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Abstract
Aim: Prosopis spp. are an invasive alien plant species native to the Americas and well 
adapted to thrive in arid environments. In Kenya, several remote‐sensing studies 
conclude that the genus is well established throughout the country and is rapidly in‐
vading new areas. This research aims to model the potential habitat of Prosopis spp. 
by using an ensemble model consisting of four species distribution models. 
Furthermore, environmental and expert knowledge‐based variables are assessed.
Location: Turkana County, Kenya.
Methods: We collected and assessed a large number of environmental and expert knowl‐
edge‐based variables through variable correlation, collinearity, and bias tests. The varia‐
bles were used for an ensemble model consisting of four species distribution models: (a) 
logistic regression, (b) maximum entropy, (c) random forest, and (d) Bayesian networks. The 
models were evaluated through a block cross‐validation providing statistical measures.
Results: The best predictors for Prosopis spp. habitat are distance from water and 
built‐up areas, soil type, elevation, lithology, and temperature seasonality. All species 
distribution models achieved high accuracies while the ensemble model achieved the 
highest scores. Highly and moderately suitable Prosopis spp. habitat covers 6% and 
9% of the study area, respectively.
Main conclusions: Both ensemble and individual models predict a high risk of continued 
invasion, confirming local observations and conceptions. Findings are valuable to stake‐
holders for managing invaded area, protecting areas at risk, and to raise awareness.
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1  | INTRODUC TION

Invasive alien species (IAS) are key drivers of global change and have 
extensive adverse ecological (i.e., ecosystems and biodiversity), eco‐
nomic (i.e., agriculture and forestry), and social (i.e., allergies and 
toxins) impacts (Pimentel et al., 2001). IAS cause major damages and 

losses, adding up to an estimate of $120 billion per year in the United 
States alone (Pimentel, Zuniga, & Morrison, 2005). Wise, Wilgen, and 
Maitre (2012) report exceeding control costs of >US$9.5 million/year 
for the Northern Cape Province, South Africa. Kenya has experienced 
a number of biological invasions over the past decades, some of which 
with significant socioeconomic consequences (Lyons & Miller, 1999).
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Prosopis is a genus of woody tree species deliberately introduced 
to Kenya by a number of NGO’s (i.e., FAO, NORAD). Many of these 
environments are vulnerable to vegetation loss and desertification 
due to increasing population pressure and extreme weather events 
triggered by climate change. Therefore, Prosopis spp. were propagated 
to rehabilitate these degraded arid environments as they are well 
adapted to thrive in arid and semi‐arid environments. In the 1980s, 
a selection of different members of the Prosopis genus (i.e., P. juliflora, 
P. pallida, P. chilensis) was introduced at several test sites throughout 
Kenya (Choge, Ngunjiri, Kuria, Busaka, & Muthondeki, 2002). This led 
to a hybridization process described by Pasiecznik et al. (2001) as the 
P. juliflora–P. pallida complex. The hybrid species is well adapted to its 
new environment and is nowadays regarded as an aggressive invader.

Prosopis spp. are ranked as the second worst invasive alien plant 
taxon in South Africa (Henderson, 2007) and can be found on the 
World Conservation Unions 100 list of the “world’s worst invasive 
alien species” (Lowe, Browne, Boudjelas, & Poorter, 2000). In East 
Africa, Prosopis spp. have become increasingly abundant (Meroni et 
al., 2016; Ng, Meroni, et al., 2016b; Rembold, Leonardi, Ng, Gadain, & 
Meroni, 2015). Besides, reducing biodiversity and replacing endemic 
species its negative impacts include (a) altering the groundwater ta‐
bles (Fourie, Mbatha, Verster, & Dyk, 2007), (b) invading communal 
pastoral lands (Shackleton, Maitre, Wilgen, & Richardson, 2015), (c) 
its thorns causing injuries to humans and cattle (Van de Giessen, 
2011), and (d) to puncturing tires (Swallow & Mwangi, 2008).

In Turkana County, Kenya Prosopis spp. has become omnipresent 
(Ng, Immitzer, et al., 2016a). It is crucial to understand its invasion 
dynamics to effectively negate the adverse impacts and to build an‐
alytical frameworks to manage priority areas, that is, early detection 
of outbreaks and eradication efforts (Schachtschneider & February, 
2013; Shackleton, Maitre, Pasiecznik, & Richardson, 2014). In 2017, 
the Ethiopia ministry of livestock and fisheries published the na‐
tional strategy on P. juliflora management (MOLF, 2017). The reports 
state that early detection is vital, as removal becomes increasingly 
challenging after establishment, involving high costs of mechani‐
cal and chemical control, combined with the needed repetition due 
to the presence of seeds in the seedbank, that is, seed viability is 
10–15 years (Pasiecznik & Felker, 1992). Despite its abundance and 
experienced negative impacts (Ng et al., 2017), a national strategy 
for combating Prosopis spp. invasion in Kenya is still absent.

Species distribution modeling (SDM) has demonstrated its value 
in a wide range of applications (Elith & Leathwick, 2009). SDMs 
can be applied to IAS if two core assumptions are considered: (a) 
IAS are generally not in equilibrium with their environment and (b) 
niche quantification and transferability in space and time are limited 
(Gallien, Douzet, Pratte, Zimmermann, & Thuiller, 2012). Establishing 
whether IAS operate within the constraints of conservative ecolog‐
ical niches, or whether niche shifts occur as part of the invasion 
process, is indispensable to identifying and anticipating potential 
areas of invasion (Araújo & Pearson, 2005). Nonetheless, SDM is an 
important tool to understand invasion process as it can predict en‐
croachment (Uden, Allen, Angeler, Corral, & Fricke, 2015) or habitat 
at risk (Ward, 2007).

Shackleton et al. (2014) describe the current and potential global 
distribution of Prosopis spp. and identified many climatically suitable 
areas which have currently no records of Prosopis spp. However, 
there is little information available on Prosopis spp. distribution mod‐
eling (Abbas et al., 2016; Irfan‐Ullah, Sharma, & Davande, 2006). 
Wakie, Evangelista, Jarnevich, and Laituri (2014) applied a SDM for 
predicting the current and potential distribution for P. juliflora in the 
Afar region in Ethiopia. The study applied a maximum entropy model 
and utilized several satellite‐derived parameters to map the poten‐
tial distribution of P. juliflora. Remotely derived parameters were 
enhanced vegetation indices (EVIs) and normalized difference veg‐
etation indices (NDVIs) of moderate‐resolution imaging spectrora‐
diometer (MODIS) time series, WorldClim bioclimatic variables, and 
shuttle radar topography mission (SRTM) data.

Evangelista et al. (2008) applied five different SDMs to model 
potential distribution of generalist and specialist invasive plant spe‐
cies in the Grand Staircase‐Escalante National Monument, located 
in south‐central Utah, USA. The authors conclude that most of the 
tested SDMs behave similarly, however, generalist species, such as 
Prosopis, are more difficult to predict, while specialist species and 
their specific habitat requirements are more easily defined by pre‐
dictive models. Stohlgren et al. (2010) proposed an ensemble model 
(EM) for mapping invasive species and compared five individual 
models against an EM for four invasive plant species in four different 
study sites. The two evaluation datasets (reserved test data and field 
surveys) indicate that individual models vary in their performance. 
The ensemble approach, on the other hand, adds substantial robust‐
ness and consistency of performance among the different species 
and study sites. The authors point out that the EM approach can be 
particularly useful to model recently introduced invasive alien spe‐
cies as these have not yet spread to all suitable niches.

The limited number of studies dedicated to Prosopis spp. habi‐
tat modeling and the urgency to create a framework to effectively 
manage Prosopis spp. in Kenya indicates a clear need to accurately 
determine areas at risk of invasion. Therefore, we model potential 
Prosopis spp. habitat by applying an ensemble approach combining 
four SDMs and assess environmental and expert knowledge‐based 
variables for Turkana County, Kenya.

2  | MATERIAL AND METHODS

2.1 | Test species: Prosopis spp.

The Prosopis spp. are a prolific woody tree species native to the 
Americas and characterized by their adaptive traits and propaga‐
tion strategy. Prosopis spp. are capable of growing a deep taproot, 
which can extend to extreme depths in search for the water table, 
thus, being less dependent on often unpredictable precipitation 
(Shiferaw, Teketay, Nemomissa, & Assefa, 2004). The species dis‐
persal strategy utilizes both biotic and abiotic processes (Harding & 
Bate, 1991). Its leaves are nonpalatable by most herbivores, while 
the pods are high in sugar content and eaten by many animals (e.g., 
goats, cattle, baboons), thus spreading seeds and instigating new 
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invasions (Pasiecznik et al., 2001). In Kenya, native plant communi‐
ties are under anthropogenic pressure due to overutilization, that is, 
fuelwood collection and livestock browsing (Groot & Hall, 1989), re‐
sulting in Prosopis spp. having a competitive advantage over the en‐
demic vegetation. Prosopis spp. can be found throughout the study 
area at many stages of invasion and appears at high concentrations 
near farmland (Figure 1, left), pastoral land (Figure 1, center), and 
periodically dry rivers (Figure 1, right).

2.2 | Study area

The Turkana County in Kenya was selected as study area because of 
the high prevalence of Prosopis spp. (Ng, Immitzer, et al., 2016a). The 
study area is located in the Rift Valley of northern Kenya (Figure 2) 
between latitudes 01°00′N and 05°28′N and longitude 34°02′E and 
36°43′E, covering 68,680 km2. The County borders Ethiopia in the 
North, South Sudan in the Northwest, and Uganda in the West. The 
eastern border consists of Lake Turkana, which is the world’s larg‐
est permanent alkaline desert lake. The northern border, called the 
Ilemi triangle located between Kenya, South Sudan, and Ethiopia, is 
disputed and claimed by both South Sudan and Kenya.

Turkana is dominated by a “hot desert climate” (Köppen‐Geiger 
BWh) and to a lesser extent “hot semi‐arid climate” (BSh). The average 
annual precipitation is 250 mm and rainfall is often unpredictable, 
with some regions receiving no precipitation during an entire year. 
The western part is mountainous (1,500–1800 m a.s.l.), while most 
of the county consists of low‐lying plains (900 m a.s.l.) with perennial 
rivers draining into Lake Turkana (east) at 360 m a.s.l. (Figure 2). The 
soils are mostly of volcanic origin, and sediments are relatively low in 
organic matter. Vegetation is dominated by scattered Vachellia bush 
with Maerua spp. and Vachellia tortilis along the river banks.

2.3 | Presence and absence data

For training the models, we used in situ collected reference data 
(Figure 2), acquired during the dry season of 2016 (February) in 
collaboration with the National Drought Management Authority 

(NDMA), Kenya. This data set consists of 91 absences and 92 pres‐
ence points, precisely located with help of GPS. To insure a well‐
stratified reference data set (Figure 2, presence [red] and absence 
[green]), we supplemented the in situ collected data with photo‐in‐
terpreted points, made by experienced photo‐interpreters on very 
high‐resolution Google Earth data. No presence data from the native 
range (i.e., South and Central America) were used.

2.4 | Expert knowledge

Prosopis spp. are a generalist species thus complicating the variable 
selection process (Evangelista et al., 2008). To achieve improved 
modeling accuracy, we, therefore, incorporated environmental vari‐
ables based on expert knowledge (Fourcade, 2016; Mainali et al., 
2015). These were derived from fieldwork, mapping efforts, and lit‐
erature review. Utilizing expert knowledge for the selection and par‐
ametrization of input variables allows us to improve the SDM results. 
The inclusion of expert knowledge is key as the hybrid species’ distri‐
bution and habitat are not fully described in the literature. However, 
Fernández and Hamilton (2015) highlight that ecological niche in the 
native range is often a poor predictor for the invaded range.

We supplemented our expertise of the genus’ preferred envi‐
ronment with data on the parent species (P. julifloria and P. pallida) 
habitat provided by Pasiecznik et al. (2001). Prosopis spp. grow in its 
native range at elevations between 0 and 1,500 m a.s.l. The presence 
and depth of the water table are a decisive factor in the distribu‐
tion, size, and growth, while poor water availability and soil fertil‐
ity do not limit growth. Prosopis spp. thrive in almost all soil types 
ranging from pure sands to heavy clays, and the species perform 
well on saline (18,000 mg NaCl/L) and alkaline (pH 11) soils (Singh, 
1996). However, soil depth is important and thin soils are unsuitable 
(NAS, 1980). Abundant rainfall is a limiting factor as the species is 
less common in regions with more than 1,000 mm of mean annual 
rainfall (NAS, 1980). The species prefers mean annual temperatures 
above 20°C with an optimal between 20 and 30°C. It has a tolerance 
for day‐time shade temperatures of 50°C and soils temperatures 
in full sunlight as high as 70°C. Prosopis spp. are hindered by low 

F I G U R E  1   Prosopis spp. invading: (left) farmland with young plants emerging on the foreground, (center) pastoral land, and (right) near 
ephemeral rivers
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temperatures and light frost can cause dieback; however, some spe‐
cies can handle frost (Felker, Clark, Nash, Osborn, & Cannell, 1982). 
This information enables us to make general assumptions about the 
suitable environmental conditions for Prosopis spp.

2.5 | Environmental variables

The tested environmental and expert knowledge‐based variables are 
provided in Supporting Information, Table S1. Some variables were 
subjected to interpretation, such as assigning values for the creation 
of buffers for the waterways, road network, and built‐up areas. We 
gradually reduced the number of variables until we had a stable out‐
put consisting of variables (a) which contribute to the model accu‐
racy and (b) simultaneously ecologically meaningful. We selected the 
variables based on three conditions: (a) variable correlation, as de‐
termined by the pairwise Pearson and Spearman tests scoring <0.70 
(Immitzer, Nopp‐Mayr, & Zohmann, 2014; Sachser et al., 2017); (b) 
variable collinearity as determined by the variance inflation factor 

scoring <0.90 (VIF, Zuur, Ieno, & Elphick, 2010); and (c) variable bias, 
as determined by assessing the outputs and identifying overly domi‐
nant variables. The variables were evaluated, and only statistically 
and ecologically significant predictors were retained.

All variables covered the entire study area. The variables were 
preprocessed including (a) homogenizing the EPSG projection (i.e., 
WGS 84/UTM 36 N), (b) resampling to 100 by 100‐m spatial resolu‐
tion (aggregating and disaggregating), and (c) masking with the study 
area. The tasks were performed with the “rgdal” package (Bivand et 
al., 2017) in R version 3.4.0 (R Core Team, 2017). The Pearson and 
Spearman tests were performed with the R package “Hmisc” (Harrel, 
2015) and the VIF test was performed in R, according to a script 
provided by Zuur et al. (2010).

2.6 | Distribution models

In total, four distribution models were studied. Three models, lo‐
gistic regression, random forest, and Bayesian networks, used an 

F I G U R E  2  The study area of Turkana, 
Kenya, and the reference data set 
(red: presence; green: absence). Data 
are displayed with the ASTER GDEM 
along with ephemeral rivers (blue) and 
settlements (transparent circle)
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identical set of presence and absence points for building the model, 
while maximum entropy automatically generated background points or 
pseudo‐absence data (Figure 3). We used the default value of 10,000 
background points and the same presence points used for training the 
other models.

2.7 | Ensemble modeling

Species distribution modelings have applications in a wide range 
of disciplines (Franklin, 2010) and are considered an acknowledged 
tool for predicting invasive alien species distribution and habitat 
(Dlamini, 2016; Duscher & Nopp‐Mayr, 2017; Keith & Spring, 2013; 
Lemke & Brown, 2012; Masocha & Dube, 2017). An ensemble model 

(EM) combines the strengths of several SDM approaches while mini‐
mizing the weakness of any particular model (Capinha & Anastácio, 
2011; Stohlgren et al., 2010). The four SDMs used to create the en‐
semble model are logistic regression (LR), MaxEnt (ME), random for‐
est (RF), and Bayesian networks (BN). All SDMs used identical sets 
of environmental variables and reference data. An overview of the 
SDMs can be found in the Supporting Information, Table S2.

2.8 | Model evaluation

From the output of each SDM, one can generate a binary map with 
the Prosopis spp. presence and absence classes by slicing the output 
using a probability threshold. Pixels with values below this threshold 

F I G U R E  3  The workflow for predicting Prosopis spp. habitat. The evaluation (block cross‐validation and threshold assignment) was also 
performed on the individual models
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are labeled as absence while pixels with values above it are labeled as 
presence. To determine the best probability threshold for each SDM, 
we used the kappa index maximization approach (Guisan, Theurillat, 
& Kienast, 1998). Following this approach, the best threshold is the 
one that produces a binary map with the highest kappa index when 
compared with the entire reference dataset (91 absences and 92 
presence points). For each SDM, we generated statistical measures 
such as (a) sensitivity; (b) specificity; (c) true skill statistics; (d) overall 
accuracy; (e) Cohen’s kappa; and (f) Area under the receiver oper‐
ating characteristic (ROC) curve. These are reported in Supporting 
Information, Table S3. To generate an accurate habitat suitability 
map, all the pixels with values below the best probability threshold 
were classified as “nonsuitable” area while all the pixels with values 
above it were divided into three classes: “low, “moderate,” and “high 
habitat suitability.”

We also evaluated each individual SDM output by applying 
a block cross‐validation (El‐Gabbas & Dormann, 2017; Guevara, 
Gerstner, Kass, & Anderson, 2017; Roberts et al., 2017). Cross‐
validation has the advantage that it optimizes the limited amount 
of reference data and minimizes the risk of over‐fitting. Although 
our reference points are well distributed over the study area, the 
presence/absence points are sometimes clustered. This leads to 
an unbalanced validation data sets, with blocks entirely lacking 
either presence or absence points. To counter this imbalance, 

we created nongridded irregular shaped blocks as described 
by Roberts et al. (2017). This insured that each of the blocks 
(n = 12) has a proportional amount of presence and absence data. 
Afterward, confusion matrices were created from the comparison 
between testing omitted points and the binary map, which was 
produced according to the calculated probability threshold. This 
was repeated 12 times until all reference points were used for 
evaluation. Finally, all 12 confusion matrices were merged into a 
single one to compute the (a‐e) statistical measures for the block 
cross‐validation.

3  | RESULTS

3.1 | Variable importance and selection

Based on the expert knowledge and the conducted tests (i.e., vari‐
able importance, collinearity, and bias, Supporting Information, 
Table S4), we determined that the following eight features were 
best suited for modeling Prosopis spp. habitat: (a) distance to water 
(Dist. from water: HydroSHEDS); (b) distance to built‐up (Dist. from 
urban: DLR‐GUF); (c) distance to roads (Dist. from roads: OSM); (d) 
lithology (SOTWIS); (e) soil type (SOTWIS); (f) landform (SOTWIS); 
(g) elevation (ASTER GDEM); and (h) temperature seasonality (Temp. 
seasonality: BIO4).

These selected variables were applied to build the SDMs. In ad‐
dition to the variables listed in Supporting Information Table S1, we 
performed tests with multispectral data from Sentinel‐2 satellite 
and NDVI time series from smoothed and gap‐filled Landsat data 
(Vuolo, Ng, & Atzberger, 2017). We found that these satellite data 
did not positively contribute to predict the potential habitat. We 
therefore did not include these variables in the models. We also 
fitted the selected variables into a directed acyclic graph (DAG, 
Figure 4). This represents the probabilistic relationship among the 
variables, and the conditional (in)dependency is an essential func‐
tion of Bayesian networks. For each node in the structure, there is a 
conditional‐probability function that relates the node to its imme‐
diate parent. To improve the rational, the relationships between the 
nodes were added, displaying the underlying process influencing 
habitat suitability.

F I G U R E  4  A Directed acyclic graph (DAG) representing habitat suitability of Prosopis spp. The rectangular nodes proved the condition/
justification and underlying process for using a variable. The full variable description can be found in Table S1

TA B L E  1  Accuracy assessment of the block cross‐validation 
modeling results

LR ME RF BN EM

Probability 
threshold

0.205 0.165 0.560 0.635 0.425

Sensitivity 0.978 0.912 0.989 0.901 0.989

Specificity 0.859 0.967 1.000 0.946 0.989

True skill statistic 0.837 0.879 0.989 0.847 0.978

Overall accuracy 0.918 0.940 0.995 0.923 0.989

Kappa index 0.836 0.880 0.989 0.847 0.978

Note. BN: Bayesian Network; EM: Ensemble model; LR: logistic regres‐
sion; ME: MaxEnt; RF: Random Forest.
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3.2 | Model outputs and evaluation

Table 1 shows the statistical measures of the combined block cross‐
validation for the SDMs and EM. The probability threshold for each 
model was quite variable, from 0.165 for the MaxEnt to 0.635 for 
the Bayesian Network. All statistical results indicate high modeling 
performance. RF and the EM performed slightly better compared to 
the other SDMs.

The habitat suitability map of the ensemble model, displayed in 
Figure 5, was calculated by averaging the four SDMs outputs. The 
probability threshold was set at 0.43 (Table 1, EM). Pixels with a value 

below this threshold are regarded as not suitable Prosopis spp. hab‐
itat. There remaining values were divided into three classes: “low” 
(0.43–0.62), “moderate” (0.62–0.81), and “high” (0.81–1.0) Prosopis 
spp. suitability. The habitat suitability maps of the single models can 
be found at Supporting Information, Figure S1.

The area of each habitat suitability class is shown in Table 2. 
The majority of the study area (69%) can be considered as not suit‐
able habitat for Prosopis spp. However, relatively large areas of high 
and moderate suitable habitat are present, covering, respectively, 
420,450, and 596,552 ha, together roughly 15% of the total area. An 
additional 16% of the area is assigned a low suitability.

F I G U R E  5   The Prosopis spp. habitat 
suitability map of the ensemble model. 
The pixels with values above the 
probability threshold of 0.43 were divided 
into “low” (yellow), “moderate” (orange), 
and “high” (red) suitable habitat
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4  | DISCUSSION

4.1 | Environmental variables

The inclusion of expert knowledge‐based variables positively con‐
tributed to predicting potential habitat as these variables were 
consequently selected during the variable assessment process. 
Our observations are in line with Kuhnert, Martin, and Griffiths 
(2010) who proposed guidelines for expert knowledge‐based 
modeling and stated that expert knowledge can increase the 
precision of models and facilitate informed decision making in a 
cost‐effective manner. Bazzichetto et al. (2018) determined that 
the percentage of artificial land and distance from roads exhibit 
a significant relationship with the occurrence of Carpobrotus sp. 
Furthermore, high‐quality environmental variables (i.e., land use 
data, soil data) describing species habitat are fairly scarce and 
produced by multiple research institutes using different methods 
(e.g., measurements, interpolations) and standards (e.g., projec‐
tions, spatial resolutions). Certainly, our modeling would have 
benefited from additional variables which were unfortunately 
not available such as groundwater table, soil depth, or climate 
data at a higher spatial resolution (Lowen, McKindsey, Therriault, 
& DiBacco, 2016). The bioclimatic variables (Temp. seasonality: 
BIO4) had prevailing low spatial resolution and are possibly not 
suitable for smaller test sites. Additionally, the quality of these 
data can be affected by the scarcity and reliability of the weather 
stations in East Africa (Van Gils, Westinga, Carafa, Antonucci, & 
Ciaschetti, 2014).

4.2 | Ensemble model and evaluation

The models (i.e., EM and four SDMs) provide highly accurate and 
comparable results, as shown through the block cross‐validation. 
The statistical measures rank RF best, scoring the highest accuracies 
followed by the EM. Shiferaw, Bewket, and Eckert (2018) achieved 
similar results when mapping fractional P. juliflora cover in Afar, 
Ethiopia, and concluded that random forest performed best closely 
followed by the EM. In our opinion, the EM presents a good compro‐
mise mitigating the uncertainties provided by modeling the potential 
habitat of invasive species. By not relying on a single model, or their 
potential flaws, the ensemble approach adds considerable robust‐
ness and consistency, thereby confirming the observations made by 
Stohlgren et al. (2010).

4.3 | Potential distribution and invasion pattern

The EM output was in agreement with our field observations and 
in correspondence with the Prosopis spp. cover for the Tarach 
basin, Turkana County, Kenya mapped in 2016 (Ng, Immitzer, et 
al., 2016a). This study applied remote sensing for detecting the 
Prosopis spp., cover in 2016, using Sentinel‐2 satellite data and in 
situ observations. Their results indicated that Prosopis spp.—clas‐
sified into dense, sparse, and mixed classes—covered, respectively, 
1.53%, 4.61%, and 1.77% of the total land cover. If we consider that 
the amount of highly to moderately suitable habitat accounts for 
15% of the study area, we can expect the area covered by Prosopis 
spp. in 2016 to double in the future, not taking into consideration 
projected climate models. Our results also confirmed that Prosopis 
spp. are mainly found near the ephemeral rivers (Schachtschneider 
& February, 2013; Shackleton et al., 2015) and settlements (Meroni 
et al., 2016; Ng et al., 2017). It is clear that these areas provide 
conditions which are very suitable for Prosopis spp., as they pro‐
vide three key components: water, anthropogenic disturbance, and 
distribution of seeds. The higher water availability promotes plant 
growth and, thus, supports more biomass (i.e., lush vegetation or 
crop production). This is highlighted by the importance of the dis‐
tance to water variable to the models. Higher population density, 
which is otherwise very low throughout the study area, leads to 
increased pressure on native plant communities, through the col‐
lection of fuelwood and clearing vegetation for crop production. 
Higher population density also results in increased livestock num‐
bers, causing additional stress on native vegetation through grazing 
by cattle and browsing by goats. The distance to settlements and 
the road network variables are illustrative to this process. Finally, 
livestock is an important propagator of Prosopis seeds and driver of 
the invasion. The presence of livestock can be explained by three 
variables: distance to water, roads, and settlements. Together with 
the strong spatial correlation between settlements and water pres‐
ence, these expert knowledge‐based variables are good indicators 
for highly suitable Prosopis spp. habitat and invasion risk, as de‐
picted in the model output (Figure 5).

5  | CONCLUSION

Our study determined the potential habitat of Prosopis spp. in 
Turkana, Kenya, using an ensemble approach incorporating four dif‐
ferent species distribution models. At the same time, environmental 
and expert knowledge‐based variables were assessed. Prosopis spp. 
have not yet fully occupied their entire ecological niche of their re‐
spective new ecosystem, give the relatively short amount of time 
since the species has established itself, this is also strengthened by 
the disparity between the distribution in 2016 and the potential 
habitat. The lack of equilibrium, and the fact that one has to deal 
with a hybridized species, makes modeling efforts particularly chal‐
lenging. Nonetheless, the species is causing severe negative impact 
by altering biodiversity (i.e., replacing many indigenous species) and 

TA B L E  2  Area of each habitat suitability class of the ensemble 
model output. The pixels were grouped in not suitable, low, 
moderate, and high habitat suitability

Habitat suitability ha Area (%)

Not suitable 4,704,426.947 69

Low 1,100,733.03 16

Moderate 596,551.962 9

High 421,450.12 6
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economically crippling livelihood activities (i.e., invading croplands 
and restricting access to water). This warrants immediate action 
with the aim of eradication. Unfortunately, experiences from the 
Americas, Africa, and Australia teach us that eradication of Prosopis 
spp. has proven to be extremely difficult or sometimes even impos‐
sible. This is largely due to the fast regrowth rate of Prosopis spp. 
from vegetative buds and the viable seeds deposited in the seed 
bank. The impoverished societies in the developing world have cer‐
tainly only very limited resources to effectively combat this process. 
Therefore, while preparing for eradication, we call for better man‐
agement of invaded high ecologic and economic areas, with special 
focus on awareness raising and prevention, by protecting not yet 
infested highly suitable habitat.
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