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Background: Different estimation approaches are frequently used to calibrate mathemat-
ical models to epidemiological data, particularly for analyzing infectious disease outbreaks.
Here, we use two common methods to estimate parameters that characterize growth
patterns using the generalized growth model (GGM) calibrated to real outbreak datasets.
Materials and methods: Data from 31 outbreaks are used to fit the GGM to the ascending
phase of each outbreak and estimate the parameters using both least squares (LSQ) and
maximum likelihood estimation (MLE) methods. We utilize parametric bootstrapping to
construct confidence intervals for parameter estimates. We compare the results including
RMSE, Anscombe residual, and 95% prediction interval coverage. We also evaluate the
correlation between the estimates from both methods.
Results: Comparing LSQ and MLE estimates, most outbreaks have similar parameter esti-
mates, RMSE, Anscombe, and 95% prediction interval coverage. Parameter estimates do not
differ across methods when the model yields a good fit to the early growth phase. How-
ever, for two outbreaks, there are systematic deviations in model fit to the data that
explain differences in parameter estimates (e.g., residuals represent random error rather
than systematic deviation).
Conclusion: Our findings indicate that utilizing LSQ and MLE methods produce similar
results in the context of characterizing epidemic growth patterns with the GGM, provided
that the model yields a good fit to the data.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mathematical models are frequently used to assess, investigate, and forecast epidemic outbreaks. For instance, models can
be useful to gain a better understanding of the underlyingmechanisms of disease transmission and control. Complexity varies
from simple growth models consisting of one or two equations and 2e3 parameters, such as the generalized-growth model
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(GGM) and generalized logistic model (GLM), to complex mechanistic SIR-type models at variable spatial scales (Roosa et al.,
2020a; Viboud et al., 2018). The latter range from population-level models that assume homogeneous mixing to individual-
level models that incorporate heterogeneous mixing and levels of susceptibility and infectivity (Sattenspiel & Lloyd, 2009).
Using mathematical models helps understand several different outbreak characteristics, including epidemiological param-
eters and control or intervention effects (Chowell, 2017).

A defining characteristic of an outbreak is the functional form of early epidemic growth patterns, which are shaped by a
combination of multiple factors, including the mode of disease transmission and the early onset of behavioral changes or
control interventions (Chowell, Viboud, Hyman, & Simonsen, 2015). While simple compartmental SEIR-type transmission
models assume exponential epidemic growth patterns in large susceptible populations (Anderson & May 1991), outbreaks
often display sub-exponential (polynomial) growth, as reported in prior studies (Chowell et al., 2016; Roosa et al., 2020b;
Viboud, Simonsen, & Chowell, 2016).

For some infectious diseases, exponential growth may be facilitated by an airborne transmission route, a short incubation
period, and a relatively low case fatality rate. In contrast, infectious diseases with longer incubation periods that spread by
direct contact with bodily fluids of an infected patient, such as HIV (Poorolajal, Hooshmand, Mahjub, Esmailnasab, & Jenabi,
2016), tend to spread following slower growth patterns. Another example is the Ebola virus disease, which has a generation
interval of about 2 weeks, but it spreads via close or intimate contact with an infected patient and is frequently associated
with a high case fatality rate in settings with sub-optimal health infrastructure. Such infections are expected to spread at a
slower rate compared to the influenza virus, which is also capable of airborne spread and characterized by a short incubation
period (~1e2 days); therefore, sub-exponential growth patterns in disease transmission occur frequently (Chowell et al.,
2015).

Several methods have been proposed to estimate model parameters that characterize disease spread, including least
squares estimation (LSQ) and maximum likelihood estimation (MLE). The choice of parameter estimation method often
depends on model complexity and data availability. With count data, like outbreak data, it is assumed that Poisson-MLE will
perform better than LSQ, as the error structure of count data more closely resembles a Poisson distribution than a normal
distribution, as assumed by LSQ. However, a Poisson error structure can be incorporated with LSQ using bootstrapping
techniques to model uncertainty (Roosa & Chowell, 2019). In this paper, we compare the performance of the LSQ and MLE
methods with a Poisson error structure for characterizing the early ascending phase of a variety of epidemic outbreaks.

Previous work shows that LSQ with parametric bootstrapping andMLE assuming Poisson distribution yielded very similar
results using simulated data from simple epidemic growth models (Roosa & Chowell, 2019). Here we employ real outbreak
datasets and the generalized-growthmodel to compare the performance of LSQ andMLEmethods using several performance
metrics, including RMSE, Anscombe residual, and the coverage of the 95% prediction interval (95% PI). We also assess the
suitability of the Poisson distribution to model the uncertainty of the early ascending phase of the outbreaks.

2. Data and methods

Using datasets from 31 historical outbreaks, we employ two methods to estimate the best-fit parameters of the
generalized-growth model to characterize epidemic growth patterns. Our data encompasses several infectious diseases
including Zika, foot-and-mouth disease (FMD), Ebola, cholera, measles, pandemic influenza, plague, and smallpox (Tables 1
and 2). The temporal scale of the datasets varies from daily to weekly case counts.

The length of the ascending phase used for calibration varied across the outbreaks based on the generation interval of the
disease outbreak (Tables 1 and 2) (Viboud et al., 2016). For three of the outbreaks, we also explore multiple lengths of the
ascending phase: 15, 16, and 17 data points for Zika (Antioquia, 2015), 19, 20 and 21 data points for pandemic influenza (San
Francisco, US, 1918), and 10, 11, and 12 data points for Ebola (Margibi, 2014) for comparison with previous studies (Ganyani,
Faes, & Hens, 2019).

2.1. Generalized growth model (GGM)

The generalized growth model allows for slower than exponential growth patterns. The GGM includes a “deceleration of
growth parameter” p and a growth rate parameter, r > 0. C(t) represents the cumulative number of cases at time t and C0(t)
represents the incidence curve. When the “deceleration of growth” parameter (p) lies within the range of 0 and 1, it depicts
sub-exponential growth patterns; p¼ 0 shows constant/linear growth, and p¼ 1 shows an exponential pattern (Viboud et al.,
2016).

The GGM equation is the following:

dCðtÞ=dt¼C΄ðtÞ ¼ rCðtÞp
The GGM has been used to model various outbreaks, including Zika (Gordon et al., 2019; Pell, Kuang, Viboud, & Chowell,
2018), Foot and Mouth disease (Shanafelt, Jones, Lima, Perrings, & Chowell, 2018), Ebola (Chowell et al., 2015), and HIV/AIDS
(Dinh, Chowell, & Rothenberg, 2018).
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Table 1
Results of r and p parameters with 95% CI, RMSE, Anscombe residual, prediction coverage, and the length of ascending phase by LSQ for each outbreak.

Outbreaks r (95%
CI)

p (95%
CI)

RMSE Anscombe Prediction
interval coverage
(%)

length of
ascending
phase

Data source

Zika(Antioquia,
2015)

1.70
(0.79,
2.90)

0.42
(0.23,
0.65)

3.04 16.38 100.00 15/104 days Chowell et al. (2016)

Zika(Antioquia,
2015)

1.40
(0.79,
2.50)

0.47
(0.30,
0.64)

2.50 16.40 100.00 16/104days Chowell et al. (2016)

Zika(Antioquia,
2015)

1.40
(0.74,
2.40)

0.48
(0.31,
0.66)

3.15 16.31 100.00 17/104days Chowell et al. (2016)

FMD (UK, 2001-
120days)

0.55
(0.35,
0.78)

0.70
(0.59,
0.83)

4.01 37.98 92.00 25/229days Shanafelt et al. (2018)

Ebola (Tonkolili,
2014)

0.12
(0.08,
0.29)

0.92
(0.61,
1.00)

3.63 5.94 100.00 5/69 weeks Ebola Response Roadmap, 2015

Ebola (Tonkolili,
2014)

0.19
(0.08,
0.38)

0.77
(0.52,
1.00)

7.54 8.21 100.00 6/69 weeks Ebola Response Roadmap, 2015

Ebola (Tonkolili,
2014)

0.09
(0.08,
0.15)

0.97
(0.83,
1.00)

8.67 10.63 100.00 7/69 weeks Ebola Response Roadmap, 2015

Cholera (Aalborg,
1853)

0.55
(0.35,
0.79)

0.78
(0.70,
0.88)

6.70 36.80 90.00 20/108 days “Det Kongelige Sundhedskollegiums Aarsberetning for,
1853,"

Ebola (Bo, 2014) 0.13
(0.08,
0.21)

0.80
(0.67,
0.96)

8.85 27.47 80.00 10/67 weeks Ebola Response Roadmap, 2015

Ebola (Bombali,
2014)

0.08
(0.06,
0.14)

0.94
(0.78,
1.00)

5.92 17.20 87.50 8/64 weeks Ebola Response Roadmap, 2015

Ebola (Bomi, 2014) 1.20
(0.51,
2.00)

0.12
(0.00,
0.36)

6.31 19.68 75.00 8/66 weeks Ebola Response Roadmap, 2015

Ebola (Congo, 1976) 1.30
(0.69,
2.20)

0.44
(0.27,
0.62)

2.77 19.59 100.00 20/52 days Breman, 1978; Camacho et al., 2014

Ebola (Grand Bassa,
2014)

0.42
(0.13,
0.90)

0.34
(0.06,
0.70)

4.23 7.72 100.00 9/64 weeks Ebola Response Roadmap, 2015

Ebola (Gueckedou,
2014)

0.14
(0.05,
0.35)

0.64
(0.35,
0.93)

5.05 18.04 81.82 11/90 weeks Ebola Response Roadmap, 2015

Ebola (Kenema,
2014)

0.58
(0.33,
0.92)

0.47
(0.33,
0.61)

5.21 17.61 87.50 8/70weeks Ebola Response Roadmap, 2015

Ebola (Margibi,
2014)

0.10
(0.09,
0.12)

0.98
(0.91,
1.00)

11.80 22.77 77.78 9/68 weeks Ebola Response Roadmap, 2015

Ebola (Margibi,
2014)

0.20
(0.14,
0.27)

0.75
(0.66,
0.85)

16.26 68.20 40.00 10/68 weeks Ebola Response Roadmap, 2015

Ebola (Margibi,
2014)

0.22
(0.16,
0.29)

0.72
(0.64,
0.80)

12.82 73.79 54.55 11/68 weeks Ebola Response Roadmap, 2015

Ebola (Montserrado,
2014)

0.09
(0.08,
0.11)

0.98
(0.90,
1.00)

6.99 46.94 50.00 10/71 weeks Ebola Response Roadmap, 2015

Ebola (Port Loko,
2014)

0.55
(0.34,
0.81)

0.51
(0.40,
0.64)

4.00 2.85 100.00 8/64 weeks Ebola Response Roadmap, 2015

Ebola (Uganda,
2000)

0.34
(0.19,
0.52)

0.67
(0.53,
0.85)

1.47 2.01 100.00 6/18 weeks Chowell, Hengartner, Castillo-Chavez, Fenimore, &
Hyman, 2004; World Health Organization, 2001

Ebola (Western Area
Rural, 2014)

0.32
(0.23,
0.45)

0.62
(0.52,
0.70)

8.68 12.49 90.00 10/63 weeks Ebola Response Roadmap, 2015

8.54 12.14 90.00 10/62 weeks Ebola Response Roadmap, 2015

(continued on next page)
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Table 1 (continued )

Outbreaks r (95%
CI)

p (95%
CI)

RMSE Anscombe Prediction
interval coverage
(%)

length of
ascending
phase

Data source

Ebola (Western Area
Urban, 2014)

0.50
(0.32,
0.77)

0.53
(0.43,
0.63)

FMD (Uruguay,
2001)

2.90
(2.40,
3.00)

0.69
(0.68,
0.72)

96.47 321.44 45.45 11/27 days Chowell, Rivas, Hengartner, Hyman, & Castillo-Chavez,
2006; Chowell, Rivas, Smith, & Hyman, 2006

Measles (London,
1948)

1.70
(1.40,
2.30)

0.51
(0.47,
0.55)

82.18 135.84 44.44 9/40 weeks Measles Time-Series Data,

Pandemic influenza
(San Fran, 1918)

0.29
(0.28,
0.35)

0.99
(0.94,
1.00)

9.71 57.93 57.89 19/63days Chowell, Nishiura, and Bettencourt (2007)

Pandemic influenza
(San Fran, 1918)

0.29
(0.28,
0.34)

0.99
(0.95,
1.00)

9.10 58.60 60.00 20/63days Chowell et al. (2007)

Pandemic influenza
(San Fran, 1918)

0.29
(0.28,
0.33)

0.99
(0.96,
1.00)

15.66 69.34 71.43 21/63days Chowell et al. (2007)

Plague (Bombay,
1905e06)

0.11
(0.07,
0.17)

0.88
(0.79,
1.00)

5.82 5.11 100.00 9/41weeks “XXII. Epidemiological observations in Bombay City,"
1907

Plague (Madagascar-
wave2, 2017)

0.12
(0.07,
0.19)

0.81
(0.70,
0.93)

5.74 8.33 100.00 11/50weeks World Health Organization, 2017

Smallpox (Khulna,
Bangladesh, 1972)

0.16
(0.11,
0.21)

0.85
(0.78,
0.92)

13.73 17.41 88.89 9/13 weeks Sommer, (1974)
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2.2. Parameter estimation

To estimate the parameters, we conduct parametric bootstrap analyses using LSQ and MLE methods. A previous study
shows that one can evaluate parameter uncertainty with a simple computational bootstrap-based method, by replicating
several data sets through repeated sampling from the best-fit model (Roosa & Chowell, 2019). When estimating parameters,
the initial parameter values can impact the results due to local maxima or minima. Therefore, we utilize Latin hypercube
sampling with different initial parameter guesses to estimate the best set of initial parameters, or those with the lowest SSE,
for the ‘best-fit’model to the incidence curve. We then use these parameter values and employ the bootstrapping method to
simulate 500 curves (M ¼ 500) from the best-fit model, and further, re-estimate the parameters for each of these new
datasets. We then utilize the distributions of parameter estimates to calculate 95% confidence intervals (CIs; 2.5th, 97.5th
percentiles), and the distribution of simulated datasets is used to define the 95% prediction intervals. We also assess the root
mean squared error and Anscombe residuals of the best-fit curve. We perform these analyses for both LSQ and MLE to
compare results.

2.2.1. Least squares estimation (LSQ)
Least squares estimation yields the best fit solution by exploring the parameters to find the parameter set bq that minimizes

the sum of the squared deviations between the data and the model solution. The equation as follows:

bq¼ argmin
Xn
t¼1

ðf ðt; qÞ � ytÞ2

where, yt is the data and f (t; bq)¼ C0(t|bqÞ is the best-fit solution of themodel to the data.We use the fmincon function inMatlab
2017 to get the nonlinear least squares estimation results for our model parameters.

2.2.2. Maximum likelihood estimation (MLE)
Maximum likelihood estimation aims to find the values of the parameter set that are most likely to have generated the

observed data. For a parameter set q, the value of q that maximizes the likelihood function is the MLE estimate bq, where
8



Table 2
Results of r and p parameters with 95% CI, RMSE, Anscombe residual, prediction coverage, and the length of ascending phase by MLE for each outbreak.

Outbreaks r (95% CI) p (95% CI) RMSE Anscombe Prediction interval
coverage (%)

length of
ascending
phase

Data Sources

Zika(Antioquia, 2015) 1.30
(0.75,
2.30)

0.49 (0.31,
0.66)

3.46 15.63 100.00 15/104 days Chowell et al. (2016)

Zika(Antioquia, 2015) 1.20
(0.72,
2.00)

0.51 (0.36,
0.66)

3.82 16.02 100.00 16/104days Chowell et al. (2016)

Zika(Antioquia, 2015) 1.2 (0.74,
2.00)

0.51 (0.37,
0.66)

3.90 16.02 100.00 17/104days Chowell et al. (2016)

FMD (UK, 2001-
120days)

0.50
(0.37,
0.68)

0.73 (0.64,
0.82)

4.71 37.28 92.00 25/229days Shanafelt et al. (2018)

Ebola (Tonkolili, 2014) 0.11
(0.08,
0.25)

0.93 (0.65,
1.00)

9.38 5.66 100.00 5/69 weeks Ebola Response Roadmap, 2015

Ebola (Tonkolili, 2014) 0.16
(0.08,
0.32)

0.82 (0.58,
1.00)

5.20 8.02 100.00 6/69 weeks Ebola Response Roadmap, 2015

Ebola (Tonkolili, 2014) 0.09
(0.08,
0.14)

0.96 (0.85,
1.00)

9.33 10.66 100.00 7/69 weeks Ebola Response Roadmap, 2015

Cholera (Aalborg,
1853)

0.49
(0.35,
0.65)

0.81 (0.74,
0.88)

8.07 36.45 90.00 20/108 days “Det Kongelige Sundhedskollegiums
Aarsberetning for, 1853,"

Ebola (Bo, 2014) 0.13
(0.09,
0.19)

0.81 (0.70,
0.92)

7.32 27.44 70.00 10/67 weeks Ebola Response Roadmap, 2015

Ebola (Bombali, 2014) 0.08
(0.06,
0.11)

0.97 (0.84,
1.00)

3.08 16.04 87.50 8/64 weeks Ebola Response Roadmap, 2015

Ebola (Bomi, 2014) 1.10
(0.45,
1.90)

0.15 (1.00,
0.39)

5.16 19.68 75.00 8/66 weeks Ebola Response Roadmap, 2015

Ebola (Congo, 1976) 1.10
(0.68,
2.00)

0.46 (0.29,
0.62)

3.55 19.36 100.00 20/52 days Breman et al., 1978; Camacho et al., 2014

Ebola (Grand Bassa,
2014)

0.35
(0.14,
0.82)

0.39 (0.07,
0.68)

2.62 7.50 100.00 9/64 weeks Ebola Response Roadmap, 2015

Ebola (Gueckedou,
2014)

0.12
(0.04,
0.28)

0.69 (0.40,
0.98)

4.64 28.90 90.91 11/90 weeks Ebola Response Roadmap, 2015

Ebola (Kenema, 2014) 0.52
(0.36,
0.84)

0.49
(0.36,0.61)

6.26 17.35 87.50 8/70weeks Ebola Response Roadmap, 2015

Ebola (Margibi, 2014) 0.10
(0.09,
0.12)

0.98 (0.92,
1.00)

11.64 22.65 77.78 9/68 weeks Ebola Response Roadmap, 2015

Ebola (Margibi, 2014) 0.14
(0.11,
0.17)

0.86 (0.78,
0.93)

15.55 57.18 50.00 10/68 weeks Ebola Response Roadmap, 2015

Ebola (Margibi, 2014) 0.15
(0.13,
0.19)

0.81 (0.75,
0.87)

16.32 63.31 63.64 11/68 weeks Ebola Response Roadmap, 2015

Ebola (Montserrado,
2014)

0.15
(0.12,
0.20)

0.80 (0.72,
0.88)

12.09 29.42 80.00 10/71 weeks Ebola Response Roadmap, 2015

Ebola (Port Loko, 2014) 0.56
(0.38,
0.78)

0.51 (0.41,
0.60)

7.31 2.83 100.00 8/64 weeks Ebola Response Roadmap, 2015

Ebola (Uganda, 2000) 0.40
(0.25,
0.62)

0.62 (0.48,
0.76)

1.91 1.55 100.00 6/18 weeks Chowell et al., 2004; World Health Organization,
2001

Ebola (Western Area
Rural, 2014)

0.32
(0.24,
0.42)

0.62 (0.55,
0.69)

6.87 12.50 100.00 10/63 weeks Ebola Response Roadmap, 2015

Ebola (Western Area
Urban, 2014)

0.52 (0.45,
0.60)

8.75 12.08 90.00 10/62 weeks Ebola Response Roadmap, 2015

(continued on next page)
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Table 2 (continued )

Outbreaks r (95% CI) p (95% CI) RMSE Anscombe Prediction interval
coverage (%)

length of
ascending
phase

Data Sources

0.52
(0.35,
0.72)

FMD (Uruguay, 2001) 2.90
(2.50,
3.00)

0.69 (0.68,
0.72)

94.25 305.75 36.36 11/27 days Chowell, Rivas, Hengartner, et al., 2006; Chowell,
Rivas, Smith, & Hyman, 2006

Measles (London,
1948)

2.80
(2.40,
3.00)

0.44 (0.43,
0.47)

81.64 118.57 44.44 9/40 weeks Measles Time-Series Data,

Pandemic influenza
(San Fran, 1918)

0.40
(0.33,
0.49)

0.91 (0.86,
0.96)

9.53 47.22 78.95 19/63days Chowell et al. (2007)

Pandemic influenza
(San Fran, 1918)

0.35
(0.30,
0.41)

0.95 (0.91,
0.98)

14.80 52.59 70.00 20/63days Chowell et al. (2007)

Pandemic influenza
(San Fran, 1918)

0.30
(0.28,
0.33)

0.99 (0.96,
1.00)

13.92 68.31 61.90 21/63days Chowell et al. (2007)

Plague (Bombay, 1905
e06)

0.12
(0.08,
0.17)

0.86 (0.78,
0.95)

7.33 4.99 100.00 9/41weeks “XXII. Epidemiological observations in Bombay
City," 1907

Plague (Madagascar-
wave2, 2017)

0.10
(0.07,
0.15)

0.84 (0.75,
0.93)

9.06 7.57 100.00 11/50weeks World Health Organization, 2017

Smallpox (Khulna,
Bangladesh, 1972)

0.14
(0.11,
0.18)

0.87 (0.82,
0.93)

13.71 16.36 77.78 9/13 weeks Sommer, (1974)
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bq¼ argmax
Xn
t¼1

½ytlogðf ðt; qÞÞ� f ðt; qÞ�
We again employ the fmincon function in Matlab. We compare parameter estimation results of fitting the GGM to real
outbreak data across LSQ and MLE methods.

2.3. Performance

The residual shows the deviation of the model fit from the data and assesses the performance of model fit (Kuhn &
Johnson, 2013). One widely used metric is root mean squared error (RMSE), which is calculated as follows (where T is the
number of data points):

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
=T

XT
t¼1

½yt � f ðt; qÞ�2
vuut
To account for individual weights of the data points, we use the Anscombe residual, which is as follows (McCullagh &
Nelder, 2013):

ANSCOMBE RESIDUAL¼ 3 =2

�
yt2=3 � f ðt; qÞ2

=

3

��
f ðt; qÞ1

=

6

0 12
ANSCOMBE¼
XT
t¼1

B@3 =2

�
yt2=3 � f ðt; qÞ2

=

3

��
f ðt; qÞ1

=

6
CA
For each outbreak, the root mean squared error (RMSE) and Anscombe residual are calculated for both LSQ and MLE to
compare the performance of the best-fit model for each method. Further, prediction interval coverage is calculated as the
percentage of data points containedwithin the 95% prediction interval, where the prediction intervals provide information on
the uncertainty of the estimates for a future value.
10



Fig. 1. Parameter error bars. For each outbreak, the graphs show the mean and 95% confidential interval of r and p estimates from LSQ and MLE methods. Left
graph is for r parameter and right one is for p parameter. The blue color represents LSQ and the red color represents MLE.
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3. Results

Parameter estimates and their uncertainty (95% CIs) for each of the 31 outbreaks using two different estimation methods,
LSQ andMLE, are displayed in Fig. 1. In terms of performancemetrics, we find very similar results between the two estimation
methods for most outbreaks; however, below we report a few differences and their possible causes (Tables 1 and 2). Figures
with model fits and prediction intervals, Anscombe residuals, and empirical distributions of parameters for both estimation
methods are included in the appendices for each outbreak (Appendices. Figures. S1-1 & S1-2).

Estimates of the scaling of growth parameter, p, are very similar across outbreaks (Tables 1 and 2; Fig. 1). Results show high
correlation between the mean estimates of the parameters derived from each estimation method (Table 3). Specifically, 29
outbreaks show similar mean estimates with overlapping confidence intervals for estimates derived using LSQ and MLE
(Fig. 1). However, for two outbreaks, Ebola in Montserrado (2014) and Measles in London (1948), the 95% CIs for the p
parameter do not overlap (Fig. 1). For Ebola in Montserrado (2014), the estimation is likely restricted by the upper estimation
bound of 1, especially for LSQ, as the 95% CI interval is (0.9, 1.0) with a skewed distribution favoring the upper bound of 1
(Appendices. Figure S 1-1, s-1); thus, a wider range for p may improve model fit for this outbreak.

In terms of the RMSE, both estimation methods yield similar model-fit performance. About half of the outbreaks have
better fit with LSQ, while the remainder have better fit with MLE (e.g. lower RMSE values; Tables 1 and 2); however, the
differences are relatively small. The highest RMSE difference of 5.75 is obtained for Ebola in Tonkolili (2014), with a short
ascending phase consisting of 5 data points (RMSELSQ ¼ 3.63, RMSEMLE ¼ 9.38). For the three outbreaks with the greatest
difference in RMSE, RMSE results are higher for MLE compared to LSQ, including Ebola in Tonkolili (2014) with 5 data points,
Ebola in Montserrado (2014) and pandemic influenza in San Francisco (1918) (Tables 1 and 2). This indicates that when the
methods differ in goodness of fit, LSQ performs better in terms of RMSE.

Anscombe residuals also yield similar results between LSQ and MLE (Tables 1 and 2). The outbreak with the highest
difference in Anscombe residuals is Ebola in Montserrado (2014), with AnscombeLSQ ¼ 46.93 and AnscombeMLE ¼ 29.42
(Tables 1 and 2). The second highest difference in Anscombe residuals is measles in London (1948), with
Table 3
Log correlation coefficient. This table shows that log correlation coefficient for the r and
p parameters, Anscombe residual, and prediction interval coverage between LSQ and
MLE methods.

Variable Log correlation coefficient (p-value)

r parameter 0.98 (<0.05)
p parameter 0.98 (<0.05)
Anscombe residual 0.99 (<0.05)
95% PI coverage 0.92 (<0.05)
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Fig. 2. Boxplot between LSQ and MLE for p parameter, RMSE, Anscombe, and 95% prediction interval (PI) coverage.
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AnscombeLSQ¼ 135.84 and AnscombeMLE¼ 118.57 (Tables 1 and 2). These differences show thatMLE performs better in terms
of Anscombe when the methods deviate in performance, which is not surprising as the Anscombe is defined assuming a
Poisson error structure, which underlines the MLE method that we employ here. A total of 20 outbreaks have Anscombe
values that differ by less than 1.0 between the estimation methods, indicating comparable performance (Tables 1 and 2;
Fig. 2). Across outbreaks, the log correlation of the Anscombe residuals show very high correlation between LSQ and MLE
(0.99, p < 0.05; Fig. 2; Table 3). The log correlation shows how close the results are between LSQ and MLE.

We also assess the uncertainty of the model fit using the coverage of the 95% prediction interval associated with each
estimation method. The 95% PI coverage is greater than 80% for 21 out of 31 outbreaks with LSQ and 20 outbreaks with MLE
(Tables 1 and 2). 9 of the 10 outbreaks with PI coverage lower than 80% have consistent coverage comparing LSQ and MLE
(Tables 1 and 2), aside from smallpox in Bangladesh (1972), which has PI coverage of 77.78% using MLE and 88.89% using LSQ
(Tables 1 and 2).

A total of 21 outbreaks have the same coverage results for LSQ and MLE. For the 10 outbreaks with different coverage
across methods, 7 have higher coverage with MLE than LSQ. The highest difference in coverage is obtained for pandemic
influenza in San Francisco (1918) with 19 data points: 57.89%with LSQ and 78.95%withMLE (Tables 1 and 2). Between the two
methods, we observeMLE tends to yield higher coverage than LSQ overall, but it is not a large difference. Further, there is high
log correlation between results of the two methods (0.91, p < 0.05; Table 3).

4. Discussion

Results for LSQ with parametric Poisson-bootstrap and Poisson-MLE indicate that both parameter estimation methods
perform comparably for fitting the GGM to various outbreaks in terms of parameter estimates, RMSE, Anscombe residual and
95% PI coverage. For outbreaks that deviate in performance metrics, LSQ performs better with respect to RMSE, and MLE
performs better with respect to Anscombe, which is expected given the optimization of the respective estimation methods.

We use three different calibration phase lengths for four of the outbreaks, including Zika in Antioquia, Colombia (2015),
Ebola in Tonkolili, Sierra Leone (2014), Ebola in Margibi, Liberia (2014), and pandemic influenza in San Francisco, US (1918).
The results indicate that the number of data points in the calibration phase do not significantly affect the parameter esti-
mation results for the GGM when the length of the ascending phase is increased by a few data points (Tables 1 and 2).
However, different results can be expected when the models are unable to provide a good fit to the data, as indicated by the
temporal variation in the residuals. This was the case for the outbreaks of Ebola in Montserrado (2014) andMeasles in London
(1948).

Both estimation methods based on a Poisson error structure yield a high coverage of the 95% prediction intervals. Some
outbreaks, such as Ebola in Margibi (2014) and measles in London (1948), have low coverage, but the coverage is comparably
low for both methods (40% and 50%, respectively). In a previous study (Ganyani et al., 2019), authors analyzed the growth
pattern of 4 outbreaks analyzed here (Zika in Antioquia (2015), Ebola in Tonkolili (2014), Ebola inMargibi (2014) and influenza
in San Francisco (1918)) using MLE to estimate GGM parameters using both a Poisson error structure and a negative binomial
(NB) error structure; parameter estimates were similar to those reported here. Regarding the presence of overdispersion,
12
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their results show that the outbreaks of Ebola (Margibi) and influenza (San Francisco) display substantial variability in
incidence that is better captured using extra-Poisson variation. We argue that this apparent overdispersion could also arise
from systematic deviations of the model ("mean") to the data due to model misspecification (Roosa & Chowell, 2019), which
could influence the predictive power of the model.

Our analysis is not exempt of limitations. Time series case data are prone to errors and sensitive to reporting rates that are
affected by several factors including testing rates. Indeed, some of the outbreaks studied here took place at a time when
diagnostic capacity was limited. Further, becausewe are utilizing real data, we do not know the ground truth of the parameter
estimates and cannot assess bias of estimation results. Another limitation is the validity of the GGM for some outbreaks, like
FMD (Uruguay, 2001) and Measles (London, 1948), as the RMSE and Anscombe results are high and PI coverage percentage is
low. It would useful to further study which virus outbreaks the GGM is suitable for, and what mechanismsmay lead to poorer
model fit.

In conclusion, our results demonstrate that LSQ and MLE produce similar parameter estimation results in the context of
characterizing epidemic growth patterns with the GGM, provided that the model yields a good fit to the data (e.g., residuals
indicate random error rather than systematic deviations of the model to the data).
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