
����������
�������
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Abstract: The standard genetic code (SGC) is a set of rules according to which 64 codons are assigned
to 20 canonical amino acids and stop coding signal. As a consequence, the SGC is redundant because
there is a greater number of codons than the number of encoded labels. This redundancy implies
the existence of codons that encode the same genetic information. The size and organization of such
synonymous codon blocks are important characteristics of the SGC structure whose evolution is still
unclear. Therefore, we studied possible evolutionary mechanisms of the codon block structure. We
conducted computer simulations assuming that coding systems at early stages of the SGC evolution
were sets of ambiguous codon assignments with high entropy. We included three types of reading
systems characterized by different inaccuracy and pattern of codon recognition. In contrast to
the previous study, we allowed for evolution of the reading systems and their competition. The
simulations performed under minimization of translational errors and reduction of coding ambiguity
produced the coding system resistant to these errors. The reading system similar to that present in the
SGC dominated the others very quickly. The survived system was also characterized by low entropy
and possessed properties similar to that in the SGC. Our simulation show that the unambiguous SGC
could emerged from a code with a lower level of ambiguity and the number of tRNAs increased
during the evolution.

Keywords: amino acid; codon; evolution; genetic code

1. Introduction

The structure and properties of the standard genetic (SGC) code have intrigued scien-
tists since the first ascriptions of codons to amino acids were discovered in the sixties of the
last century [1,2]. From that time, many hypotheses concerning the origin and evolution of
SGC have been proposed (see for review: [3–8]). However, it is still unclear which factors
played a decisive role in the process of the genetic code emergence and evolution.

These investigations been started with two of Crick’s seminal papers, i.e., [9,10]. In the
first work, the author discussed the general codon block structure of the SGC. Briefly, the
codons in the SGC are arranged in groups, which is an immediate consequence of the fact
that the number of possible codons, i.e., 64, is greater than the number of encoded items, i.e.,
20 amino acids and a stop translation signal. The codon groups encoding the same item are
called synonymous and are composed of two, three, four, or six codons. Codons in a given
group differ mostly in the third codon position. In order to explain this fact, Crick proposed
the wobble rule, which refers to interactions between the first base in a tRNA anticodon and
the third base of translated codon in a transcript (mRNA). This rule assumes that the base
pairing between these two RNAs does not have to follow Watson–Crick base pair rules,
i.e., cytosine–guanine and adenine–uracil, but that other interactions are also possible, i.e.,
guanine–uracil, hypoxanthine–uracil, hypoxanthine–adenine and hypoxanthine–cytosine.
Additional experiments revealed that other modified bases can also pair with the typical
ones [11].
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This phenomenon has fundamental consequences. It reduces the number of necessary
tRNA molecules for protein synthesis. Moreover, it determines the structure of codon
blocks and introduces specific robustness of the SGC against single nucleotide substitutions
occurred in the third position in codons belonging to a group encoding the same genetic
information. Therefore, such mutations do not change coded amino acids.

In the second paper [10], Crick considered the evolution of genetic code on a general
level. He put forward “the frozen accident” hypothesis. According to this scenario, it is not
inconceivable that, in the past, there were various genetic codes that were used by different
organisms. They coexisted and evolved simultaneously. Finally, the present structure of
the SGC won this competition by accident and stayed universal among all domains of life,
because any change in the codon assignment would be highly deleterious at later stages of
SGC evolution.

The existence of many different coding systems at the early evolution of genetic code
seems very probable. This assumption appears to be a good starting point for further
investigations of the SGC evolution. It was proposed that these codes evolved together
from a set of ambiguous codon assignments towards a coding system with a low level of
ambiguity to reduce an initial high translational noise [5,12–14]. During the genetic code
evolution, amino acids were gradually added to the code, which was profitable because it
increased the diversity of synthesized proteins [6,15–17].

These assumptions were included in a simulation model to show the origin of coding
system structure [13,14]. This model assumed that every code was a set of rules, described
by selected random variables, according to which 64 codons were assigned to specific
genetic information, i.e., labels. What is more, this model did not take into account any
properties of amino acids in order to avoid additional assumptions, which made the model
general. The model considered three types of reading mechanisms, called M1, M2, and
M3, which induced different codon groups assigned to respective encoded labels. In M1, a
given amino acid was coded by codons that had two fixed identical positions and differed
in one position from the reference codon. M2 assumed that a given amino acid was coded
by codons with one fixed identical position and differed in exactly one of the other two
codon positions from the reference codon. Codons of M3 for a given amino acid differed in
exactly one of any codon positions from the reference codon. Thereby, the codon groups
defined by the M1 rule had a structure similar to that in the SGC, whereas M2 and M3 were
potential generalizations of M1. The codes were evolved to a state characterized by a low
level of uncertainty.

The results based on these simulations showed that the structure of the SGC would
emerge from highly ambiguous coding systems under relatively simple criteria, i.e., the
reduction of translational noise and a stepwise addition of amino acids into the code [13,14].
The codon block structure observed in the best surviving code was characterized by low
translational noise as well as a high robustness against point mutations. However, the
authors assumed that the type of reading, i.e., M1, M2, and M3, stayed fixed and constant
during simulations. Therefore, to make the simulation model more realistic, we assumed
here that these three mechanisms of reading genetic information could coexisted at the same
time and evolved simultaneously according to Crick’s scenario. The computer simulations
performed including this possibility showed that the initial coding systems evolved very
quickly to one characterized by unambiguous reading of genetic information.

2. Results
2.1. Changes of Genetic Codes during Simulations

We performed computer simulations to study the process of coding system emergence.
Each simulation was run up to 100,000 steps. All simulations started with a population
of 1000 genetic codes. They were described by initially randomly generated probability
distribution functions for codon assignments and reading system types. During the simula-
tions, we collected several descriptive characteristics for a given coding system, i.e., values
of the fitness function, the expected number of genetic labels encoded by a given reading
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mechanism, and the structure of codon blocks. They together allowed us to describe ten-
dencies in the evolution of coding systems. All simulations were run under different seeds
because we wanted to find out if the observed tendencies in the genetic code structure have
a general character, i.e., is they are independent of starting constraints.

The simulations started from non-optimized genetic systems. However, the fitness
values showed a tendency to increase substantially. During the code evolution, the fitness
function increased from a low value to higher one after 15,000 steps. After some fluctuations
it stabilized after 50,000 steps above the value of −20 in the logarithmic scale (Figure 1).
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Figure 1. Changes in the best approximation of the fitness function F (y-axis) with the number of
generations (x-axis) based on the GAM model and 10 simulation runs with different initial seeds. The
y-axis is shown in a logarithmic scale.

The increase in the fitness function corresponds to the decrease in entropy values
calculated for probability distributions of codon assignments and reading types. The
average genetic code entropy decreased with the simulation time and remained rather
constant at a low level after 30,000 steps (Figure 2A). However, the drop and stabilization
of the average entropy for reading systems occurred much earlier, i.e., after 5000 steps
(Figure 2B). The results show that the studied coding systems changed their properties
during simulation runs. However, the reading system was selected by the genetic codes
much faster than the translational noise was reduced.
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Figure 2. Changes in the average entropy values (y-axis) calculated from distributions of codon
assignments Hc(P) (A), and reading system types Hr(P) (B), with the number of generations (x-axis).

2.2. Structure of Genetic Codes

Interestingly, we observed a relatively fast emergence of nearly homogeneous read-
ing systems, i.e., one type out of M1, M2, and M3 was preferred for all possible labels
l = 1, 2, 3, . . . 21. The model M1 started to dominate very quickly over the two others
(Figure 3).
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Figure 3. The expected value of the total number of encoded labels using various reading types M1,
M2, and M3 (y-axis) with the number of generations (x-axis). Notice that the expected number of
labels read by the M1 system started dominated among all considered types of reading very quickly.

This tendency was detected from the beginning of simulations. The M3 system was the
first one eliminated after about 2500 steps and M2 coexisted with M1 to about 20,000 steps.
After that, only M1 was used by the genetic codes to read encoded information, whereas the
other systems, i.e., M2 and M3, disappeared and the coding system stayed homogeneous.
The homogeneity is visualized by the heatmap, which shows that M1 was selected as the
only reading type receiving the probability one for all encoded labels (Figure 4).
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Figure 4. The heatmap of different types of reading systems (y-axis) at the end of the simulations.
This is a graphical representation of a matrix in which each genetic label (x-axis) ascribes a probability
that is read by a given reading type. Please compare with Figure 5 at the beginning of the simulations.

In contrast to that, no reading system was preferred at the beginning of simulations
(Figure 5).
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Figure 5. The heatmap of different types of reading systems (y-axis) at the beginning of simulation.
This is a graphical representation of a matrix in which each genetic label ascribes a probability that is
read by a given reading type.
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It is also interesting to investigate the codon block structure of the computed coding
system at the end of simulations. The results presented in in the previous paragraph
indicate that the M1 reading system was the most preferred, which suggests that codon
blocks induced by this rule should be present in the structure of the genetic codes selected
after simulations. In Figure 6, we present the coding system that was characterized by the
highest fitness value among all simulation runs. In contrast to the beginning of simula-
tions (Figure 7), we can distinguish for each label a group of codons with a high coding
probability, i.e., over 0.8.
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Figure 6. The heatmap of genetic code encoding 21 labels by 64 codons at the end of simulation. This
is a graphical representation of the matrix P = (pcl), in which each element pcl ascribes a probability
that a codon c in a row encodes a label l in a column. Please compare with Figure 7 at the beginning
of the simulations.

Many of these groups were composed of codons that differed in one codon position as
assumed by the M1 rule and resemble the structure of the standard genetic code.

The distribution of size of codon groups encoding a given label is also very interesting
(Figure 8). Eleven labels were encoded by blocks consisting of four codons, eight labels by
two-codon blocks, one label by three-codon blocks, and one label by one codon. This is very
similar to the number of codon blocks in the SGC, in which five amino acids are encoded
by four-codon blocks, nine amino acids by two-codon blocks, one amino acid and the stop
signal by three-codon blocks, and two amino acids by one codon each. Moreover, there
are three amino acids, each of which is ascribed to six codons. These codons are, however,
organized into the subgroup of four codons and the subgroup of two codons. These
tendencies were observed in all genetic codes evolved at the end of all simulation runs.
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Figure 7. The heatmap of genetic code encoding 21 labels by 64 codons at the beginning of the
simulation. This is a graphical representation of the matrix P = (pcl), in which each element pcl
ascribes a probability that a codon c in a row encodes a label l in a column.
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Figure 8. The distribution of the size of codon groups encoding a given label in the genetic code at
the end of the simulation.

3. Discussion

In this paper, we investigated a potential emergence of genetic codes from a set
of highly ambiguous codon assignments to the codes characterized by an unequivocal
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assignment of codons to encoded labels. A similar problem was discussed in our previous
papers [13,14], where we showed that the structure of genetic codes similar to that in the
SGC could evolve under error minimization restrictions and the stepwise addition of amino
acids to the genetic code. However, in the previous studies, the method of reading genetic
information and its degeneracy, or more precisely, the way of recognizing not only a codon
but also its codon neighborhood encoding the same label, was fixed and unchanged from
the start of genetic code evolution. Therefore, in this approach, we not only included the
evolution of codon assignments, but also took into account the evolution of the reading
systems, which are responsible for codon block structures in the genetic code.

This assumption seems reasonable because the genetic code at very early stages of
evolution was likely a mixture of different reading systems for the set of encoded items
and characterized by ambiguity in the coding of amino acids until the whole system
became more precise [5,12]. The genetic code could have evolved from a highly ambiguous
and non-homogeneous system to an unambiguous system with nearly identical reading
mechanisms for each encoded label. The results of our simulations are in agreement
with the 2-1-3 model [18,19] and the four-column theory [15], which also assume that
the degeneracy of the genetic code was subsequently reduced with time. Initially, the
second codon position was used to determine encoded amino acids, whereas other codon
positions were meaningless. Only later the additional codon position positions were used
for distinguishing of coded amino acids.

In our simulations, we tested three different models of reading systems, namely,
M1, M2, and M3, which from the beginning of simulations could be used to read genetic
information simultaneously with different probabilities. The model M3 was the most
tolerant in codon reading because it assumed that nine other codons can code for the same
label as the reference codon. In M2, six codons could have the same meaning, whereas in
M1, three codons besides the reference codon could code for the same label.

Although the simulations produced coding systems with high unambiguity in reading
genetic information, there are some codons that can still code more than one label, one
with a very high and the other with a very lower probability (Figure 6). This resembles the
situation in natural biological systems because the present translational machinery also
shows errors with rates of 10−3 to 10−6 per codon [20] or 10−3 to 10−5 per incorporated
amino acid [21–24]. Mistranslation errors can be beneficial for parasites, for example, in
adaptation to oxidative and environmental stresses as well as in host invasion and evasion
of host immunity [25–29].

The evolution of ambiguous codes to those showing unequivocal assignment of
codons implies that the number of tRNAs matching appropriate codons in protein synthesis
increased during evolution. In the initial state of high ambiguity, a small fraction of tRNA
could be enough to recognize codons due to the tolerant codon reading. When the codes
became more unequivocal, a larger number of tRNAs were required to distinguish the
codons and assign an appropriate amino acid. This scenario corresponds well to the view
that the number of genes coding for tRNAs and aminoacyl-tRNA synthetases charging
amino acids to the tRNA molecules increased via duplication during the genetic code
evolution [7,16,30–33]. The increase in the number of tRNAs is associated with the more
precise reading of genetic information.

The population of genetic codes evolved to reduce coding errors, which was man-
ifested by a higher probability that a given codon encodes a fixed label. What is more,
we also observed that the model M1 started to dominate in coding systems among all
possible types of reading very quickly. Therefore, at the end of simulations. we obtained
genetic codes with low entropy values and a nearly homogeneous reading system. It is
worth mentioning that the M1 rule generates codon blocks with similar properties to those
observed in the standard genetic code. Moreover, the codes at the end of the simulations
were similar to the SGC in the number and structure of codon blocks encoding the same
label. Such organization means that the codes are robust to point mutations that could
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change the encoded information, because changing a nucleotide in one codon position does
not result in changing the encoded label.

This tendency to minimize errors in the coded amino acid replacements is also present
in the SGC and has been reported in many analytical and statistical studies [34–43]. How-
ever, the minimization of the errors turned out to be imperfect when genetic algorithms
were applied and the SGC was compared with optimized codes [13,19,44–50]. Interestingly,
alternative codes appeared to better minimize the harmful effects of mutations than the
SGC [51,52]. This means that there are possibilities for improving the SGC. However,
substantial changes in the code would be deleterious due to the universality of this code
associated with beneficial exchange of genetic information between organisms, e.g., via
horizontal gene transfer [16]. Therefore, other mechanisms, e.g., optimization of mutational
pressure, evolved to mitigate the mutation errors associated with replication [53–56].

4. Materials and Methods
4.1. Representation of Genetic Codes

In order to investigate the problem of genetic structure evolution, we consider a
population of 1000 theoretical genetic codes, i.e., candidate solutions, where each coding
system is represented as a matrix P = (pcl), 1 ≤ c ≤ 64 and 1 ≤ l ≤ 21 with 64 rows,
i.e., codons c, and 21 columns, i.e., amino acids and the stop translation signal, or more
generally, encoded labels or items l. Each row in the matrix P denotes a probability
distribution function of codon assignments to one out of 21 possible labels. Therefore,
pcl is the probability that a codon c encodes a label l. As a result, P describes a potential
ambiguity in codon ascription. Figure 6 is a graphical representation of the coding system
at the beginning of the simulations. The color gradient represents the probability of coding
a given label in a column by a given codon in a row.

This approach has been used in our previous works [13,14], where we studied the
process of genetic code evolution from a set of ambiguous codon assignments characterized
by a large value of entropy to nearly unambiguous coding systems. However, it was
assumed that the type of reading system was fixed during the whole simulation run. By a
reading system, we mean the type of inaccuracy in codon recognition. In order to explain
this important feature, let us consider that a codon c has the highest probability to encode a
given label l. We also assume that the reading system allows that several codons belonging
to the neighborhood of the reference codon c can encode the same label l. We considered in
simulations the following different ways of reading:

M1 all codons belonging to a given group encoding a fixed label have two fixed codon
positions identical with codon c and differ in exactly one nucleotide at other codon
positions;

M2 all codons belonging to a given group encoding a fixed label have one fixed codon
position with codon c and differ in exactly one nucleotide in one of the other two
codon positions;

M3 all codons belonging to a given group encoding a fixed label differ in exactly one
nucleotide with codon c in any codon position.

For example, let us assume that codon GGG encodes a fixed label l. Then the neigh-
borhood of GGG is:

• GGG, GGA, GGC, GGT for the model M1;
• GGG, AGG, CGG, TGG, GAG, GCG, GTG for the model M2;
• GGG, AGG, CGG, TGG, GAG, GCG, GTG, GGA, GGC, GGT for the model M3.

4.2. Simulation Procedure

In contrast to [13,14], we took into account the fact that the reading systems can evolve
at the same time and compete with each other. In other words, the reading mechanisms
M1, M2, and M3 can coexist in one coding system to encode the same labels with different
probabilities. Thus, we considered that the respective reading mechanism for a given
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encoded label is a random variable. This variable was generated at the beginning of
simulated evolution. Figure 5 shows probability distribution functions of these three
reading systems (y-axis) for each encoded label (x-axis). The probability values are depicted
by respective color gradients. As we can see, the reading system is highly ambiguous,
because a given label can be read by different mechanisms with various probabilities.

To sum up, we had two parameters responsible for shaping the structure of genetic
code in our simulations. The first one is described by the probability that a given codon
encodes a selected label. The second parameter is described by the probability that a given
genetic label is read by a mechanism M1, M2, and M3.

We ran simulations using the methodology of evolutionary algorithms. This was
applied to find solutions in optimization problems where it is not possible to use classical
analytical methods because their respective assumptions do not hold. According to this
approach, the simulation process is divided into steps called generations. During each step,
a population of individuals (solutions) is subjected to two important operators, namely,
mutation and selection. They both act on the potential solutions, but in different way.
The mutation is responsible for maintaining diversity of population, so we can test many
different solutions during one generation. Thanks to the selection, it is possible to choose
better solutions in terms of fitness. Such individuals have a greater probability to reproduce.

In the case considered here, the mutation operator randomly modifies the probability
distribution functions for the assignment of codons and the type of reading system. The
selection operator chooses better solutions with a greater probability for the next generation.
Therefore, the central role in the simulations is the fitness function F, which allowed us to
measure the quality of evolving genetic codes.

4.3. The Fitness Function F

Simply speaking, F is a modified version of the fitness function used in [13,14]. Sim-
ilarly to [13], for each label l = 1, 2, . . . , 21, we choose a respective codon ci according to
the Bayes rule. Therefore, we obtain the sequence of codons C = c1, c2, . . . c21, which is the
most probable path to encode all 21 labels. What is more, each codon ci belonging to C
has its own neighborhood Nj(ci), describing a potential j way of reading. We considered
j = 1, 2, 3 three types of neighborhoods defined according to the M1, M2, and M3 reading
models. In contrast to the previous works, the type of codon neighborhood was assigned at
random to each codon ci ∈ C. This fact was manifested in the form of the fitness function
F, which is defined in the following way:

F = ∑
c′1∈Nj1

(c1),...,c′21∈Nj21
(c21)

P(l = 1|c′1)P(j1)
|Nj1(c1)|

P(l = 2|c′2)P(j2)
|Nj2(c2)|

· . . . ·
P(l = 21|c′21)P(j21)

|Nj21(c21)|
,

where P(ji), ji = 1, 2, 3 is a probability that a label i is encoded by a codon group Nji (ci),
which is defined according to reading the Mji constraint.

For a fixed label l, the formula

P(l|c′)P(j)
|Nj(c)|

, c′ ∈ Nj(c)

has a simple interpretation. In the denominator, there is a joint probability that the codon
neighborhood Nj(c) of reading type Mj is chosen and the codon c′ ∈ Nj(c) encodes the
label l. This probability is normalized by the size of codon block Nj(c). Thus, the fitness
function F gives information about the coding strength of genetic code. It is calculated over
all possible combinations of codons c′1, c′2, . . . c′21 belonging to randomly selected codon
neighborhoods.

In Figure 1, we presented the general tendency of the fitness function observed during
simulations. The plot presents 10 simulation runs with different initial seeds. The values of
the fitness function are shown in the logarithmic scale. We applied the general additive
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model (GAM) approximation method to illustrate the changes in this function during
the simulations. As we can see, the fitness values increase from very low values to very
high ones after 20,000 generations and then stabilize. This indicates that the simulations
converged to very similar final results independently of the initial state. Moreover, the
course of the curves means that the studied genetic code evolved from that characterized
by a high ambiguity to that showing a low ambiguity in the assignment of codons to labels
and the selection of reading mechanisms.

4.4. Measure of the Quality of Genetic Codes

In order to describe the structural properties of the genetic codes represented as the
matrix P = (pcl), we used the entropy

Hc(P) = −
64

∑
c=1

21

∑
l=1

pcl log(pcl),

which is the sum of Shannon entropy calculated for each row of the matrix P over the
probabilities that a codon c encodes a label l. Higher values of entropy indicate that a given
coding system is composed of ambiguous assignments of codons to labels, whereas lower
values mean that the coding is unambiguous.

Similarly, for the entropy of codon to label assignments, we calculated the entropy for
the distributions of three reading systems.

Hr(P) = −
21

∑
l=1

3

∑
j=1

p(j)log(p(j)),

where l is an encoded label, j is a type of reading, and p(j) is a probability that j-type was
chosen for reading a given label.
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49. Błażej, P.; Wnetrzak, M.; Mackiewicz, D.; Mackiewicz, P. Optimization of the standard genetic code according to three codon

positions using an evolutionary algorithm. PLoS ONE 2018, 13, e0201715.
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