori [28] or respiration and ATP synthase genes in B.

floridanus [29].

Correspondence analysis, an unsupervised dimensionality

reduction technique followed by visualization or clustering, has

often been used in single-genome studies to detect dominant trends

in codon usage patterns. This approach has lead to qualitatively

different results regarding presence or absence of translational

selection depending on how the data was normalized, as

demonstrated for B. burgdorferi [30], and for a larger number of

genomes using a related technique of principal component analysis

[31].

Our motivation for the present work was to reconcile the

inconsistencies in the literature concerning the prevalence of

translational selection among and within genomes, and its

relationship to microbial ecology and physiology. To this end,

we introduce a supervised machine learning-based computational

framework that couples a classifier to standard statistical tests, an

approach that exhibits an increased accuracy over commonly used

unsupervised techniques, and the ability to control for a strong

confounding factor – the nucleotide substitution patterns – that

shape codon usage, but in a manner not related to protein

translation.

Results/Discussion

The Random Forest classifier is an accurate method for
codon usage analysis

In contrast to previous approaches, we introduce a supervised

machine learning-based framework for detecting the presence and

the extent of translational selection in 461 prokaryotic genomes.

Our method is based on the Random Forest (RF) classifier [32]

which we evaluate in the task of discriminating a group of genes

affected by selection for translational efficiency and/or accuracy,

using only codon frequencies. The group of ribosomal protein (RP)

genes is assumed to be highly expressed and therefore a

representative subset of genes under such selective pressures; we

back this assumption by a survey of RP mRNA abundances in a

phylogenetically diverse set of organisms (Table S4). We

demonstrate RF to be a more accurate tool (Figure 1) in

comparison to three previous pairwise distance-based approaches

[27,33,34]. Additionally, the RF predictions correlate with

experimental measurements of protein concentrations in Escherichia

coli slightly better than previous methods do (Figure 1, Table S1).

We also show the widely used CAI method [27] to be suboptimal

for genomes with imbalanced G+C content (Figure 1), as

previously speculated by its author [35] and as evidenced by its

inability to predict gene expression in the A+T rich eukaryote

Plasmodium falciparum [34].

Ribosomal protein genes have a distinctive codon usage
not explained by underlying nucleotide substitution
patterns

For each genome, we train two series of RF classifiers to

discriminate ribosomal protein genes: first, a series of ‘baseline’

classifiers that have at their disposal the description of regional

nucleotide substitution patterns as mono- and di-nucleotide

frequencies in non-coding DNA in the genes’ vicinity, followed

by a second series of classifiers that introduces additional

information about codon frequencies of genes (see Materials and

Methods and Figure S1). In 460 of 461 examined genomes, the

codon frequencies consistently facilitated classification over the

baseline (Table S3), providing strong evidence that translational

selection is, in fact, ubiquitous among prokaryotes. This trend also

holds true in genomes which previous large scale studies [23–25]

have found as lacking translational selection (Figure 2). The only

genome where our method did not detect a translation-related

codon bias was Saccharophagus degradans 2–40, although even this

result may change depending on the size of the ‘window’ of

ncDNA examined (Text S1). This genome was previously found to

exhibit extensive mosaicism in G+C content [36], probably due to

large amounts of recently horizontally transferred (HT) DNA

which might not have had sufficient time to ‘ameliorate’ [37] to

match the new host’s translational apparatus. S. degradans genome

serves as an example how strong local variation in background

nucleotide frequencies, here caused by HT events, might obscure

Author Summary

Synonymous codons are not equally common in genomes.
The main causes of unequal codon usage are varying
nucleotide substitution patterns, as manifested in the wide
range of genomic nucleotide compositions. However,
since the first E. coli and yeast genes were sequenced, it
became evident that there was also a bias towards codons
that can be translated to protein faster and more
accurately. This bias was stronger in highly expressed
genes, and its driving force was termed translational
selection. Researchers sought for effects of translational
selection in microbial genomes as they became available,
employing a flurry of mathematical approaches which
sometimes led to contradictory conclusions. We introduce
a sensitive and accurate machine learning-based method-
ology and find that highly expressed genes have a
recognizable codon usage pattern in almost every
bacterial and archaeal genome analyzed, even after
accounting for large differences in background nucleotide
composition. We also show that the gene functional
category has a great bearing on whether that gene is
subject to translational selection. Since presence of codon
optimizations can be used as a purely sequence-derived
proxy for expression levels, we can delineate ‘‘adaptomes’’
by relating predicted gene activity to organisms’ pheno-
types, which we demonstrate on genomes of temperature-
resistant Bacteria and Archaea.

Translational Selection in Prokaryotes
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translation-related codon usage biases even if they did exist by

boosting the accuracy of the baseline classifier; an empirical

evaluation of influence of HT on our findings is given in Materials

and Methods and in Text S2.

Between repetitions of the RF training on the same genome,

accuracy of classifiers obtained using codon frequencies was also

generally uncorrelated with the accuracy of baseline classifiers

obtained without codon frequencies (Figure 2), further indicating

that the codon usage brings into the datasets information

independent of that encoded in intergenic DNA. The accuracies of

codon-trained RF models also tend to deviate less between runs. On a

side note, the unexpectedly strong RF accuracy obtained solely from

the description of local nucleotide composition (Figure 2, Table S3)

underscores the need to control for this confounding factor in codon

usage analyses. It may prove fruitful to reinvestigate whether the so-

called ‘genomic signatures’ – dinucleotide frequencies in DNA – are

indeed invariant within bacterial and archaeal genomes, as claimed

previously [38]. On the other hand, the strong RF accuracy that we

observed with intergenic DNA might in significant part be attributed

to the use of ncDNA windows that overlap for neighboring genes (see

Materials and Methods).

Expectedly, the accuracy of codon-trained RF classifiers

generally reflects the intensity of codon biases within a genome

(Figure S3, Dataset S1), but the accuracy is also bound to be

related to the proportion of genes within a genome that are

affected by translational selection; see section below. The increase

in accuracy for a genome additionally depends on the baseline

model derived from local and between-strand variation in

background nucleotide composition. Therefore, the magnitude

of the increase does not have a straightforward interpretation in

itself; rather, if the increase over the baseline has sufficient

statistical support, it may be concluded that a translation-related

codon usage bias is present, be it strong or weak.

A sizeable portion of each genome shows an above-
baseline codon usage similarity to the RP genes

The classifiers’ predictions on a per-gene level provide estimates

of similarity to the ribosomal protein genes. We declare a gene to

have optimized codon usage (OCU) if this similarity exhibits a

statistically significant increase after codon frequencies are

introduced to the classifier (Figure 1). Using a conservative

estimate (see Materials and Methods) we find that genomes

contain on average 13.2% of OCU genes (Figure 3, Dataset S1),

Figure 1. Comparison of methods for codon usage analysis. Top
left and right. Performance of different classifiers utilizing codon
frequencies in discriminating ribosomal protein genes from the rest
of representative organism’s protein genes. The receiver operating
characteristic (ROC) curves show performance of: the Random Forest
(RF) classifier [32], and the nearest centroid classifiers built around three
distance measures of codon usage: CB, codon bias [33], CAI, codon
adaptation index [27], and MILC, measure independent of length and
composition [34]. Bottom left. Number of genomes (out of 461) where
the column method outperforms the row method based on the area-
under-ROC (AUC) statistic, and the rank correlation of the classifiers’
per-gene class probabilities with experimental measurements of E. coli
cytoplasmic protein abundances. All results were obtained in 4-fold
crossvalidation. Bottom right. Dependence of AUCCAI and AUCRF on
genomic G+C content; AUCCAI is decreased in genomes with
imbalanced G+C.
doi:10.1371/journal.pgen.1001004.g001

Figure 2. Predictive performance of the Random Forest
classifier between datasets with and without codon frequen-
cies. Performance is measured for the task of discriminating ribosomal
protein genes from the rest of the protein coding genes, where each
point represents a single run of four-fold crossvalidation. Points above
the diagonal line signify improvement in AUC score with addition of
codon frequencies, indicating that ribosomal protein genes have a
characteristic pattern of codon usage which cannot be derived from the
composition of intergenic DNA, a representation of the local nucleotide
substitution patterns. The eleven genomes shown were cited as
exhibiting no translational selection by each of the three previous
multi-genome studies [23–25], see Text S1, Appendix B. Figure S2
shows the same experiments, but with codon frequencies shuffled
between genes.
doi:10.1371/journal.pgen.1001004.g002

Translational Selection in Prokaryotes
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with a minimum of 5.4% in the metabolically versatile, free living

Pseudomonas flourescens Pf-5, and a maximum of 33.0% in the highly

reduced genome of the obligate parasite Aster yellows witches-broom

phytoplasma. These estimates of the extent of translational selection

within bacterial and archaeal genomes are broadly comparable to

the results of a study in eukaryotes [39] that reported purifying

selection at synonymous sites in ,28% of the analyzed mouse-rat

orthologs. Given these findings, it does not seem generally safe to

assume that silent sites of all protein coding genes evolve neutrally,

regardless of the domain of life under scrutiny.

The division of genes into the OCU and non-OCU groups does

not imply that there is a clear-cut boundary between codon

frequencies of the two groups. Rather, we would expect a gradient

of codon usages to exist, where the genes labeled as OCU are

those above the detection threshold of our method. This concept

builds on an approach formulated by Karlin, Mrazek and

colleagues [29,33,40] where a subset of genes in the genome is

assigned the ‘‘PHX’’ (predicted highly expressed) label by codon

usage similarity to a set of RP and other translation-related protein

genes. There are, however, three important distinguishing features

of OCU assignments: (a) they are based on a RF classifier that

outperforms the ‘codon bias’ distance measure used for PHX

assignments (Figure 1), (b) OCU is separated from non-OCU by a

significance call of a statistical test instead of relying on an

arbitrary threshold, and (c) OCU assignments are made using a

control for local nucleotide substitution patterns which are a strong

confounder in codon usage analyses.

In mammalian genomes, the presence of translationally selected

codon usage is still an unresolved issue, see [41] for a recent

analysis. The method we have here employed to prokaryotes could

potentially be useful for future investigations on mammalian

genomes where non-coding DNA is plentiful and local variation in

GC content (isochores) greatly complicates analysis.

Elevated mRNA expression levels of codon-optimized
genes

We have demonstrated that in almost all examined genomes the

RP genes can be discerned by their codon usage, even after local

or strand-specific nucleotide composition are controlled for. To

verify that this codon bias of the RP-like genes ( = OCU genes) is

indeed due to translational selection, we examine the correlation

of OCU/non-OCU assignments to gene expression data (Text S1,

Appendix A) from 19 phylogenetically diverse species. We find

that OCU genes record microarray signal intensities on average

2.4-fold higher than non-OCU genes (2.2x if RP genes are

excluded), ranging from 1.2x to 3.7x; compare this to the 6.0x

difference between RP – representing the most highly expressed

genes – and the average measurement (Table S5). The ratio of

means is significantly greater than unity in all genomes at p,0.01

(permutation test). Note that the relationship of the microarray

signal intensities to mRNA abundances may be highly non-linear;

in a study of gene expression in human tissues, the signal of

Affymetrix microarrays was found to be roughly proportional with

log-transformed counts of mRNA molecules obtained with

Illumina sequencing [42]. In all 19 organisms we examined, the

distribution of microarray signal intensities for OCU genes was

significantly shifted towards higher values (p,0.01, Baumgartner-

Weiss-Schindler permutation test [43]). The trend remains in the

four of the 19 genomes where translational selection was

previously considered to be ineffective (Figure 4, full data in

Table S5). These estimates of correlation are likely conservative as

gene expression will match codon usage better under certain

growth conditions, presumably those that were dominant during

the organism’s evolutionary past [44]. It is not trivial to surmise

these conditions in advance, and a dataset that matches them may

not be available. Expression measurements taken under conditions

of stress or starvation, for instance in the stationary phase, are

expected to correlate less strongly with codon usage, as evidenced

previously for Bacillus subtilis and Escherichia coli [34].

Agreement of preferred codons with tRNA anticodons
We looked for further evidence that OCU assignments were

indeed due to translational selection by examining whether the

OCU genes show a preference for putatively optimal codons in

two-fold degenerate amino acids, where we assumed an optimal

codon to match the tRNA anticodon by canonical base pairing

Figure 3. Extent of translational selection within genomes. (A) shows correlation of extent of translational selection in a genome (% OCU) to
genome size, with the regression curve representing a fitted power-law relationship shown for illustrative purposes only. Genome size is expressed as
number of protein coding genes at least 80 codons long. (B) shows the relationship between the genome size and ‘‘protein metabolism’’ and
‘‘regulation of biological process’’ functional categories, which is of predictable character; curves representing moving averages of the real data. (C)
depicts correlation of % OCU to proportion of genes within a genome that belong to one of the two selected Gene Ontology categories from (B).
‘‘rSVM’’ referred to in (C) is the Pearson’s correlation coefficient of a non-linear Support Vector Machines (SVM) regression fit (crossvalidation) of %
OCU, for different combination of variables; values of ‘‘rSVM’’ obtained using one of the variables are given alongside the corresponding axis, top right
inside the plot are values obtained when using both variables and in combination with the genome size.
doi:10.1371/journal.pgen.1001004.g003

Translational Selection in Prokaryotes

PLoS Genetics | www.plosgenetics.org 4 June 2010 | Volume 6 | Issue 6 | e1001004



(without wobble), as proposed in an early investigation of codon

usage in yeast genes [45]. The presence or absence of tRNA genes

with specific anticodons given in GtRNAdb database [46]

indicates that the optimal codons in prokaryotes are almost always

either C/A-ending, or undefined if the genome contains tRNA

genes with both anticodons for the two-fold degenerate amino

acid. We found that OCU genes prefer the putatively optimal

codon 6.2x more frequently than the suboptimal one in Bacteria

(p,10230, sign test) and 3.1x more frequently in Archaea

(p = 10212, sign test; Figure 5; Table S6). All amino acids

contribute approximately equally to this effect (Figure 5), with

the exception of Cys which is rare and therefore hard to show a

preference for or against, and Lys, for which an optimal codon

cannot be defined in a majority of genomes. In spite of the

dominant trend of OCU preference for optimal codons defined

through tRNA content, some examples of amino acid-genome

combinations where this regularity is reversed do exist; full data in

Dataset S1. We speculate that these exceptions might stem from

chemical modifications of nucleosides in the tRNA.

A rich structural diversity of the modifications exists in Bacteria

and Archaea [47], many affecting the anticodon or its vicinity,

thereby modulating the codon-anticodon interaction; reviewed in

[48,49]. The modifications prevent wobble matching to the wrong

amino acid or enhance wobble matching to the correct amino

acid, which may, in turn, render inapplicable the definition of

cognate codons as the optimal codons. The potential for such

modifications to elevate translation speed of ‘suboptimal’ codons

over ‘optimal’ ones has been demonstrated experimentally on

Drosophila tRNAHis [50] and on E. coli tRNAGlu [51]. Currently,

the tRNA nucleoside modifications are fully known only for few

organisms [52]; it will be interesting to see how the future

experimental data on the modifications will align with the OCU-

preferred codons. Equally relevant to this issue is a recent paper

discussing the choice of optimal codons in genomes [53], stating

that optimal codons are dictated mainly by the direction of

nucleotide substitution patterns evident in the overall genomic

G+C content. Moreover, the authors have also found that in a

large majority of bacterial genomes the gene set with the most

highly biased codon usage is enriched with RPs and translation

elongations factors, and that this codon usage cannot be

reproduced from composition of intergenic DNA [53]. This

finding is consistent with the notion of translationally selected

codon usage as a prevalent phenomenon among prokaryotic

genomes.

Proportion of codon-optimized genes and genome size
The proportion of OCU genes correlates inversely to genome

size (Figure 3A, Spearman’s r = 20.71, Dataset S1), and we note a

relationship of % OCU to lifestyle of bacteria, free-living vs. host-

associated. These effects are largely a consequence of the changes

in proportions of gene functional categories in genomes with

regard to size (Figure 3B) [54,55] and lifestyle, as the % OCU is

Figure 4. Expression levels of OCU versus non-OCU genes. Histograms comparing microarray signal intensities between genes with
optimized codon usage (OCU) and the non-OCU genes. The P. aeruginosa and S. coelicolor genomes were previously considered to lack translational
selection (Text S1, Appendix B). The p-values are by the Baumgartner-Weiss-Schindler permutation test [43]. Block arrows show the mean microarray
signal intensity of OCU or non-OCU genes. Numbers above the curly braces are ratios of mean signal intensity of OCU genes to mean signal intensity
of non-OCU genes. Diamonds show the mean signal intensity for aminoacyl-tRNA synthetases (‘‘t’’) or the ribosomal protein genes (‘‘R’’). Full data for
19 organisms in Table S5; average ratio of OCU expression to non-OCU expression in the 19 organisms is 2.4x. See Figure S4 for similar histograms,
but with the ribosomal protein genes excluded.
doi:10.1371/journal.pgen.1001004.g004
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readily predictable from frequencies of selected Gene Ontology

(GO) categories (Dataset S1), even after controlling for genome

size (Figure 3C). Note that our procedure to estimate of the extent

of translational selection within genomes – expressed as % OCU

genes – was not designed to measure the strength of this selection

within a genome. Ideally, the genes’ OCU assignments should be

independent of the strength of the selection, previously recognized

to differ greatly between genomes depending on the growth rate of

the organism, or the composition of the cellular tRNA pool [56].

Therefore, the high % OCU in small genomes is not an indication

that translational selection is stronger or weaker in these

organisms, rather it is largely consequential to the proportion of

underlying gene functional categories. If the extent of codon

optimization within a genome is dictated mainly by its content of

gene functions, one would expect the individual GO categories to

have general preferences towards enrichment or depletion from

OCU genes that are conserved across organisms, as we have

verified (Figure 6, Table S7).

Equivalent gene functional categories are optimized
across domains of life

The most prominent trend in our results is consistent with

previous research [28,33], with translational selection readily

acting on genes involved in protein production and in energy

metabolism. Genes that are rarely OCU are involved in

regulation, DNA replication and repair, sensing of stimuli, and

most kinds of transport, except the electron transport chain and

ATP synthesis-coupled H+ transport. Very similar trends are

observed when focusing only on a subset of genomes previously

cited as lacking translation-related codon usage biases (Table S8),

corroborating the idea that translational selection is operative even

in these genomes.

We compared Gene Ontology categories enriched with OCU

genes between Bacteria and in Archaea (Figure 6, box), revealing a

general agreement between the two domains of life. Two prior

studies highlight an unusual reduction in frequency of codon-

optimized ribosomal proteins as specific to Archaea [40] and also

Archaea-specific optimizations in a DNA replication and repair

protein PCNA [57] while our results do not support these

observations. We suspect them to be artifacts of a methodology

that does not control for the local variation in background

nucleotide composition, coupled with the fact that in Bacteria –

but not in Archaea – ribosomal protein genes are often collocated

on the chromosome as they tend to share operon membership.

Several eukaryotes have histone proteins which are highly biased

towards the use of optimal codons [58]. Here, we report that

Bacteria have nucleoid-associated proteins (Figure 6, callout) that

are frequently OCU, identifying another instance of equivalent

gene functions being translationally optimized in different domains

of life. Furthermore, the archaeal chromatin protein AlbA is

commonly OCU (40 out of 51 occurences, 4.6x enrichment,

p = 10221 by Fisher’s exact test). These findings are supported by a

quantitative proteomics experiment [59] that places the nucleoid-

associated proteins Fis, H-NS and HU among the top 10 most

abundant non-ribosomal proteins in the E. coli cytosol.

Genes with codon usage contrasting the trend in their
functional category

Aminoacyl tRNA synthetases (aa-tRS) are infrequently OCU

(enrichment = 0.24x), consistent with their mRNA levels close to

the genomic average (Table S4). A prominent exception is the

Asn-tRNA charging enzyme (Table S9, enrichment = 1.05x),

which might signal erroneous homology-based transfers of

functional annotation involving some instances of this protein

and the evolutionarily and structurally related [60] amino acid

biosynthetic enzyme, asparagine synthetase A (AsnA, enrich-

ment = 1.44x). A different NH4
+-assimilating enzyme, glutamine

synthetase, is also enriched with OCU genes (GlnA, enrich-

ment = 2.12x), in contrast to a general avoidance of codon

optimization in amino acid biosynthesis genes (enrich-

ment = 0.50x). This leads us to speculate about an additional

physiological role for GlnA and/or AsnA in Bacteria that would

involve detoxification of ammonia by the energetically costly

incorporation into amino acids, as has recently been demonstrated

to occur in the yeast S. cerevisiae [61].

Aerobic respiration normally produces oxygen radical species

which are then detoxified, or their damaging affects averted by

scavenging of free iron, by an array of proteins that we found to be

frequently OCU across Bacteria (Table S10). The abundance of

proteins defending from oxidative stress therefore seems not to be

specific to the radioresistant organism Deinococcus radiodurans, as

claimed previously [33]. OCU genes are, however, conspicuously

rare in the catalase genes in Bacteria (Table S10), possibly due to

their activity being necessary only at supraphysiological levels of

H2O2, as previous experimental work indicates is actually the case

in E. coli [62].

Lifestyle-specific adaptations in prokaryotes are reflected
in codon optimizations

We have shown that a number of gene functional categories

exhibit strong preferences toward or against translational optimiza-

tion across all Bacteria and Archaea. If organisms defined by a

specific lifestyle show a tendency contrary to the general trend, and

Figure 5. Preferred codons in OCU genes. Height of bar segments
indicates the number of genomes in which the putatively translationally
optimal or suboptimal codon is more frequent in the OCU genes vs. the
non-OCU genes, broken down by amino acid. An optimal codon may be
determined for a two-fold degenerate amino acid in cases when a
genome codes only for tRNAs with one specific anticodon. The codon
that directly matches this anticodon is then declared to be putatively
optimal and is almost always C- or A-ending; the other codon is
putatively suboptimal. Preference for a codon is determined by a Mann-
Whitney U test on OCU vs. non-OCU codon frequencies at p,1023.
Shown p values are by sign test under the null hypothesis that OCU
genes are equally likely to prefer optimal or suboptimal codons.
doi:10.1371/journal.pgen.1001004.g005
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this tendency is constrained to a gene functional category, this

correlation could be biologically meaningful. An example illustrative

of this principle was previously brought forward in work by Karlin

[40] and Carbone [28], where the glycolysis genes were claimed to be

more frequently codon-optimized in anaerobic bacteria. Indeed, we

detected this association (GO:6096, enrichment = 2.1x, p = 10233)

alongside with a – not unexpected – increase in OCU frequency of

carbohydrate transporters (GO:8643, enrichment = 1.8x, p = 10214).

We also found an increase in OCU frequency of ferritin in aerobes

(COG:1145, enrichment = 3.0x, p = 10217), consistent with ferritin’s

role in protection against oxidative stress mediated by soluble ferrous

ions.

In specific Archaea and Bacteria, the ability to thrive at high

temperatures was expected to leave a distinct ‘signature’ in

Figure 6. Gene ontology categories enriched with, or depleted of, OCU genes in Bacteria. Disc color indicates depletion (red) or
enrichment (green), while size is proportional to log number of genes in category. Enrichment or depletion is significant at p,10215 (Fisher’s exact
test) in all displayed categories. Thickness of grey lines represent semantic similarity between categories; also, spatial arrangement of discs
approximately reflects a grouping of categories by semantic similarity. Displayed categories have been selected from a broader set to eliminate
redundancy and prepared for visualization using the REViGO tool available at http://revigo.irb.hr/; see Dataset S2 for an exhaustive listing. Callout
shows enrichment of selected orthologous groups within the ‘‘nucleosome assembly’’ category. Summary of results from Archaea is shown in the
embedded frame.
doi:10.1371/journal.pgen.1001004.g006
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genome composition, implying that a gene complement respon-

sible for this phenotype could be delineated. This is, however,

generally not the case [54]. Perhaps the genome-encoded

determinants of thermophily are discernible on a more fine-

grained level, encompassing adaptation through changes in gene

regulation and/or recruitment of existing genes for alternative

physiological roles; let us name this set of alterations evolved in

response to specific environmental challenges an ‘adaptome’ of an

organism with respect to an environment. The hallmark feature of

translational selection is that it affects highly expressed genes most

strongly. The detection of codon optimizations on individual genes

can thus be used as a proxy for the genes’ expression level, offering

an insight into adaptive changes in an organism’s physiology; we

would not expect the codon optimizations, as we measure them, to

reflect other kinds of functional differences between proteins.

An example of an ‘‘adaptome’’: gene functions with
optimized codon usage in thermophiles

Based on the correlations observed independently in Archaea

and in Bacteria, we conjecture about two metabolic adjustments

that would aid in protection of proteins and DNA against thermal

denaturation. Phosphorylation is normally used to regulate protein

activity, and regulatory proteins are typically not highly abundant

in cells. Consequently, they were rarely labeled as OCU (Figure 6).

However, genomes of thermophilic microbes tend to contain

comparatively more OCU genes within the ‘protein phosphory-

lation’ functional category (Table 1) than the genomes of

mesophiles. This difference would be explained if the addition of

phosphate groups was a very commonly occurring process that

affected a considerable fraction of total cellular protein, for

instance if the phosphates served a structural role in many different

proteins. Previous comparative analyses of structures of thermo-

phile proteins versus their mesophile counterparts indicated that a

typical characteristic of thermophile proteins is an increase of

charged residues on the protein surface [63,64]. Attaching charged

phosphate groups (Table 1) to existing amino acids would lead to a

similar effect, perhaps even to a stronger degree as the phosphate

carries a higher charge than the side chains of charged amino

acids. On the other hand, the activity level of such phosphory-

lation might be controlled through acetylation enzymes (Table 1)

that would compete for the same substrates (amino acid side

chains).

A putative DNA thermoprotective mechanism could be inferred

from an unexpectedly high frequency of codon optimization

within thermophile genes annotated as response regulators for

two-component systems and other transcriptional regulators.

Again, we would generally not expect high expression levels from

regulatory proteins, unless they were to perform a different role in

the cell, either alone or in addition to their original function. We

speculate that a subset of these proteins with DNA binding

domains (candidates in Table 1) might play a role in formation of a

chromatin-like structure that would act to preserve DNA

geometric properties, protect it from chemical damage or aid in

repair under high temperatures. To our knowledge, there is

currently no experimental data that would directly support this

hypothesis; however, on the other end of the temperature

spectrum, stabilization of DNA and RNA secondary structures

occurs and is known to be counteracted by overproduction of

nucleic acid binding proteins and RNA helicases when mesophiles

are brought into cold conditions [65]. Our results indeed show

that psychrophilic Bacteria have increased translational optimiza-

tion of genes with ATP-dependent helicase activity (GO:8026,

enrichment = 3.1x, p = 1024; Dataset S2).

We have performed numerous other statistical comparisons

involving 35 distinct microbial lifestyles or phenotypes and

information on genes’ codon optimizations within functional

categories. An exhaustive listing of significant results is available in

Dataset S2 and on the authors’ website at http://www.adaptome.

org; here, care should be taken in interpretation as the lifestyles/

phenotypes are intercorrelated and also not independent from

phylogenetic subdivisions. We hope this data will stimulate further

research and help direct experimental work to elucidate

environmental adaptations of microbes. Moreover, since the

‘adaptomes’ are purely sequence-derived, an equivalent – or

improved – computational methodology can be applied to

genomes as soon as they are sequenced, cutting time and effort

required to understand the physiology of novel organisms.

Table 1. Selected gene functions and groups of orthologous genes that are frequently translationally optimized in thermophilic
Bacteria (n = 30) and Archaea (n = 27) in comparison to mesophilic Bacteria (n = 341) and Archaea (n = 17).

ID a Description Enrichment in Bacteria Enrichment in Archaea

GO:43687 b post-translational protein modification 2.77x, p = 10212 6.16x, p = 1026

GO:16301 b kinase activity - 2.90x, p = 1027

GO:4672 b protein kinase activity 4.84x, p = 1029 (5.51x, p.1023)

GO:8080 b N-acetyltransferase activity 2.95x, p = 10215 (2.11x, p.1023)

GO:45449 c regulation of transcription 2.18x, p = 10261 2.48x, p = 10231

GO:156 c two-component response regulator activity 2.51x, p = 10218 2.98x, p = 7?1024

GO:3677 c DNA binding 1.56x, p = 10227 2.06x, p = 10224

COG:784 c CheY-like receiver 2.43x, p = 10210 (2.69x, p.1023)

COG:640 c predicted transcriptional regulators 2.11x, p = 1029 (1.66x, p.1023)

COG:1846 c transcriptional regulators 2.05x, p = 7?1024 2.52x, p = 5?1024

COG:1595 DNA-directed RNA polymerase specialized
sigma subunit, s24 homolog (SigmaE)

2.53x, p = 1025 (COG absent from Archaea)

COG:1708 predicted nucleotidyltransferases 2.27x, p = 1025 4.38x, p = 1025

a Prefix ‘‘GO’’ denotes a Gene Ontology [78] category; ‘‘COG’’ denotes a group from the Clusters of Orthologous Groups database [79].
b, c Used to infer putative mechanisms of protein protection (b), or DNA protection (c) in thermophiles.
doi:10.1371/journal.pgen.1001004.t001
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Materials and Methods

Prokaryotic genomes and construction of datasets
We have downloaded 621 fully sequenced prokaryotic genomes

from the NCBI Entrez Genome FTP site [66] and removed

multiple strains of a single species to retain the strain best covered

by Gene Ontology annotations, leaving 461 genomes. Information

about lifestyles of organisms was assembled from the JCVI

Genome Properties [67], and the NCBI Entrez Microbial Genome

Properties [68], and curated. The original data used in all

computations is freely available via the authors’ web site at http://

www.adaptome.org/.

To construct datasets – one per genome – we declare all genes

coding for ribosomal proteins (RP) to be the ‘positive class’,

including the rare cases (approx. 0.6 occurences per genome) of

multicopy RP genes. All other protein-coding genes are the

‘negative class’. Genes shorter than 80 codons were excluded from

computation. A gene is represented by a series of codon

frequencies for all degenerate codon families (excluding the stop

codons) where the frequencies of codons for a single amino acid

are normalized to add up to one. Codon frequencies of amino

acids absent from a protein are coded by a ‘missing value’ symbol.

Comparing a classifier to measures of codon usage
Ten-fold crossvalidation was run to determine performance of

the Random Forest (RF) classifier in discriminating the RP genes

by their codon frequencies; the area-under-ROC-curve (AUC)

score [69] was recorded. The AUC is a measure independent of

class sizes that ranges from 0.5 for a random classification model to

1.0 for a perfect model. The RF algorithm [32] produces an

ensemble of decision tree classifiers, where each decision tree is

constructed by recursively partitioning the data by attribute value

tests (forming ‘nodes’) so as to reduce the entropy of the class label

in the resulting partitions (‘branches’). In RF, trees are constructed

on bootstrap samples of the entire dataset, and choice of attributes

at each node is restricted to introduce variability. The final

predictions of a RF model are obtained by averaging over

individual trees (‘voting’). Regarding the specific implementation

of the RF algorithm, we used FastRandomForest [70].

RF was compared to three pairwise distance measures for

vectors of codon frequencies: (i) the ‘‘codon bias between gene

groups’’ (CB) is essentially a weighted Manhattan distance

employed by Karlin and colleagues [33] for finding ‘predicted

highly expressed’ genes in microbial genomes; (ii) the ‘‘codon

adaptation index’’ (CAI) is an established surrogate for gene

expression under optimal growth conditions of Escherichia coli and

Saccharomyces cerevisiae [27]; and (iii) the ‘‘measure independent of

length and composition’’ (MILC) [34] is a corrected x2-type

statistic devised to address methodological deficiencies in other

approaches such as CB. For a thorough description and formulae

for calculation of these measures, see Text S1.

We have incorporated the three distance measures into a

‘nearest class centroid’-type classifier, analogous to uses of CB and

CAI in the literature, and compared AUC scores of the RF

classifier to the nearest centroid classifiers (Figure 1). As another

verification of the RF classifier, we have compiled protein

abundance data in the E. coli cytoplasm from two quantitative

proteomics experiments, Ishihama et al. [59] and Lu et al. [71].

After retaining data for 369 proteins that occur in both studies, we

computed Spearman’s rank correlation of the methods’ output

(probability of belonging to positive class, in crossvalidation), and

protein abundances (Figure 1); also the correlations with the full

experimental data are given in Table S1.

Detecting translational selection in genomes
We encode the information about nucleotide substitution

patterns underlying the sequence of each gene by computing

mononucleotide and dinucleotide frequencies in the non-coding

regions of DNA neighboring the translated part of the gene. Genes

for functional RNA molecules such as tRNA and rRNA are also

treated as coding DNA and thus do not contribute toward

composition of non-coding (intergenic) DNA. The size of the

neighborhood window was set to either 5, 10 or 20 kilobases

upstream from the gene’s start codon, and 5, 10 or 20 kilobases

downstream from the stop codon. The window size of 10 kb

upstream +10 kb downstream guarantees that in 99% of the

genomes (457 out of 461), 99% of the genes have at least 142 non-

coding nucleotides available for estimation of nucleotide substitu-

tion patterns (Table S2). To detect if translational selection acts on

a genome, the RF classifier is first trained to distinguish RP genes

(‘positive class’) based solely on the mono- and di-nucleotide

frequencies of genes’ neighboring non-coding DNA within a given

window size. Fifty runs of four-fold crossvalidation are used to

estimate the accuracy of the classifier, and the AUC score for each

of the 50 runs is recorded. The crossvalidation is stratified,

meaning that genes are sampled so that the proportions of the RP

genes are conserved in the training and the testing parts of each

crossvalidation split. The 50 runs of crossvalidation are then

repeated for a second time, however now the codon frequencies

are also included in the dataset for the RF classifier training, in

addition to description of the intergenic regions. The sign test [72]

is used to compare AUC scores obtained without codon

frequencies to AUC scores obtained with codon frequencies, for

each genome (Figure S1). A summary of results for window size

10k is presented in Table S3.

Note that the described approach to determine mono/di-

nucleotide frequencies implies that for neighboring genes the

corresponding ncDNA windows will overlap, meaning the

description of background nucleotide composition will not be

independent between the neighbors. Consequently, the estimate of

crossvalidation accuracy (AUC) will be somewhat optimistic for

the baseline, ncDNA-only models. This should, however, not be

problematic as our conclusions regarding presence of translational

selection can be biased only to the conservative side due to this

issue – having ncDNA models of higher AUC means it can be only

more difficult to surpass the models’ AUC using the ncDNA+
codon models.

Assigning optimized codon usage (OCU) labels to
individual genes

During the procedure described above which involves two

rounds of RF classifier training – without and with codon

frequencies – the per-gene probabilities of belonging to positive

class are recorded for each of the 50 runs of crossvalidation, and

compared between the two rounds of crossvalidation (Figure S1).

A sign test [72] is used to determine if an increase in probability

occurs more frequently than expected by chance; if it does, the

gene is labeled as having optimized codon usage (OCU). At this

point, we combine the OCU assignments obtained with the three

values of the window size parameter (5, 10 and 20 kilobases) into a

consensus set by determining the median p-value of sign tests of the

three window sizes for each gene. The agreement between window

sizes is analyzed in Text S2. The p-values of OCU assignments for

each gene are available as Dataset S1 and from the authors’

website at http://www.adaptome.org. Additionally, the full Java

source code that performs all calculations described in the

Materials and Methods section will be made freely available from
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the same website in the near future, or on request from the

authors.

We have set the default p-value threshold to 10215, correspond-

ing to exactly 50 out of 50 sign test ‘wins’ for the dataset with

codon frequencies. This sign test p-value should be regarded as

somewhat optimistic because the repeated runs of crossvalidation

are not independent, being based on repeated sampling from the

same set of genes. To obtain a conservative estimate, we employed

a corrected paired t-test [73] intended for comparison of

classification algorithms using repeated runs of crossvalidation.

Note that we here compare RF models derived from a specific

dataset, and not the different variants of the underlying RF

algorithm itself, and therefore we would expect the p-value

obtained with this test to be pessimistic for our experimental setup

[73]. After this corrected t-test, the median p-value for OCU genes

in 10 representative genomes (Text S2) was 6?1026, while for 95%

of the OCU genes, p,2?1023. When testing for difference of AUC

scores with/without codons, the median p-value for all 461

genomes obtained by the corrected paired t-test was p = 10213; for

95% of the genomes, p,4?1025 (compare to median p = 10-15 by

sign test).

Testing robustness of OCU assignments
We test the robustness of the genes’ OCU assignments by

performing several computational experiments. First experiment

is a simulation to see if a methodological bias exists where

changes in the positive-to-negative class size ratio would affect

frequency of OCU labels; we demonstrate the extent of such

changes to be minor (Text S2) and insufficient to explain the

anticorrelation between genome size and % OCU described in

Results (Figure 3A). The second experiment verifies if an outlier

in the positive class – a RP gene with atypical codon usage –

would affect OCU assignments. Our RF-classifier based meth-

odology for OCU detection was remarkably robust (Text S2) to

such errors in annotation that might stem from e.g. pseudogenes

or from the uncommon occurrence of RP gene horizontal

transfer [74].

The third issue concerns non-coding DNA, which is generally

not abundant in prokaryotes and therefore non-negligible parts of

it may be occupied by regulatory elements subject to selection.

This should have little impact on our results, as our representation

of the ncDNA is not complex enough to permit distinction

between ncDNA containing specific regulatory motifs, unless the

motifs were to differ strongly in their overall composition and

occupy the major part of the ncDNA. Even if this were the case,

our procedure would err on the conservative side, leading to an

overestimation of the influence of nucleotide substitution patterns

and consequentially a lower % OCU, and only if there was a

correlation between the composition of regulatory regions and

expression levels. We have empirically verified to what extent

selection on ncDNA affects our results by re-running the

computational framework (Figure S1) on a subset of genomes

while excluding the ncDNA regions 20 bp upstream of the

translation start codon; this region was shown to be under much

stronger selection than the rest of the prokaryotic ncDNA [75] as it

contains translation-related sequence elements. The OCU assign-

ments were sufficiently robust to this perturbation (Text S2) as the

resultant changes are commensurate to the variability of the

method itself.

A fourth experiment concerns the influence of putatively

horizontally transferred (HT) regions on our results. Our method

will treat a HT region in the same as it treats the regions that

differ due to (endogenous) local or strand-specific variation in

background nucleotide composition, i.e. regardless of the

biological mechanism that causes a deviation in the background

nucleotide frequencies, we aim to detect shifts away from this

background and toward RP-like codon usage. We empirically

evaluated the influence of HT on our results by taking 10

representative genomes and masking the segments marked as HT

in the IslandViewer database [76] by any of the three underlying

HT-detection algorithms to have highest possible coverage. Then

we repeated the OCU finding procedure and compared

assignments to the original ones (Text S2). Again, the changes

induced by this filtering were generally commensurate to the

between-run variability of the method, save for a slight increase

in %OCU in several genomes, meaning the original estimate of

%OCU may be conservative with regard to horizontal gene

transfer.

Tests of enrichment for optimized genes and display of
results

We use a series of Fisher’s exact tests for association of two

categorical variables [77] to describe distribution of OCU genes

along Gene Ontology [78] categories or COG orthologous

groups [79] in all analyzed genomes, and in genomes grouped by

environmental and phenotypic contexts (lifestyles). We perform

two kinds of tests: ‘Test A’ operates across all genes in all

genomes, and compares distribution of optimized genes within a

GO category/COG group to the distribution of optimized genes

outside the GO/COG, and is iterated over all GOs/COGs; ‘Test

B’ operates within a single GO category/COG group, and

compares organisms with a specific lifestyle to all organisms

which are known not to possess the lifestyle. ‘Test B’ is iterated

over all possible combinations of GO/COG and lifestyle; we

discuss only the thermophilic lifestyle in the manuscript, while

data on other lifestyles is given in Dataset S2. We set the

threshold p-value to 1023, yielding a 1.6% false discovery rate

among the GO categories/COGs found to be enriched or

depleted in OCU genes in Archaea, and a false discovery rate of

1.7% in Bacteria. All tests passing these criteria were additionally

screened to retain only tests with a sufficient magnitude of

enrichment or depletion of optimized genes (.1.50x or ,0.67x)

between GO categories/COGs (test A) or organism groups (test

B). All test results passing the thresholds for gene group size,

statistical significance and magnitude of enrichment/depletion

are available in Dataset S2 and from the authors’ Web site

http://www.adaptome.org/. Filtered subsets of the GO catego-

ries with reduced redundancy are also available as a part of

Dataset S2; they were prepared using the REViGO tool available

at http://revigo.irb.hr/.

A more detailed description of the employed computational

methods and procedures is provided in Text S1 and summarized

in a flowchart diagram in Figure S1.

Supporting Information

Dataset S1 OCU/non-OCU gene calls in 461 Bacterial and

Archaeal genomes, and summary tables of genome properties and

OCU preferences for specific codons.

Found at: doi:10.1371/journal.pgen.1001004.s001 (4.77 MB ZIP)

Dataset S2 Tests for enrichment or depletion of OCU genes in

Gene Ontology functional categories and COG orthologous

groups.

Found at: doi:10.1371/journal.pgen.1001004.s002 (0.38 MB ZIP)

Figure S1 The workflow of the computational framework for

detecting translational selection. Cylinders represent databases,

rectangles represent operations and/or computation, parallelo-
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grams represent datasets, rounded rectangles within dotted frames

represent endpoints, circles are references to Figures and Tables.

Found at: doi:10.1371/journal.pgen.1001004.s003 (2.72 MB TIF)

Figure S2 Predictive performance of the Random Forest

classifier on datasets with codon frequencies permuted between

genes. All datasets contain (non-permuted) attributes with mono-

and di-nucleotide frequencies. This figure is analogous to Figure 2

from the manuscript and is intended to demonstrate that an

increase in classifier AUC evident in Figure 2 cannot result purely

from the addition of extra attributes if these attributes carry no

useful information.

Found at: doi:10.1371/journal.pgen.1001004.s004 (0.22 MB TIF)

Figure S3 Correlation of the crossvalidation accuracy of RF

classifiers with an estimate of intensity of genome-wide codon

biases. Accuracy (as AUC score) of RF models trained on

composition of intergenic DNA (top) and on composition of

intergenic DNA plus codon frequencies (below) is compared to the

MILC measure of distance between codon frequencies of

ribosomal protein genes, and the rest of the genes within a

genome.

Found at: doi:10.1371/journal.pgen.1001004.s005 (0.82 MB TIF)

Figure S4 Expression levels of OCU versus non-OCU genes,

with ribosomal protein genes excluded. Histograms show micro-

array signal intensities for OCU and non-OCU genes in P.

aeruginosa and S. coelicolor after removing the ribosomal protein

genes from the genomes. This figure is analogous to Figure 4 in all

other aspects.

Found at: doi:10.1371/journal.pgen.1001004.s006 (0.23 MB TIF)

Table S1 Correlations of E. coli cytoplasmic protein abundances

with per-gene class probabilities of Random Forest and three

codon distance measures. ‘‘Overlapping data’’ implies that only

the genes present in both studies were considered. The Pearson

correlation was computed after removing two proteins with

extremely high abundance values in the Ishihama dataset.

Found at: doi:10.1371/journal.pgen.1001004.s007 (0.04 MB

DOC)

Table S2 A survey of the amount of non-coding DNA within

bacterial and archaeal genomes. Alongside the data for ten

representative genomes, two additional rows display: the median

values for the entire set of 461 genomes, and the 1st percentile of

values for the 461 genomes. Table cells show the number of non-

coding nucleotides in a window size of 10 kilobases upstream of a

gene’s start codon, and 10 kilobases downstream of the stop codon.

Found at: doi:10.1371/journal.pgen.1001004.s008 (0.04 MB

DOC)

Table S3 Accuracy of the RF classifier in the task of

discriminating ribosomal protein genes. Accuracy is expressed as

area-under-ROC-curve (AUC) score, and given for RF classifiers

trained without codon frequencies (‘‘AUC, no codons’’) and with

codon frequencies (‘‘AUC, with codons’’). Mean and standard

deviation of AUC are computed from 50 runs of crossvalidation.

The sign test p-value indicates whether the AUC score exhibits a

statistically significant increase with introduction of codon

frequencies to the classifier. Ten representative genomes are

shown, along with three genomes with the least significant p-values

among all 461 genomes. Full data is available as Dataset S1, or

from the website http://www.adaptome.org/.

Found at: doi:10.1371/journal.pgen.1001004.s009 (0.05 MB

DOC)

Table S4 Microarray signal intensities for ribosomal protein

genes and aminoacyl-tRNA synthetases (aa-tRS). See Text S1,

Appendix 1 for detailed information of which NCBI GEO

Samples were chosen from the NCBI GEO Series in the table.

Found at: doi:10.1371/journal.pgen.1001004.s010 (0.05 MB

DOC)

Table S5 Differences in microarray signal intensities for OCU

and non-OCU genes. ‘‘BWS’’ stands for Baumgartner-Weiss-

Schindler permutation test used to determine if the distribution of

microarray signal intensities of OCU genes is shifted in

comparison to the distribution of microarray signal intensities of

non-OCU genes.

Found at: doi:10.1371/journal.pgen.1001004.s011 (0.05 MB

DOC)

Table S6 Preferences of OCU genes towards optimal or sub-

optimal codons for two-fold amino acids, as defined by the

genome’s tRNA gene content. Table cells show the number of

genomes where OCU genes prefer the optimal codon, the

suboptimal codon, or where there is no preference towards either

codon. Preference for codons is detected by the Mann-Whitney U

test on codon frequencies of OCU versus non-OCU genes, at

p,1023. Optimal codons are those directly recognized by the

anticodon of a tRNA encoded in the genome [1], and the

suboptimal codons, conversely, have no tRNA with the appropri-

ate anticodon. In some cases (frequently for Lys, Gln and Glu),

genomes may encode tRNAs with both anticodons and the

optimal/suboptimal anticodon cannot be defined; therefore the

‘‘sum’’ column may be lesser than the total number of genomes.

Found at: doi:10.1371/journal.pgen.1001004.s012 (0.04 MB

DOC)

Table S7 Protein functional categories enriched with (or

depleted of) OCU genes in the ‘‘molecular function’’ namespace

of the Gene Ontology. The list is filtered to exclude a number of

categories redundant to the ones displayed using the REViGO

tool available at http://revigo.irb.hr/; for a complete listing,

please refer to Dataset S2, or the authors’ website at http://www.

adaptome.org

Found at: doi:10.1371/journal.pgen.1001004.s013 (0.16 MB

DOC)

Table S8 A selection of protein functional categories enriched

with (or depleted of) OCU genes in the ‘‘biological process’’

namespace of the Gene Ontology. This table is derived only from

38 organisms whose genomes were claimed to lack translational

selection in at least 2 of 3 previous large-scale studies, see

Appendix A in Text S1 for listing of the 38 genomes. Data in this

table is analogous to the data in Figure 6 of the manuscript in all

other aspects except for the restricted choice of genomes in this

table.

Found at: doi:10.1371/journal.pgen.1001004.s014 (0.07 MB

DOC)

Table S9 Depletion of OCU genes within the aminoacyl-tRNA

synthetases in Bacteria.

Found at: doi:10.1371/journal.pgen.1001004.s015 (0.06 MB

DOC)

Table S10 Enrichment and depletion of OCU genes within

COG groups related to defense from oxidative stress. IDs in the

form ‘‘COG:xxxx’’ denote groups from the Clusters of Ortholo-

gous Genes database.

Found at: doi:10.1371/journal.pgen.1001004.s016 (0.05 MB

DOC)

Text S1 Supporting methods.

Found at: doi:10.1371/journal.pgen.1001004.s017 (0.15 MB

DOC)
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Text S2 Tests of robustness of the RF classifier-based method-

ology for assigning OCU labels to genes.

Found at: doi:10.1371/journal.pgen.1001004.s018 (0.17 MB

DOC)
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