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Clustering is concerned with coherently grouping observations
without any explicit concept of true groupings. Spectral graph
clustering—clustering the vertices of a graph based on their
spectral embedding—is commonly approached via K-means (or,
more generally, Gaussian mixture model) clustering composed
with either Laplacian spectral embedding (LSE) or adjacency spec-
tral embedding (ASE). Recent theoretical results provide deeper
understanding of the problem and solutions and lead us to a
“two-truths” LSE vs. ASE spectral graph clustering phenomenon
convincingly illustrated here via a diffusion MRI connectome
dataset: The different embedding methods yield different cluster-
ing results, with LSE capturing left hemisphere/right hemisphere
affinity structure and ASE capturing gray matter/white matter
core—periphery structure.

spectral embedding | spectral clustering | graph | network | connectome

he purpose of this paper is to cogently present a “two-truths”

phenomenon in spectral graph clustering, to understand this
phenomenon from a theoretical and methodological perspective,
and to demonstrate the phenomenon in a real-data case consist-
ing of multiple graphs each with multiple categorical vertex class
labels.

A graph or network consists of a collection of vertices or
nodes V representing n entities together with edges or links
E representing the observed subset of the (%) possible pair-
wise relationships between these entities. Graph clustering, often
associated with the concept of “community detection,” is con-
cerned with partitioning the vertices into coherent groups or
clusters. By its very nature, such a partitioning must be based
on connectivity patterns.

It is often the case that practitioners cluster the vertices of
a graph—say, via K-means clustering composed with Laplacian
spectral embedding—and pronounce the method as having per-
formed either well or poorly based on whether the resulting
clusters correspond well or poorly with some known or precon-
ceived notion of “correct” clustering. Indeed, such a procedure
may be used to compare two clustering methods and to pro-
nounce that one works better (on the particular data under
consideration). However, clustering is inherently ill-defined, as
there may be multiple meaningful groupings, and two clus-
tering methods that perform differently with respect to one
notion of truth may in fact be identifying inherently differ-
ent, but perhaps complementary, underlying structure. With
respect to graph clustering, ref. 1 shows that there can be no
algorithm that is optimal for all possible community detection
tasks (Fig. 1).

We compare and contrast Laplacian and adjacency spectral
embedding as the first step in spectral graph clustering and
demonstrate that the two methods, and the two resulting cluster-
ings, identify different—but both meaningful—graph structure.
We trust that this simple, clear explication will contribute to
an awareness that connectivity-based structure discovery via
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spectral graph clustering should consider both Laplacian and
adjacency spectral embedding and the development of new
methodologies based on this awareness.

Spectral Graph Clustering

Given a simple graph G=(V, E) on n vertices, consider the
associated n x n adjacency matrix A in which 4; = 0 or 1
encoding whether vertices ¢ and j in V share an edge (4,7) in
E. For our simple undirected, unweighted, loopless case, A is
binary with A;; € {0, 1}, symmetricwith A= A", and hollow with
diag(A)=0.

The first step of spectral graph clustering (2, 3) involves
embedding the graph into Euclidean space via an eigendecompo-
sition. We consider two options: Laplacian spectral embedding
(LSE), wherein we decompose the normalized Laplacian of
the adjacency matrix, and adjacency spectral embedding (ASE)
given by a decomposition of the adjacency matrix itself. With tar-
get dimension d, either spectral embedding method produces
n points in R, denoted by the n x d matrix X. ASE employs
the eigendecomposition to represent the adjacency matrix via
A=USU" and chooses the top d eigenvalues by magnitude
and their associated vectors to embed the graph via the scaled
eigenvectors Uy|Ss|'/2. Similarly, LSE embeds the graph via
the top scaled eigenvectors of the normalized Laplacian £(A) =
D~Y2AD~'/2 where D is the diagonal matrix of vertex degrees.

Significance

Spectral graph clustering—clustering the vertices of a graph
based on their spectral embedding—is of significant current
interest, finding applications throughout the sciences. But as
with clustering in general, what a particular methodology
identifies as “clusters” is defined (explicitly, or, more often,
implicitly) by the clustering algorithm itself. We provide a clear
and concise demonstration of a “two-truths” phenomenon
for spectral graph clustering in which the first step—spectral
embedding—is either Laplacian spectral embedding, wherein
one decomposes the normalized Laplacian of the adjacency
matrix, or adjacency spectral embedding given by a decom-
position of the adjacency matrix itself. The two resulting
clustering methods identify fundamentally different (true and
meaningful) structure.
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Fig. 1. A two-truths graph (connectome) depicting connectivity structure
such that one grouping of the vertices yields affinity structure (e.g., left
hemisphere/right hemisphere) and the other grouping yields core-periphery
structure (e.g., gray matter/white matter). (Top Center) The graph with four
vertex colors. (Top Left and Top Right) LSE groups one way and ASE groups
another way. (Bottom Left) The LSE truth is two densely connected groups,
with sparse interconnectivity between them (affinity structure). (Bottom
Right) The ASE truth is one densely connected group, with sparse inter-
connectivity between it and the other group and sparse interconnectivity
within the other group (core—periphery structure). This paper demonstrates
the two-truths phenomenon illustrated here—that LSE and ASE find funda-
mentally different but equally meaningful network structure—via theory,
simulation, and real data analysis.

In either case, each vertex is mapped to the corresponding row
of X = Ud|Sd‘l/2.

Spectral graph clustering concludes via classical Euclidean clus-
tering of the rows of X. As described below, central limit theo-
rems for spectral embedding of the (sufficiently dense) stochas-
tic block model via either LSE or ASE suggest Gaussian mixture
modeling (GMM) for this clustering step. Thus, we consider
spectral graph clustering to be GMM composed with LSE or ASE:

GMM o {LSE, ASE}.

Stochastic Block Model

The random graph model we use to illustrate our phenomenon
is the stochastic block model (SBM), introduced in ref. 4. This
model is parameterized by (i) a block membership probability
vector @ =[r1,...,mk] " in the unit simplex and (if) a symmet-
ric K x K block connectivity probability matrix B with entries
in [0, 1] governing the probability of an edge between vertices
given their block memberships. Use of the SBM is ubiquitous in
theoretical, methodological, and practical graph investigations,
and SBMs have been shown to be universal approximators for
exchangeable random graphs (5).

For sufficiently dense graphs, both LSE and ASE have a
central limit theorem (6-8) demonstrating that, for large n,
embedding via the top d eigenvectors from a rank d K-block
SBM (d = rank(B) < K) yields n points in ®? behaving approx-
imately as a random sample from a mixture of K Gaussians.
That is, given that the ith vertex belongs to block k, the ith
row of X = U|S4|"/? will be approximately distributed as a
multivariate normal with parameters specific to block k, X; ~
MVN (g, Xg). The structure of the covariance matrices sug-
gests that the GMM is called for, as an appropriate generaliza-
tion of K-means clustering. Therefore, GMM(X) via maximum
likelihood will produce mixture parameter estimates and associ-
ated asymptotically perfect clustering, using either LSE or ASE.
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For finite n, however, LSE and ASE yield different clustering
performance, and neither one dominates the other.

We make significant conceptual use of the positive definite
two-block SBM (K = 2), with

B— Biiy Biz2|_|a b
" |B21 Ba2| |b ¢
which henceforth we abbreviate as B = [a, b; b, ¢]. In this sim-

ple setting, two general/generic cases present themselves: affinity
and core—periphery.

Affinity: a, c > b. An SBM with B = [a, b; b, ¢] is said to exhibit
affinity structure if each of the two blocks has a relatively
high within-block connectivity probability compared with the
between-block connectivity probability.

Core-periphery: a >> b, c. An SBM with B =[a, b; b, ] is said to
exhibit core—periphery structure if one of the two blocks has
a relatively high within-block connectivity probability compared
with both the other block’s within-block connectivity probability
and the between-block connectivity probability.

The relative performance of LSE and ASE for these two cases
provides the foundation for our analyses. Informally, LSE out-
performs ASE for affinity, and ASE is the better choice for
core—periphery. We make this clustering performance assess-
ment analytically precise via Chernoff information, and we
demonstrate this in practice via the adjusted Rand index.

Clustering Performance Assessment

We consider two approaches to assessing the performance of
a given clustering, defined to be a partition of [n]={1,...,n}
into a disjoint union of K partition cells or clusters. For our
purposes—demonstrating a two-truths phenomenon in LSE vs.
ASE spectral graph clustering—we consider the case in which
there is a “true” or meaningful clustering of the vertices against
which we can assess performance, but we emphasize that in
practice such a truth is neither known nor necessarily unique.

Chernoff Information. Comparing and contrasting the relative
performance of LSE vs. ASE via the concept of Chernoff infor-
mation (9, 10), in the context of their respective central limit
theorems (CLTs), provides a limit theorem notion of superior-
ity. Thus, in the SBM, we allude to the GMM provided by the
CLT for either LSE or ASE.

The Chernoff information between two distributions is the
exponential rate at which the decision-theoretic Bayes error
decreases as a function of sample size. In the two-block SBM,
with the true clustering of the vertices given by the block mem-
berships, we are interested in the large-sample optimal error
rate for recovering the underlying block memberships after the
spectral embedding step has been carried out. Thus, we require
the Chernoff information C'(F;, F2) when F1 = MVN (u1,31)
and F> = MVN (u2, X2) are multivariate normals. Letting ¥, =
t¥1 4+ (1—t)X2 and

h(ts Fy By = 0 ) TS o)

2

1 |24

Zlog — =t
HPRIPNT A
we have

pFi.F, = sup h(t; Fi, Fs).
t€(0,1)

This provides both p;, and p4 when using the large-sample GMM
parameters for F1, F> obtained from the LSE and ASE embed-
dings, respectively, for a particular two-block SBM distribution
(defined by its block membership probability vector 7 and block
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Fig. 2. Connectome data generation. (A) The pipeline. (B) Voxels and
regions in tractography map. (C) Voxels and edges. (D) Contraction yields
vertices and edges. The output is diffusion MRI graphs on ~1 million ver-
tices. Spatial vertex contraction yields graphs on ~70,000 vertices from
which we extract largest connected components of ~40,000 vertices with
{Left,Right} and {Gray,White} labels for each vertex. Fig. 1 depicts (a
subsample from) one such graph.

connectivity probability matrix B). We make use of the Cher-
noff ratio p=pa/pr; p > 1 implies ASE is preferred while p <1
implies LSE is preferred. (Recall that as the Chernoff informa-
tion increases, the large-sample optimal error rate decreases.)
Chernoff analysis in the two-block SBM demonstrates that, in
general, LSE is preferred for affinity while ASE is preferred for
core—periphery (7, 11).

Adjusted Rand Index. In practice, we wish to empirically assess
the performance of a particular clustering algorithm on a given
graph. There are numerous cluster assessment criteria avail-
able in the literature: the Rand index (RI) (12), normalized
mutual information (NMI) (13), variation of information (VI)
(14), Jaccard (15), etc. These are typically used to compare
either an empirical clustering against a “truth” or two separate
empirical clusterings. For concreteness, we consider the well-
known adjusted Rand index (ARI), popular in machine learning,
which normalizes the RI so that expected chance performance
is zero: The ARI is the adjusted-for-chance probability that two
partitions of a collection of data points will agree for a ran-
domly chosen pair of data points, putting the pair into the same
partition cell in both clusterings or splitting the pair into differ-
ent cells in both clusterings. (Our empirical connectome results
are essentially unchanged when using other cluster assessment
criteria.)

In the context of spectral clustering via GMM o {LSE, ASE},
we consider Crsr and Cusg to be the two clusterings of the vertices
of a given graph. Then ARI(Crsk, Cask) assesses their agreement:
ARI(Cpsg, C4se) =1 implies that the two clusterings are identi-
cal; ARI(Crse, Case) ~ 0 implies that the two spectral embed-
ding methods are “operationally orthogonal.” (Significance is
assessed via permutation testing.)

In the context of two truths, we consider C; and Cs to be two
known true or meaningful clusterings of the vertices. Then, with
Csk being either Crsg or Cuse, ARI(CSE,C1) > ARI(CSE,CQ)
implies that the spectral embedding method under consideration
is more adept at discovering truth C; than truth C2. Analogous to
the theoretical Chernoff analysis, ARI simulation studies in the
two-block SBM demonstrate that, in general, LSE is preferred
for affinity while ASE is preferred for core—periphery.

Model Selection x 2

To perform the spectral graph clustering GMM o {LSE, ASE}
in practice, we must address two inherent model selection prob-

Priebe et al.

lems: We must choose the embedding dimension (E) and the
number of clusters (K).

SBM vs. Network Histogram. If the SBM were actually true, then
as n — oo any reasonable procedure for estimating the singular
value decomposition (SVD) rank would yield a consistent esti-

mator d — d and any reasonable procedure for estimating the

number of clusters would yield a consistent estimator K—K.
Critically, the universal approximation result of ref. 5 shows that
SBMs provide a principled “network histogram” model even
without the assumption that the SBM with some fixed (d, K)
actually holds. Thus, practical model selection for spectral graph

clustering is concerned with choosing (d, K) to provide a useful
approximation.

The bias-variance tradeoff demonstrates that any quest for a
universally optimal methodology for choosing the “best” dimen-
sion and number of clusters, in general, for finite n, is a losing
proposition. Even for a low-rank model, subsequent inference
may be optimized by choosing a dimension smaller than the true
signal dimension, and even for a mixture of K Gaussians, infer-
ence performance may be optimized by choosing a number of
clusters smaller than the true cluster complexity. In the case of
semiparametric SBM fitting, wherein low-rank and finite mix-
tures are used as a practical modeling convenience as opposed
to a believed true model, and one presumes that both d and
K will tend to infinity as n — oo, these bias—variance tradeoff
considerations are exacerbated.

For d and K below, we make principled methodological
choices for simplicity and concreteness, but make no claim that
these are best in general or even for the connectome data con-
sidered herein. Nevertheless, one must choose an embedding
dimension and a mixture complexity, and thus we proceed.

Choosing the Embedding Dimension d. A ubiquitous and prin-
cipled general methodology for choosing the number of

RwW-  0.009

LG LW RG RW

Fig. 3. Block connectivity probability matrix for the {LG,LW,RGRW} a
priori projection of the composite connectome onto the four-block SBM.
The two two-block projections ({Left, Right} and {Gray, White}) are shown
in Fig. 4. This synthetic SBM exhibits the two-truths phenomenon both
theoretically (via Chernoff analysis) and in simulation (via Monte Carlo).
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Fig. 4. Block connectivity probability matrices for the a priori projection of
the composite connectome onto the two-block SBM for (Left) {Left, Right}
and (Right) {Gray, White}. {Left, Right} exhibits affinity structure, with
Chernoff ratio <1; {Gray, White} exhibits core—periphery structure, with
Chernoff ratio >1.

dimensions in eigendecompositions and SVDs (e.g., principal
components analysis, factor analysis, spectral embedding, etc.)
is to examine the so-called scree plot and look for “elbows”
defining the cutoff between the top (signal) dimensions and
the noise dimensions. There are a plethora of variations for
automating this singular value thresholding (SVT); section 2.8 of
ref. 16 provides a comprehensive discussion in the context of
principal components, and ref. 17 provides a theoretically justi-
fied (but perhaps practically suspect, for small n) universal SVT.
We consider the profile-likelihood SVT method of ref. 18. Given
A=USUT (for either LSE or ASE) the singular values S are
used to choose the embedding dimension d via

~

d=arg max ProfileLikelihoods(d),

where ProfileLikelihoods(d) provides a definition for the magni-
tude of the “gap” after the first d singular values.

Choosing the Number of Clusters K. Choosing the number of clus-
ters in Gaussian mixture models is most often addressed by
maximizing a fitness criterion penalized by model complexity.
Common approaches include the Akaike information criterion
(AIC) (19), the Bayesian information criterion (BIC) (20), mini-
mum description length (MDL) (21), etc. We consider penalized
likelihood via the BIC (22). Given n points in R represented
by X = U,|S4|"/? (obtained via either LSE or ASE) and let-
ting 6 represent the GMM parameter vector whose dimension
dim(0x) is a function of the data dimension d, the mixture

complexity K is chosen via

K= arg max PenalizedLikelihoodx (§K ),

where PenalizedLikelihoodx (fx) is twice the log-likelihood of
the data X evaluated at the GMM with mixture parameter esti-

mate Ok penalized by dim (0 ) - In n. For spectral clustering, we

use the BIC for K after spectral embedding, so X € R4 with d
chosen as above.

Connectome Data

We consider for illustration a diffusion MRI dataset consist-
ing of 114 connectomes (57 subjects, two scans each) with
72,783 vertices each and both left/right/other hemispheric and
gray/white/other tissue attributes for each vertex. Graphs were
estimated using the NeuroData’s MR Graphs pipeline (23), with
vertices representing subregions defined via spatial proximity
and edges defined by tensor-based fiber streamlines connecting
these regions (Fig. 2).
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The actual graphs we consider are the largest connected com-
ponent (LCC) of the induced subgraph on the vertices labeled
as both left or right and gray or white. This yields m =114
connected graphs on n ~ 40, 000 vertices. Additionally, for each
graph every vertex has a {Left,Right} label and a {Gray,White}
label, which we sometimes find convenient to consider as a single
label in {LG,LW,RG,RW}.

Sparsity. The only notions of sparsity relevant here are linear
algebraic: whether there are enough edges in the graph to sup-
port spectral embedding and whether there are few enough to
allow for sparse matrix computations. We have a collection of
observed connectomes and we want to cluster the vertices in
these graphs, as opposed to in an unobserved sequence with the
number of vertices tending to infinity. Our connectomes have,
on average, n = 40, 000 vertices and e ~ 2, 000, 000 edges, for an
average degree 2e/n ~ 100 and a graph density e/ (%) ~0.0025.

Synthetic Analysis. We consider a synthetic data analysis via a pri-
ori projections onto the SBM—block model estimates based on
known or assumed block memberships. Averaging the collection
of m =114 connectomes yields the composite (weighted) graph
adjacency matrix A. The {LG,LW,RG,RW} projection of the
binarized A onto the four-block SBM yields the block connectiv-
ity probability matrix B presented in Fig. 3 and the block mem-
bership probability vector 7 =[0.28,0.22,0.28,0.22]". Limit
theory demonstrates that spectral graph clustering using d =
K =4 will, for large n, correctly identify block memberships

1.00-
0.75-
>0.50-
0.25-
0.00-
0.00 0.25 0.50 0.75 1.00
X
Fig. 5. For each of our 114 connectomes, we plot the a priori two-block

SBM projections for {Left, Right} in red and {Gray, White} in blue. The
coordinates are given by x = min(a, ¢)/ max(a, ¢) and y = b/ max(a, c), where
B=a, b; b, c] is the observed block connectivity probability matrix. The thin
black curve y = v/x represents the rank 1 submodel separating positive defi-
nite (lower right) from indefinite (upper left). The background color shading
is Chernoff ratio p, and the thick black curves are p=1 separating the
region where ASE is preferred (between the curves) from where LSE is pre-
ferred. The point (1, 1) represents Erdés-Rényi (a = b =c). The large stars
are from the a priori composite connectome projections (Fig. 4). We see
that the red {Left, Right} projections are in the affinity region where p < 1
and LSE is preferred while the blue {Gray, White} projections are in the
core—periphery region where p > 1 and ASE is preferred. This analytical find-
ing based on projections onto the SBM carries over to empirical spectral
clustering results on the individual connectomes (Fig. 7).

Priebe et al.
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Fig. 6. Results of the (d, K) model selection for spectral graph clustering
for each of our 114 connectomes. For LSE we see d € {30,...,60} and K €

{2,...,20}; for ASE we see 36 {2,..., 20} and Ke {10,..., 50}. The color
coding represents clustering performance in terms of ARI for each of LSE
and ASE against each of the two truths {Left, Right} and {Gray, White} and
shows that LSE clustering identifies {Left, Right} better than {Gray, White}
and ASE identifies {Gray, White} better than {Left, Right}. Our two-truths
phenomenon is conclusively demonstrated: LSE finds {Left, Right} (affinity)
while ASE finds {Gray, White} (core-periphery).

for this four-block case when using either LSE or ASE. Our
interest is to compare and contrast the two spectral embedding
methods for clustering into two clusters. We demonstrate that
this synthetic case exhibits the two-truths phenomenon both
theoretically and in simulation—the {LG,LW,RG,RW} a pri-
ori projection of our composite connectome yields a four-block
two-truths SBM.

Two-Block Projections. A priori projections onto the two-block
SBM for {Left,Right} and {Gray,White} yield the two-block
connectivity probability matrices shown in Fig. 4. It is appar-
ent that the {Left,Right} a priori block connectivity probability
matrix B = [a, b; b, c] represents an affinity SBM with a =~ ¢>> b
and the {Gray,White} a priori projection yields a core—periphery
SBM with ¢ > a =~ b. It remains to investigate the extent to which
the Chernoff analysis from the two-block setting (LSE is pre-
ferred for affinity while ASE is preferred for core—periphery)
extends to such a four-block two-truths case; we do so theo-
retically and in simulation using this synthetic model derived
from the {LG,LW,RG,RW} a priori projection of our compos-
ite connectome in Theoretical Results and Simulation Results and
then empirically on the original connectomes in Connectome
Results.

Theoretical Results. Analysis using the large-sample Gaussian
mixture model approximations from the LSE and ASE CLTs
shows that the 2D embedding of the four-block model, when
clustered into two clusters, will yield { {LG,LW}, {RG,RW} }
(i.e., {Left, Right}) when embedding via LSE and { {LG,RG},
{LW,RW} } (i.e., {Gray, White}) when using ASE. That is,
using numerical integration for the d = K =2 GMM o LSE, the
largest Kullback-Leibler divergence (as a surrogate for Chernoff
information) among the 10 possible ways of grouping the four
Gaussians into two clusters is for the { {LG,LW}, {RG,RW} }
grouping, and the largest of these values for the GMM o ASE is
for the { {LG,RG}, {LW,RW} } grouping.

Priebe et al.

Simulation Results. We augment the Chernoff limit theory via
Monte Carlo simulation, sampling graphs from the four-block
model and running the GMM o {LSE, ASE} algorithm specify-

ing d = K = 2. This results in LSE finding {Left, Right} (ARI >
0.95) with probability >0.95 and ASE finding {Gray, White}
(ARI > 0.95) with probability >0.95.

Connectome Results. Figs. 5-7 present empirical results for the
connectome dataset, m =114 graphs each on n~ 40,000 ver-
tices. We note that these connectomes are most assuredly not
four-block two-truths SBMs of the kind presented in Figs. 3 and
4, but they do have two truths ({Left, Right} and {Gray, White})
and, as we shall see, they do exhibit a real-data version of the
synthetic results presented above, in the spirit of semiparametric
SBM fitting.

First, in Fig. 5, we consider a priori projections of the indi-
vidual connectomes, analogous to the Fig. 4 projections of the
composite connectome. Letting B =[a, b; b, ] be the observed
block connectivity probability matrix for the a priori two-block
SBM projection ({Left, Right} or { Gray, White}) of a given indi-
vidual connectome, the coordinates in Fig. 5 are given by z =
min(a, ¢)/ max(a, c) and y = b/ max(a, c). Each graph yields
two points, one for each of {Left, Right} and {Gray, White}.
We see that the {Left, Right} projections are in the affinity
region (large z and small y imply a~ ¢ > b, where Chernoff
ratio p < 1 and LSE is preferred) while the {Gray, White} pro-
jections are in the core—periphery region [small z and small
y imply max(a, ¢) > b~min(a,c), where p>1 and ASE is
preferred]. This exploratory data analysis finding indicates com-
plex two-truths structure in our connectome dataset. [Of inde-
pendent interest, we propose Fig. 5 as the representative for
an illustrative two-truths exploratory data analysis (EDA) plot

et b

0.05-

ARI(ASE,GW)

-0.05 0.00 0.05 0.10 0.15
ARI(LSE,LR) - ARI(LSE,GW)

Fig. 7. Spectral graph clustering assessment via ARI. For each of our 114
connectomes, we plot the difference in ARI for the {Left, Right} truth
against the difference in ARI for the {Gray, White} truth for the cluster-
ings produced by each of LSE and ASE: x = ARI(LSE,LR) — ARI(LSE,GW) vs.
¥ = ARI(ASE,LR) — ARI(ASE,GW). A point in the (4, —) quadrant indicates that
for that connectome the LSE clustering identified {Left, Right} better than
{Gray, White} and ASE identified {Gray, White} better than {Left, Right}.
Marginal histograms are provided. Our two-truths phenomenon is con-
clusively demonstrated: LSE identifies {Left, Right} (affinity) while ASE
identifies {Gray, White} (core-periphery).
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for a dataset of m graphs with multiple categorical vertex
labels.]

In Figs. 6 and 7 we present the results of m =114 runs of the
spectral clustering algorithm GMM o {ALSE, ASE}. We consider
each of LSE and ASE, choosing d and K as described above. The
resulting empirical clusterings are evaluated via the ARI against
each of the {Left, Right} and {Gray, White} truths. In Fig. 6 we

present the results of the (dA, K ) model selection, and we observe
that ASE is choosing d € {2,...,20} and LSE is choosing d €
{30,...,60}, while ASE is choosing K € {10, ...,50} and LSE is
choosing K € {2, ...,20}. In Fig. 7, each graph is represented by
a single point, plotting z = ARI(LSE,LR) — ARI(LSE,GW) vs.
y = ARI(ASE,LR) - ARI(ASE,GW), where “LSE” (resp.
“ASE”) represents the empirical clustering Cyse (resp. Case) and
“LR” (resp. “GW?”) represents the true clustering C {Left,Right}

resp. C : . We see that almost all of the points
(resp {Gray,White } p

lie in the (+4,—) quadrant, indicating ARI(LSE,LR) >
ARI(LSE,GW) and ARI(ASE,LR) < ARI(ASE,GW). That is,
LSE finds the affinity {Left, Right} structure and ASE finds the
core—periphery {Gray, White} structure. The two-truths struc-
ture in our connectome dataset illustrated in Fig. 5 leads to fun-
damentally different but equally meaningful LSE vs. ASE spec-
tral clustering performance. This is our two-truths phenomenon
in spectral graph clustering.
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