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Abstract
Aim: Prosopis spp.	are	an	invasive	alien	plant	species	native	to	the	Americas	and	well	
adapted	 to	 thrive	 in	 arid	 environments.	 In	 Kenya,	 several	 remote‐sensing	 studies	
conclude	that	the	genus	is	well	established	throughout	the	country	and	is	rapidly	in‐
vading	new	areas.	This	research	aims	to	model	the	potential	habitat	of	Prosopis spp. 
by	 using	 an	 ensemble	 model	 consisting	 of	 four	 species	 distribution	 models.	
Furthermore,	environmental	and	expert	knowledge‐based	variables	are	assessed.
Location:	Turkana	County,	Kenya.
Methods:	We	collected	and	assessed	a	large	number	of	environmental	and	expert	knowl‐
edge‐based	variables	through	variable	correlation,	collinearity,	and	bias	tests.	The	varia‐
bles	were	used	for	an	ensemble	model	consisting	of	four	species	distribution	models:	(a)	
logistic	regression,	(b)	maximum	entropy,	(c)	random	forest,	and	(d)	Bayesian	networks.	The	
models	were	evaluated	through	a	block	cross‐validation	providing	statistical	measures.
Results:	The	best	predictors	 for	Prosopis	 spp.	habitat	are	distance	from	water	and	
built‐up	areas,	soil	type,	elevation,	lithology,	and	temperature	seasonality.	All	species	
distribution	models	achieved	high	accuracies	while	the	ensemble	model	achieved	the	
highest	scores.	Highly	and	moderately	suitable	Prosopis	spp.	habitat	covers	6%	and	
9%	of	the	study	area,	respectively.
Main conclusions:	Both	ensemble	and	individual	models	predict	a	high	risk	of	continued	
invasion,	confirming	local	observations	and	conceptions.	Findings	are	valuable	to	stake‐
holders	for	managing	invaded	area,	protecting	areas	at	risk,	and	to	raise	awareness.
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1  | INTRODUC TION

Invasive	alien	species	(IAS)	are	key	drivers	of	global	change	and	have	
extensive	adverse	ecological	(i.e.,	ecosystems	and	biodiversity),	eco‐
nomic	 (i.e.,	 agriculture	 and	 forestry),	 and	 social	 (i.e.,	 allergies	 and	
toxins)	impacts	(Pimentel	et	al.,	2001).	IAS	cause	major	damages	and	

losses,	adding	up	to	an	estimate	of	$120	billion	per	year	in	the	United	
States	alone	(Pimentel,	Zuniga,	&	Morrison,	2005).	Wise,	Wilgen,	and	
Maitre	(2012)	report	exceeding	control	costs	of	>US$9.5	million/year	
for	the	Northern	Cape	Province,	South	Africa.	Kenya	has	experienced	
a	number	of	biological	invasions	over	the	past	decades,	some	of	which	
with	significant	socioeconomic	consequences	(Lyons	&	Miller,	1999).
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Prosopis	is	a	genus	of	woody	tree	species	deliberately	introduced	
to	Kenya	by	a	number	of	NGO’s	(i.e.,	FAO,	NORAD).	Many	of	these	
environments	 are	 vulnerable	 to	 vegetation	 loss	 and	 desertification	
due	 to	 increasing	population	pressure	 and	extreme	weather	 events	
triggered	by	climate	change.	Therefore,	Prosopis spp.	were	propagated	
to	 rehabilitate	 these	 degraded	 arid	 environments	 as	 they	 are	 well	
adapted	 to	 thrive	 in	arid	and	semi‐arid	environments.	 In	 the	1980s,	
a	selection	of	different	members	of	the	Prosopis genus	(i.e.,	P. juliflora,	
P. pallida,	P. chilensis)	was	introduced	at	several	test	sites	throughout	
Kenya	(Choge,	Ngunjiri,	Kuria,	Busaka,	&	Muthondeki,	2002).	This	led	
to	a	hybridization	process	described	by	Pasiecznik	et	al.	(2001)	as	the	
P. juliflora–P. pallida	complex.	The	hybrid	species	is	well	adapted	to	its	
new	environment	and	is	nowadays	regarded	as	an	aggressive	invader.

Prosopis	spp.	are	ranked	as	the	second	worst	invasive	alien	plant	
taxon	 in	South	Africa	 (Henderson,	2007)	and	can	be	found	on	the	
World	Conservation	Unions	100	list	of	the	“world’s	worst	 invasive	
alien	species”	 (Lowe,	Browne,	Boudjelas,	&	Poorter,	2000).	 In	East	
Africa,	Prosopis	spp.	have	become	increasingly	abundant	(Meroni	et	
al.,	2016;	Ng,	Meroni,	et	al.,	2016b;	Rembold,	Leonardi,	Ng,	Gadain,	&	
Meroni,	2015).	Besides,	reducing	biodiversity	and	replacing	endemic	
species	its	negative	impacts	include	(a)	altering	the	groundwater	ta‐
bles	(Fourie,	Mbatha,	Verster,	&	Dyk,	2007),	(b)	invading	communal	
pastoral	lands	(Shackleton,	Maitre,	Wilgen,	&	Richardson,	2015),	(c)	
its	 thorns	 causing	 injuries	 to	 humans	 and	 cattle	 (Van	 de	Giessen,	
2011),	and	(d)	to	puncturing	tires	(Swallow	&	Mwangi,	2008).

In	Turkana	County,	Kenya	Prosopis spp.	has	become	omnipresent	
(Ng,	 Immitzer,	et	al.,	2016a).	 It	 is	crucial	to	understand	its	 invasion	
dynamics	to	effectively	negate	the	adverse	impacts	and	to	build	an‐
alytical	frameworks	to	manage	priority	areas,	that	is,	early	detection	
of	outbreaks	and	eradication	efforts	(Schachtschneider	&	February,	
2013;	Shackleton,	Maitre,	Pasiecznik,	&	Richardson,	2014).	In	2017,	
the	 Ethiopia	 ministry	 of	 livestock	 and	 fisheries	 published	 the	 na‐
tional	strategy	on	P. juliflora	management	(MOLF,	2017).	The	reports	
state	that	early	detection	is	vital,	as	removal	becomes	increasingly	
challenging	 after	 establishment,	 involving	 high	 costs	 of	 mechani‐
cal	and	chemical	control,	combined	with	the	needed	repetition	due	
to	 the	presence	of	 seeds	 in	 the	 seedbank,	 that	 is,	 seed	viability	 is	
10–15	years	(Pasiecznik	&	Felker,	1992).	Despite	its	abundance	and	
experienced	negative	 impacts	 (Ng	et	al.,	2017),	a	national	strategy	
for	combating	Prosopis spp.	invasion	in	Kenya	is	still	absent.

Species	distribution	modeling	(SDM)	has	demonstrated	its	value	
in	 a	 wide	 range	 of	 applications	 (Elith	 &	 Leathwick,	 2009).	 SDMs	
can	 be	 applied	 to	 IAS	 if	 two	 core	 assumptions	 are	 considered:	 (a)	
IAS	are	generally	not	in	equilibrium	with	their	environment	and	(b)	
niche	quantification	and	transferability	in	space	and	time	are	limited	
(Gallien,	Douzet,	Pratte,	Zimmermann,	&	Thuiller,	2012).	Establishing	
whether	IAS	operate	within	the	constraints	of	conservative	ecolog‐
ical	 niches,	 or	 whether	 niche	 shifts	 occur	 as	 part	 of	 the	 invasion	
process,	 is	 indispensable	 to	 identifying	 and	 anticipating	 potential	
areas	of	invasion	(Araújo	&	Pearson,	2005).	Nonetheless,	SDM	is	an	
important	tool	to	understand	invasion	process	as	it	can	predict	en‐
croachment	(Uden,	Allen,	Angeler,	Corral,	&	Fricke,	2015)	or	habitat	
at	risk	(Ward,	2007).

Shackleton	et	al.	(2014)	describe	the	current	and	potential	global	
distribution	of	Prosopis spp.	and	identified	many	climatically	suitable	
areas	 which	 have	 currently	 no	 records	 of	 Prosopis spp.	 However,	
there	is	little	information	available	on	Prosopis spp.	distribution	mod‐
eling	 (Abbas	 et	 al.,	 2016;	 Irfan‐Ullah,	 Sharma,	 &	 Davande,	 2006).	
Wakie,	Evangelista,	Jarnevich,	and	Laituri	(2014)	applied	a	SDM	for	
predicting	the	current	and	potential	distribution	for	P. juliflora	in	the	
Afar	region	in	Ethiopia.	The	study	applied	a	maximum	entropy	model	
and	utilized	several	satellite‐derived	parameters	to	map	the	poten‐
tial	 distribution	 of	 P. juliflora.	 Remotely	 derived	 parameters	 were	
enhanced	vegetation	indices	(EVIs)	and	normalized	difference	veg‐
etation	 indices	 (NDVIs)	of	moderate‐resolution	 imaging	spectrora‐
diometer	(MODIS)	time	series,	WorldClim	bioclimatic	variables,	and	
shuttle	radar	topography	mission	(SRTM)	data.

Evangelista	 et	 al.	 (2008)	 applied	 five	different	SDMs	 to	model	
potential	distribution	of	generalist	and	specialist	invasive	plant	spe‐
cies	 in	the	Grand	Staircase‐Escalante	National	Monument,	 located	
in	south‐central	Utah,	USA.	The	authors	conclude	that	most	of	the	
tested	SDMs	behave	similarly,	however,	generalist	species,	such	as	
Prosopis,	 are	more	difficult	 to	predict,	while	 specialist	 species	 and	
their	specific	habitat	requirements	are	more	easily	defined	by	pre‐
dictive	models.	Stohlgren	et	al.	(2010)	proposed	an	ensemble	model	
(EM)	 for	 mapping	 invasive	 species	 and	 compared	 five	 individual	
models	against	an	EM	for	four	invasive	plant	species	in	four	different	
study	sites.	The	two	evaluation	datasets	(reserved	test	data	and	field	
surveys)	 indicate	that	 individual	models	vary	 in	their	performance.	
The	ensemble	approach,	on	the	other	hand,	adds	substantial	robust‐
ness	and	consistency	of	performance	among	 the	different	 species	
and	study	sites.	The	authors	point	out	that	the	EM	approach	can	be	
particularly	useful	to	model	recently	introduced	invasive	alien	spe‐
cies	as	these	have	not	yet	spread	to	all	suitable	niches.

The	 limited	number	of	 studies	dedicated	 to	Prosopis spp.	habi‐
tat	modeling	and	the	urgency	to	create	a	framework	to	effectively	
manage	Prosopis spp.	 in	Kenya	indicates	a	clear	need	to	accurately	
determine	areas	at	 risk	of	 invasion.	Therefore,	we	model	potential	
Prosopis spp.	habitat	by	applying	an	ensemble	approach	combining	
four	SDMs	and	assess	environmental	and	expert	knowledge‐based	
variables	for	Turkana	County,	Kenya.

2  | MATERIAL AND METHODS

2.1 | Test species: Prosopis spp.

The Prosopis spp.	 are	 a	 prolific	 woody	 tree	 species	 native	 to	 the	
Americas	 and	 characterized	 by	 their	 adaptive	 traits	 and	 propaga‐
tion	strategy.	Prosopis spp.	are	capable	of	growing	a	deep	taproot,	
which	can	extend	to	extreme	depths	in	search	for	the	water	table,	
thus,	 being	 less	 dependent	 on	 often	 unpredictable	 precipitation	
(Shiferaw,	 Teketay,	Nemomissa,	&	Assefa,	 2004).	 The	 species	 dis‐
persal	strategy	utilizes	both	biotic	and	abiotic	processes	(Harding	&	
Bate,	1991).	 Its	 leaves	are	nonpalatable	by	most	herbivores,	while	
the	pods	are	high	in	sugar	content	and	eaten	by	many	animals	(e.g.,	
goats,	 cattle,	 baboons),	 thus	 spreading	 seeds	 and	 instigating	 new	
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invasions	(Pasiecznik	et	al.,	2001).	In	Kenya,	native	plant	communi‐
ties	are	under	anthropogenic	pressure	due	to	overutilization,	that	is,	
fuelwood	collection	and	livestock	browsing	(Groot	&	Hall,	1989),	re‐
sulting	in	Prosopis spp.	having	a	competitive	advantage	over	the	en‐
demic	vegetation.	Prosopis spp.	can	be	found	throughout	the	study	
area	at	many	stages	of	invasion	and	appears	at	high	concentrations	
near	 farmland	 (Figure	1,	 left),	 pastoral	 land	 (Figure	1,	 center),	 and	
periodically	dry	rivers	(Figure	1,	right).

2.2 | Study area

The	Turkana	County	in	Kenya	was	selected	as	study	area	because	of	
the	high	prevalence	of	Prosopis spp.	(Ng,	Immitzer,	et	al.,	2016a).	The	
study	area	is	located	in	the	Rift	Valley	of	northern	Kenya	(Figure	2)	
between	latitudes	01°00′N	and	05°28′N	and	longitude	34°02′E	and	
36°43′E,	covering	68,680	km2.	The	County	borders	Ethiopia	in	the	
North,	South	Sudan	in	the	Northwest,	and	Uganda	in	the	West.	The	
eastern	border	consists	of	Lake	Turkana,	which	is	the	world’s	 larg‐
est	permanent	alkaline	desert	lake.	The	northern	border,	called	the	
Ilemi	triangle	located	between	Kenya,	South	Sudan,	and	Ethiopia,	is	
disputed	and	claimed	by	both	South	Sudan	and	Kenya.

Turkana	is	dominated	by	a	“hot	desert	climate”	 (Köppen‐Geiger	
BWh)	and	to	a	lesser	extent	“hot	semi‐arid	climate”	(BSh).	The	average	
annual	 precipitation	 is	 250	mm	and	 rainfall	 is	 often	 unpredictable,	
with	some	regions	receiving	no	precipitation	during	an	entire	year.	
The	western	part	 is	mountainous	 (1,500–1800	m	a.s.l.),	while	most	
of	the	county	consists	of	low‐lying	plains	(900	m	a.s.l.)	with	perennial	
rivers	draining	into	Lake	Turkana	(east)	at	360	m	a.s.l.	(Figure	2).	The	
soils	are	mostly	of	volcanic	origin,	and	sediments	are	relatively	low	in	
organic	matter.	Vegetation	is	dominated	by	scattered	Vachellia	bush	
with	Maerua spp.	and	Vachellia tortilis	along	the	river	banks.

2.3 | Presence and absence data

For	 training	 the	models,	 we	 used	 in	 situ	 collected	 reference	 data	
(Figure	 2),	 acquired	 during	 the	 dry	 season	 of	 2016	 (February)	 in	
collaboration	 with	 the	 National	 Drought	 Management	 Authority	

(NDMA),	Kenya.	This	data	set	consists	of	91	absences	and	92	pres‐
ence	points,	 precisely	 located	with	 help	 of	GPS.	 To	 insure	 a	well‐
stratified	reference	data	set	 (Figure	2,	presence	 [red]	and	absence	
[green]),	we	supplemented	the	in	situ	collected	data	with	photo‐in‐
terpreted	points,	made	by	experienced	photo‐interpreters	on	very	
high‐resolution	Google	Earth	data.	No	presence	data	from	the	native	
range	(i.e.,	South	and	Central	America)	were	used.

2.4 | Expert knowledge

Prosopis spp.	are	a	generalist	species	thus	complicating	the	variable	
selection	 process	 (Evangelista	 et	 al.,	 2008).	 To	 achieve	 improved	
modeling	accuracy,	we,	therefore,	incorporated	environmental	vari‐
ables	 based	 on	 expert	 knowledge	 (Fourcade,	 2016;	Mainali	 et	 al.,	
2015).	These	were	derived	from	fieldwork,	mapping	efforts,	and	lit‐
erature	review.	Utilizing	expert	knowledge	for	the	selection	and	par‐
ametrization	of	input	variables	allows	us	to	improve	the	SDM	results.	
The	inclusion	of	expert	knowledge	is	key	as	the	hybrid	species’	distri‐
bution	and	habitat	are	not	fully	described	in	the	literature.	However,	
Fernández	and	Hamilton	(2015)	highlight	that	ecological	niche	in	the	
native	range	is	often	a	poor	predictor	for	the	invaded	range.

We	 supplemented	 our	 expertise	 of	 the	 genus’	 preferred	 envi‐
ronment	with	data	on	the	parent	species	 (P. julifloria and	P. pallida)	
habitat	provided	by	Pasiecznik	et	al.	(2001).	Prosopis spp.	grow	in	its	
native	range	at	elevations	between	0	and	1,500	m	a.s.l.	The	presence	
and	depth	of	 the	water	 table	are	a	decisive	 factor	 in	 the	distribu‐
tion,	 size,	and	growth,	while	poor	water	availability	and	soil	 fertil‐
ity	do	not	 limit	growth.	Prosopis spp.	 thrive	 in	almost	all	soil	 types	
ranging	 from	 pure	 sands	 to	 heavy	 clays,	 and	 the	 species	 perform	
well	on	saline	(18,000	mg	NaCl/L)	and	alkaline	(pH	11)	soils	(Singh,	
1996).	However,	soil	depth	is	important	and	thin	soils	are	unsuitable	
(NAS,	1980).	Abundant	rainfall	 is	a	 limiting	factor	as	the	species	 is	
less	common	in	regions	with	more	than	1,000	mm	of	mean	annual	
rainfall	(NAS,	1980).	The	species	prefers	mean	annual	temperatures	
above	20°C	with	an	optimal	between	20	and	30°C.	It	has	a	tolerance	
for	 day‐time	 shade	 temperatures	 of	 50°C	 and	 soils	 temperatures	
in	 full	 sunlight	 as	 high	 as	 70°C.	Prosopis spp.	 are	 hindered	by	 low	

F I G U R E  1   Prosopis spp.	invading:	(left)	farmland	with	young	plants	emerging	on	the	foreground,	(center)	pastoral	land,	and	(right)	near	
ephemeral	rivers
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temperatures	and	light	frost	can	cause	dieback;	however,	some	spe‐
cies	can	handle	frost	(Felker,	Clark,	Nash,	Osborn,	&	Cannell,	1982).	
This	information	enables	us	to	make	general	assumptions	about	the	
suitable	environmental	conditions	for	Prosopis spp.

2.5 | Environmental variables

The	tested	environmental	and	expert	knowledge‐based	variables	are	
provided	in	Supporting	Information,	Table	S1.	Some	variables	were	
subjected	to	interpretation,	such	as	assigning	values	for	the	creation	
of	buffers	for	the	waterways,	road	network,	and	built‐up	areas.	We	
gradually	reduced	the	number	of	variables	until	we	had	a	stable	out‐
put	consisting	of	variables	(a)	which	contribute	to	the	model	accu‐
racy	and	(b)	simultaneously	ecologically	meaningful.	We	selected	the	
variables	based	on	three	conditions:	 (a)	variable	correlation,	as	de‐
termined	by	the	pairwise	Pearson	and	Spearman	tests	scoring	<0.70	
(Immitzer,	Nopp‐Mayr,	&	Zohmann,	2014;	Sachser	et	al.,	2017);	 (b)	
variable	collinearity	as	determined	by	 the	variance	 inflation	 factor	

scoring	<0.90	(VIF,	Zuur,	Ieno,	&	Elphick,	2010);	and	(c)	variable	bias,	
as	determined	by	assessing	the	outputs	and	identifying	overly	domi‐
nant	variables.	The	variables	were	evaluated,	and	only	statistically	
and	ecologically	significant	predictors	were	retained.

All	variables	covered	the	entire	study	area.	The	variables	were	
preprocessed	 including	 (a)	homogenizing	 the	EPSG	projection	 (i.e.,	
WGS	84/UTM	36	N),	(b)	resampling	to	100	by	100‐m	spatial	resolu‐
tion	(aggregating	and	disaggregating),	and	(c)	masking	with	the	study	
area.	The	tasks	were	performed	with	the	“rgdal”	package	(Bivand	et	
al.,	2017)	in	R	version	3.4.0	(R	Core	Team,	2017).	The	Pearson	and	
Spearman	tests	were	performed	with	the	R	package	“Hmisc”	(Harrel,	
2015)	 and	 the	VIF	 test	was	 performed	 in	 R,	 according	 to	 a	 script	
provided	by	Zuur	et	al.	(2010).

2.6 | Distribution models

In	 total,	 four	 distribution	 models	 were	 studied.	 Three	 models,	 lo‐
gistic	 regression,	 random	 forest,	 and	 Bayesian	 networks,	 used	 an	

F I G U R E  2  The	study	area	of	Turkana,	
Kenya,	and	the	reference	data	set	
(red:	presence;	green:	absence).	Data	
are	displayed	with	the	ASTER	GDEM	
along	with	ephemeral	rivers	(blue)	and	
settlements	(transparent	circle)
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identical	 set	of	presence	and	absence	points	 for	building	 the	model,	
while	maximum	entropy	automatically	generated	background	points	or	
pseudo‐absence	data	(Figure	3).	We	used	the	default	value	of	10,000	
background	points	and	the	same	presence	points	used	for	training	the	
other	models.

2.7 | Ensemble modeling

Species	 distribution	 modelings	 have	 applications	 in	 a	 wide	 range	
of	disciplines	(Franklin,	2010)	and	are	considered	an	acknowledged	
tool	 for	 predicting	 invasive	 alien	 species	 distribution	 and	 habitat	
(Dlamini,	2016;	Duscher	&	Nopp‐Mayr,	2017;	Keith	&	Spring,	2013;	
Lemke	&	Brown,	2012;	Masocha	&	Dube,	2017).	An	ensemble	model	

(EM)	combines	the	strengths	of	several	SDM	approaches	while	mini‐
mizing	the	weakness	of	any	particular	model	(Capinha	&	Anastácio,	
2011;	Stohlgren	et	al.,	2010).	The	four	SDMs	used	to	create	the	en‐
semble	model	are	logistic	regression	(LR),	MaxEnt	(ME),	random	for‐
est	(RF),	and	Bayesian	networks	(BN).	All	SDMs	used	identical	sets	
of	environmental	variables	and	reference	data.	An	overview	of	the	
SDMs	can	be	found	in	the	Supporting	Information,	Table	S2.

2.8 | Model evaluation

From	the	output	of	each	SDM,	one	can	generate	a	binary	map	with	
the	Prosopis spp.	presence	and	absence	classes	by	slicing	the	output	
using	a	probability	threshold.	Pixels	with	values	below	this	threshold	

F I G U R E  3  The	workflow	for	predicting	Prosopis spp.	habitat.	The	evaluation	(block	cross‐validation	and	threshold	assignment)	was	also	
performed	on	the	individual	models
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are	labeled	as	absence	while	pixels	with	values	above	it	are	labeled	as	
presence.	To	determine	the	best	probability	threshold	for	each	SDM,	
we	used	the	kappa	index	maximization	approach	(Guisan,	Theurillat,	
&	Kienast,	1998).	Following	this	approach,	the	best	threshold	is	the	
one	that	produces	a	binary	map	with	the	highest	kappa	index	when	
compared	with	 the	 entire	 reference	 dataset	 (91	 absences	 and	 92	
presence	points).	For	each	SDM,	we	generated	statistical	measures	
such	as	(a)	sensitivity;	(b)	specificity;	(c)	true	skill	statistics;	(d)	overall	
accuracy;	 (e)	Cohen’s	kappa;	and	 (f)	Area	under	 the	 receiver	oper‐
ating	characteristic	(ROC)	curve.	These	are	reported	in	Supporting	
Information,	 Table	 S3.	 To	 generate	 an	 accurate	 habitat	 suitability	
map,	all	the	pixels	with	values	below	the	best	probability	threshold	
were	classified	as	“nonsuitable”	area	while	all	the	pixels	with	values	
above	it	were	divided	into	three	classes:	“low,	“moderate,”	and	“high	
habitat	suitability.”

We	 also	 evaluated	 each	 individual	 SDM	 output	 by	 applying	
a	block	 cross‐validation	 (El‐Gabbas	&	Dormann,	2017;	Guevara,	
Gerstner,	Kass,	&	Anderson,	2017;	Roberts	et	 al.,	 2017).	Cross‐
validation	has	the	advantage	that	it	optimizes	the	limited	amount	
of	reference	data	and	minimizes	the	risk	of	over‐fitting.	Although	
our	reference	points	are	well	distributed	over	the	study	area,	the	
presence/absence	points	are	sometimes	clustered.	This	 leads	to	
an	 unbalanced	 validation	 data	 sets,	with	 blocks	 entirely	 lacking	
either	 presence	 or	 absence	 points.	 To	 counter	 this	 imbalance,	

we	 created	 nongridded	 irregular	 shaped	 blocks	 as	 described	
by	 Roberts	 et	 al.	 (2017).	 This	 insured	 that	 each	 of	 the	 blocks	
(n	=	12)	has	a	proportional	amount	of	presence	and	absence	data.	
Afterward,	confusion	matrices	were	created	from	the	comparison	
between	 testing	omitted	points	 and	 the	binary	map,	which	was	
produced	according	to	the	calculated	probability	threshold.	This	
was	 repeated	 12	 times	 until	 all	 reference	 points	were	 used	 for	
evaluation.	Finally,	all	12	confusion	matrices	were	merged	into	a	
single	one	to	compute	the	(a‐e)	statistical	measures	for	the	block	
cross‐validation.

3  | RESULTS

3.1 | Variable importance and selection

Based	on	the	expert	knowledge	and	the	conducted	tests	(i.e.,	vari‐
able	 importance,	 collinearity,	 and	 bias,	 Supporting	 Information,	
Table	 S4),	 we	 determined	 that	 the	 following	 eight	 features	 were	
best	suited	for	modeling	Prosopis spp.	habitat:	(a)	distance	to	water	
(Dist.	from	water:	HydroSHEDS);	(b)	distance	to	built‐up	(Dist.	from	
urban:	DLR‐GUF);	(c)	distance	to	roads	(Dist.	from	roads:	OSM);	(d)	
lithology	 (SOTWIS);	 (e)	soil	 type	 (SOTWIS);	 (f)	 landform	(SOTWIS);	
(g)	elevation	(ASTER	GDEM);	and	(h)	temperature	seasonality	(Temp.	
seasonality:	BIO4).

These	selected	variables	were	applied	to	build	the	SDMs.	In	ad‐
dition	to	the	variables	listed	in	Supporting	Information	Table	S1,	we	
performed	 tests	with	multispectral	 data	 from	 Sentinel‐2	 satellite	
and	NDVI	time	series	from	smoothed	and	gap‐filled	Landsat	data	
(Vuolo,	Ng,	&	Atzberger,	2017).	We	found	that	these	satellite	data	
did	not	positively	 contribute	 to	predict	 the	potential	habitat.	We	
therefore	 did	 not	 include	 these	 variables	 in	 the	models.	We	 also	
fitted	 the	 selected	 variables	 into	 a	 directed	 acyclic	 graph	 (DAG,	
Figure	4).	This	represents	the	probabilistic	relationship	among	the	
variables,	and	the	conditional	(in)dependency	is	an	essential	func‐
tion	of	Bayesian	networks.	For	each	node	in	the	structure,	there	is	a	
conditional‐probability	function	that	relates	the	node	to	its	imme‐
diate	parent.	To	improve	the	rational,	the	relationships	between	the	
nodes	were	 added,	 displaying	 the	 underlying	 process	 influencing	
habitat	suitability.

F I G U R E  4  A	Directed	acyclic	graph	(DAG)	representing	habitat	suitability	of	Prosopis spp.	The	rectangular	nodes	proved	the	condition/
justification	and	underlying	process	for	using	a	variable.	The	full	variable	description	can	be	found	in	Table	S1

TA B L E  1  Accuracy	assessment	of	the	block	cross‐validation	
modeling	results

LR ME RF BN EM

Probability	
threshold

0.205 0.165 0.560 0.635 0.425

Sensitivity 0.978 0.912 0.989 0.901 0.989

Specificity 0.859 0.967 1.000 0.946 0.989

True	skill	statistic 0.837 0.879 0.989 0.847 0.978

Overall	accuracy 0.918 0.940 0.995 0.923 0.989

Kappa	index 0.836 0.880 0.989 0.847 0.978

Note.	BN:	Bayesian	Network;	EM:	Ensemble	model;	LR:	 logistic	regres‐
sion;	ME:	MaxEnt;	RF:	Random	Forest.
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3.2 | Model outputs and evaluation

Table	1	shows	the	statistical	measures	of	the	combined	block	cross‐
validation	for	the	SDMs	and	EM.	The	probability	threshold	for	each	
model	was	quite	variable,	 from	0.165	for	 the	MaxEnt	 to	0.635	for	
the	Bayesian	Network.	All	statistical	results	indicate	high	modeling	
performance.	RF	and	the	EM	performed	slightly	better	compared	to	
the	other	SDMs.

The	habitat	suitability	map	of	the	ensemble	model,	displayed	in	
Figure	5,	was	calculated	by	averaging	the	four	SDMs	outputs.	The	
probability	threshold	was	set	at	0.43	(Table	1,	EM).	Pixels	with	a	value	

below	this	threshold	are	regarded	as	not	suitable	Prosopis spp.	hab‐
itat.	There	remaining	values	were	divided	 into	three	classes:	 “low”	
(0.43–0.62),	 “moderate”	 (0.62–0.81),	 and	 “high”	 (0.81–1.0)	Prosopis 
spp.	suitability.	The	habitat	suitability	maps	of	the	single	models	can	
be	found	at	Supporting	Information,	Figure	S1.

The	 area	 of	 each	 habitat	 suitability	 class	 is	 shown	 in	 Table	 2.	
The	majority	of	the	study	area	(69%)	can	be	considered	as	not	suit‐
able	habitat	for	Prosopis spp.	However,	relatively	large	areas	of	high	
and	moderate	 suitable	 habitat	 are	 present,	 covering,	 respectively,	
420,450,	and	596,552	ha,	together	roughly	15%	of	the	total	area.	An	
additional	16%	of	the	area	is	assigned	a	low	suitability.

F I G U R E  5   The Prosopis spp.	habitat	
suitability	map	of	the	ensemble	model.	
The	pixels	with	values	above	the	
probability	threshold	of	0.43	were	divided	
into	“low”	(yellow),	“moderate”	(orange),	
and	“high”	(red)	suitable	habitat
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4  | DISCUSSION

4.1 | Environmental variables

The	inclusion	of	expert	knowledge‐based	variables	positively	con‐
tributed	 to	 predicting	 potential	 habitat	 as	 these	 variables	 were	
consequently	 selected	 during	 the	 variable	 assessment	 process.	
Our	observations	are	 in	 line	with	Kuhnert,	Martin,	and	Griffiths	
(2010)	 who	 proposed	 guidelines	 for	 expert	 knowledge‐based	
modeling	 and	 stated	 that	 expert	 knowledge	 can	 increase	 the	
precision	of	models	and	 facilitate	 informed	decision	making	 in	a	
cost‐effective	manner.	Bazzichetto	et	al.	 (2018)	determined	that	
the	percentage	of	artificial	 land	and	distance	 from	roads	exhibit	
a	 significant	 relationship	with	 the	occurrence	of	Carpobrotus	 sp.	
Furthermore,	high‐quality	environmental	variables	 (i.e.,	 land	use	
data,	 soil	 data)	 describing	 species	 habitat	 are	 fairly	 scarce	 and	
produced	by	multiple	research	institutes	using	different	methods	
(e.g.,	 measurements,	 interpolations)	 and	 standards	 (e.g.,	 projec‐
tions,	 spatial	 resolutions).	 Certainly,	 our	 modeling	 would	 have	
benefited	 from	 additional	 variables	 which	 were	 unfortunately	
not	 available	 such	 as	 groundwater	 table,	 soil	 depth,	 or	 climate	
data	at	a	higher	spatial	resolution	(Lowen,	McKindsey,	Therriault,	
&	 DiBacco,	 2016).	 The	 bioclimatic	 variables	 (Temp.	 seasonality:	
BIO4)	had	prevailing	 low	 spatial	 resolution	 and	are	possibly	not	
suitable	 for	 smaller	 test	 sites.	 Additionally,	 the	 quality	 of	 these	
data	can	be	affected	by	the	scarcity	and	reliability	of	the	weather	
stations	 in	East	Africa	 (Van	Gils,	Westinga,	Carafa,	Antonucci,	&	
Ciaschetti,	2014).

4.2 | Ensemble model and evaluation

The	models	 (i.e.,	 EM	 and	 four	 SDMs)	 provide	 highly	 accurate	 and	
comparable	 results,	 as	 shown	 through	 the	 block	 cross‐validation.	
The	statistical	measures	rank	RF	best,	scoring	the	highest	accuracies	
followed	by	the	EM.	Shiferaw,	Bewket,	and	Eckert	(2018)	achieved	
similar	 results	 when	 mapping	 fractional	 P. juliflora	 cover	 in	 Afar,	
Ethiopia,	and	concluded	that	random	forest	performed	best	closely	
followed	by	the	EM.	In	our	opinion,	the	EM	presents	a	good	compro‐
mise	mitigating	the	uncertainties	provided	by	modeling	the	potential	
habitat	of	invasive	species.	By	not	relying	on	a	single	model,	or	their	
potential	 flaws,	 the	 ensemble	 approach	 adds	 considerable	 robust‐
ness	and	consistency,	thereby	confirming	the	observations	made	by	
Stohlgren	et	al.	(2010).

4.3 | Potential distribution and invasion pattern

The	EM	output	was	 in	agreement	with	our	field	observations	and	
in	 correspondence	 with	 the	 Prosopis spp.	 cover	 for	 the	 Tarach	
basin,	 Turkana	 County,	 Kenya	 mapped	 in	 2016	 (Ng,	 Immitzer,	 et	
al.,	 2016a).	 This	 study	 applied	 remote	 sensing	 for	 detecting	 the	
Prosopis spp.,	 cover	 in	2016,	using	Sentinel‐2	satellite	data	and	 in	
situ	 observations.	 Their	 results	 indicated	 that	Prosopis spp.—clas‐
sified	into	dense,	sparse,	and	mixed	classes—covered,	respectively,	
1.53%,	4.61%,	and	1.77%	of	the	total	land	cover.	If	we	consider	that	
the	 amount	of	highly	 to	moderately	 suitable	habitat	 accounts	 for	
15%	of	the	study	area,	we	can	expect	the	area	covered	by	Prosopis 
spp. in	2016	to	double	in	the	future,	not	taking	into	consideration	
projected	climate	models.	Our	results	also	confirmed	that	Prosopis 
spp.	are	mainly	found	near	the	ephemeral	rivers	(Schachtschneider	
&	February,	2013;	Shackleton	et	al.,	2015)	and	settlements	(Meroni	
et	 al.,	 2016;	 Ng	 et	 al.,	 2017).	 It	 is	 clear	 that	 these	 areas	 provide	
conditions	which	 are	 very	 suitable	 for	Prosopis spp.,	 as	 they	 pro‐
vide	three	key	components:	water,	anthropogenic	disturbance,	and	
distribution	of	seeds.	The	higher	water	availability	promotes	plant	
growth	and,	 thus,	 supports	more	biomass	 (i.e.,	 lush	vegetation	or	
crop	production).	This	is	highlighted	by	the	importance	of	the	dis‐
tance	to	water	variable	 to	 the	models.	Higher	population	density,	
which	 is	 otherwise	 very	 low	 throughout	 the	 study	 area,	 leads	 to	
increased	pressure	on	native	plant	communities,	 through	 the	col‐
lection	 of	 fuelwood	 and	 clearing	 vegetation	 for	 crop	 production.	
Higher	population	density	also	results	in	increased	livestock	num‐
bers,	causing	additional	stress	on	native	vegetation	through	grazing	
by	cattle	and	browsing	by	goats.	The	distance	to	settlements	and	
the	road	network	variables	are	 illustrative	to	this	process.	Finally,	
livestock	is	an	important	propagator	of	Prosopis	seeds	and	driver	of	
the	invasion.	The	presence	of	 livestock	can	be	explained	by	three	
variables:	distance	to	water,	roads,	and	settlements.	Together	with	
the	strong	spatial	correlation	between	settlements	and	water	pres‐
ence,	these	expert	knowledge‐based	variables	are	good	indicators	
for	 highly	 suitable	 Prosopis spp.	 habitat	 and	 invasion	 risk,	 as	 de‐
picted	in	the	model	output	(Figure	5).

5  | CONCLUSION

Our	 study	 determined	 the	 potential	 habitat	 of	 Prosopis spp.	 in	
Turkana,	Kenya,	using	an	ensemble	approach	incorporating	four	dif‐
ferent	species	distribution	models.	At	the	same	time,	environmental	
and	expert	knowledge‐based	variables	were	assessed.	Prosopis spp. 
have	not	yet	fully	occupied	their	entire	ecological	niche	of	their	re‐
spective	new	ecosystem,	 give	 the	 relatively	 short	 amount	of	 time	
since	the	species	has	established	itself,	this	is	also	strengthened	by	
the	 disparity	 between	 the	 distribution	 in	 2016	 and	 the	 potential	
habitat.	The	 lack	of	equilibrium,	and	 the	 fact	 that	one	has	 to	deal	
with	a	hybridized	species,	makes	modeling	efforts	particularly	chal‐
lenging.	Nonetheless,	the	species	is	causing	severe	negative	impact	
by	altering	biodiversity	(i.e.,	replacing	many	indigenous	species)	and	

TA B L E  2  Area	of	each	habitat	suitability	class	of	the	ensemble	
model	output.	The	pixels	were	grouped	in	not	suitable,	low,	
moderate,	and	high	habitat	suitability

Habitat suitability ha Area (%)

Not	suitable 4,704,426.947 69

Low 1,100,733.03 16

Moderate 596,551.962 9

High 421,450.12 6
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economically	 crippling	 livelihood	activities	 (i.e.,	 invading	croplands	
and	 restricting	 access	 to	 water).	 This	 warrants	 immediate	 action	
with	 the	 aim	 of	 eradication.	 Unfortunately,	 experiences	 from	 the	
Americas,	Africa,	and	Australia	teach	us	that	eradication	of	Prosopis 
spp.	has	proven	to	be	extremely	difficult	or	sometimes	even	impos‐
sible.	This	 is	 largely	due	 to	 the	 fast	 regrowth	 rate	of	Prosopis	 spp.	
from	 vegetative	 buds	 and	 the	 viable	 seeds	 deposited	 in	 the	 seed	
bank.	The	impoverished	societies	in	the	developing	world	have	cer‐
tainly	only	very	limited	resources	to	effectively	combat	this	process.	
Therefore,	while	preparing	for	eradication,	we	call	for	better	man‐
agement	of	invaded	high	ecologic	and	economic	areas,	with	special	
focus	 on	 awareness	 raising	 and	 prevention,	 by	 protecting	 not	 yet	
infested	highly	suitable	habitat.
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