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Abstract

Newly manufactured electronic devices are subject to different levels of potential defects

existing among the initial parameter information of the devices. In this study, a characteriza-

tion of electromagnetic relays that were operated at their optimal performance with appropri-

ate and steady parameter values was performed to estimate the levels of their potential

defects and to develop a lifetime prediction model. First, the initial parameter information

value and stability were quantified to measure the performance of the electronics. In particu-

lar, the values of the initial parameter information were estimated using the probability-

weighted average method, whereas the stability of the parameter information was deter-

mined by using the difference between the extrema and end points of the fitting curves for

the initial parameter information. Second, a lifetime prediction model for small-sized sam-

ples was proposed on the basis of both measures. Finally, a model for the relationship of the

initial contact resistance and stability over the lifetime of the sampled electromagnetic relays

was proposed and verified. A comparison of the actual and predicted lifetimes of the relays

revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be pre-

dicted based on their initial parameter information.

1. Introduction

The lifetime of an electronic device is generally estimated by conducting a whole lifetime test

on a batch of device samples to calculate the statistical reliability of these samples. However,

the service life of the device cannot be estimated with this method. Lifetime prediction can

contribute toward improving the operational reliability and system reliability of electronics.

Several studies have been conducted to investigate two forms of product lifetime prediction

[1–4]: model-based prediction and data-based prediction.

Lifetime prediction models can be divided into classical and online prediction models. A

classical prediction model is an offline prediction model based on the generalization of the

results of multiple tests [5–7]. For example, Fontana established a mathematical model to

determine the relationship between the lifetime and operating parameters (load current, ambi-

ent temperature and operating frequency) of a relay by using these parameters as predictor
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variables and assuming the lifetime of the relay to follow the Weibull Distribution [8]. The

Center for Advanced Life Cycle Engineering at the University of Maryland proposed life con-

sumption monitoring (LCM) and, based on its analyses of the failure mechanisms [9] and

modes [10] of electronics, established a model to analyze the fretting wear of the devices under

various stress conditions of temperature, humidity, vibration, voltage, and current [11], and

integrated data obtained from these different stress conditions with a model to identify the

health states of the devices that predicted their residual lifetime [12, 13]. Online prediction

models use mathematical theories to monitor the degradation of predictor variables in real-

time and perform modeling [14–16]. Lu et al. applied LCM to measure the damage to electron-

ics operating under various stress conditions and propose an optimized autoregressive model

for lifetime prediction that accounted for the degradation of the devices and the effects of

abrupt stress changes on prediction; however, the authors yielded inaccurate results at the

early stage of prediction [17]. Based on the measurability of the super-path time and pick-up

time of relays, Zhai et al. developed a time-series mathematical model that used both variables

to predict the lifetime of electronics [18]. This model-based prediction method examines the

physical characteristics of electrical systems to illustrate the nature of the systems and enable

the real-time prediction of their lifetime. However, it fails to establish accurate mathematical

models for complex dynamical systems and, when applied for engineering purposes, can only

handle systems with accurate mathematical models.

Contrary to the aforementioned, data-based prediction methods have higher adaptability

and operability and are extensively applied in studies on product lifetime prediction across the

world [19–21]. However, because of their limited capability, existing data-based prediction

methods predict electronics lifetimes largely based on the static contact resistance [22, 23]. For

example, Yao et al. examined the time-varying pattern of contact resistance to classify the clos-

ing of contact points into steady, erratic, and upward states and determine the stability of these

points [24]. The authors used contact resistance as a predictive parameter to develop an inte-

grated prediction model for these different closed states of contact points, which successfully

predicted the steady and upward changes in contact resistance on a short-term basis. Caesar-

endra et al. collected the real-trending data of low-methane compressors and used a state–

space model and particle filtering to predict the operational degradation of the compressors,

thereby validating a prognosis algorithm of particle filtering that they proposed for application

in real dynamic systems [25]. Jin et al. utilized historical degradation data to perform degrada-

tion modeling [26]. They applied a particle filter-based state and static parameter joint estima-

tion method to obtain an iteratively updating posterior degradation model [27] and predict

the degradation state of individual batteries [28] in spacecrafts. Lin and Zhang established the

relationships of furfural concentration and carbon and carbon dioxide volumes in an oil-

immersed power transformer with the reliability, aging degree, and remaining lifetime range

of its solid insulating materials to develop a back-propagation (BP) neural network that pre-

dicted the residual lifetime of the device [29]. The aforementioned studies, which examined

the performance parameters of electronics over their lifetimes, used estimation methods to

establish models explaining the relationship between the lifetime and the degradation of the

parameters [30–32]. However, some of these parameters, when in application, may yield highly

uncertain and incomplete data, which can add considerable difficulty to lifetime prediction.

The service life of electronic devices that are difficult to monitor constantly in real-time can

be estimated only on the basis of their early performance parameter values, rather than data on

their lifetime or performance degradation. These parameter values are referred to as initial

parameter information, which is obtained before an electronic device is used or after it has

begun its first-time operation for a set time. However, the potential defects of the device may

exist in the initial parameter information and affect its lifetime to some extent. Initial
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parameter information that contains such defects can be identified and the values and stability

of the parameters be quantitatively analyzed to model the relationship of parameter value and

stability with lifetime, thereby providing a new approach to predict the lifetime of the device.

2. Characterization of initial parameter information

The operation of an electronic device is affected by multiple factors. Its parameters therefore

exhibit some degree of uncertainty and dispersion and cannot accurately indicate its perfor-

mance. Thus, this study defined the performance parameters of an electronic device that were

obtained in its first-time operation for a set time as the initial parameter information of its

performance.

Some electronics perform at their best with appropriate parameter values and low parame-

ter stability. Thus, the performance of an electronic device, which reflects the levels of its

potential defects, can be determined by the initial parameter information values and stability

of its samples. An electronic device with samples for which initial parameter information val-

ues are closer to their optimal levels and have lower stability has lower levels of potential

defects and a longer lifetime. Fig 1 depicts the relationship between initial parameter informa-

tion value and stability.

In Fig 1, the dotted line 0 is the optimal level of a performance parameter; the solid lines 1

and 2 indicate almost the same parameter values but different levels of parameter stability, and

line 1 is more stable than line 2. The solid lines 1 and 3 indicate almost the same levels of

parameter stability but different parameter values, line 3 indicates exceeding the optimal level

of a performance parameter, while the line 1 indicates not reach the optimal level of a perfor-

mance parameter. Although they all deviate from the best running state, but the impact of

Fig 1. Diagram of the values of performance parameter and their stability.

doi:10.1371/journal.pone.0167429.g001
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actual operation are not same. The solid lines 2 and 3 indicate different parameter values and

different levels of parameter stability. The performance of an electronic device depends on the

distances of its performance parameters from their optimal levels and on the stability of these

parameters.

2.1 Values of the initial parameter information

The initial parameter information constitutes a time series of performance parameters

obtained from a newly manufactured electronic device that was operated for a set time. The

performance parameters of the device were characterized by set degrees of randomness and

uncertainty because of multiple factors affecting its operation.

To reduce the effects of randomness and uncertainty on parameter values, the weighted

arithmetic mean was used to calculate the means of the initial parameter information of

the samples, and the mean values were defined as the indicators of the parameters. The

weight of each sample was defined by the relative probability density (PD) of its parame-

ters, which was derived by estimating the probability density functions (PDFs) for these

parameters. A high PD value indicates the high occurrence of an individual point and a

high weight value.

2.1.1 Estimation of probability density function. PD values derived using the rule-of-

thumb estimation of density vary according to the partitioning of intervals by the method.

Thus, kernel density estimation (KDE) was alternatively applied to estimate the PDFs for the

initial parameter information [21].

That X = {x1,x2,� � �,xn} is the sample set, n is the number of samples, xi is the i–th sample,

xi = {xi1,xi2,� � �,xim} is the set of the initial parameter information of the i–th sample, and m is

the number of the initial parameter information of the i–th sample was supposed. Thus, the

PDF for the initial parameter information of the i–th sample was defined as fi(x), and the KDE

value f̂ iðxÞ for fi(x) at the random point x as

f̂ iðxÞ¼mh

Xm

j¼1

Kð
x � xij

h
Þ ð1Þ

Where h is the window width or bandwidth and K is a kernel function. And K was chosen

as the Gaussian kernel function, and s was the sample standard deviation with the optimal win-

dow width of h = 1.06sn−0.2.

Fig 2 presents a PDF curve for the initial parameter information (contact resistance) of a

sample relay, with the number of operations denoted by the x-axis and contact resistance

by the y-axis. In this figure, “●” represents the level of contact resistance for the first 200

operations of the relay, and the PDF curve for the contact resistance was plotted through

KDE.

2.1.2 Weighted average probability of the initial parameter information. The weights

and means of the initial parameter information for the i–th sample were derived using its PDF,

as expressed by (2):

wðjÞ ¼ fiðxijÞ=
Xm

j¼1

fiðxijÞ

x ¼
Xm

j¼1

xij � wiðjÞ
ð2Þ

8
>>>><

>>>>:

Where i = 1,2,� � �,n, wi(j) is the weight of the j–th initial parameter information xij of the

i–th sample, and xi is the mean of the initial parameter information of the i–th sample.
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2.2 Stability of the initial parameter information

To measure the stability of the initial parameter information, a least-squares polynomial fit

[22] was performed with the raw data points of the parameters, and yielded a smooth fitting

curve. This fitting curve, which showed the overall changes in the parameters, had multiple

parameter values in the neighborhood of the extrema. Accordingly, the differences of the

extrema and these adjacent parameters between them reflected the levels of the stability of the

parameters.

2.2.1 Deriving the extrema and end points. That ti = {ti1,ti2,� � �,tim} was the set of mea-

surement time periods for the set of the initial parameter information of the i–th sample xi =

{xi1,xi2,� � �,xim} was supposed. Thus, the set of discrete data points for these parameters was

expressed by {(tij,xij), j = 1,2,� � �,m}.

When the sum of the square error between the polynomial function value x̂ðtijÞ at the point

tij(j = 1,2,� � �,m) and the original value xij was at its minimum, a k-polynomial function was

used to fit the discrete data point set for the initial parameter information of the i–th sample

and a k-polynomial function is derived, as expressed by (3):

x̂ iðtÞ ¼ ai0 þ ai1t þ ai2t2 þ � � � þ aiktk; ðk < mÞ ð3Þ

Thus, the curve expressed by this polynomial function denoted the fitting results of the ini-

tial parameter information of the samples. Furthermore, the curve-fitting function was

Fig 2. Diagram of initial parameter information’s probability density.

doi:10.1371/journal.pone.0167429.g002
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estimated to enable its derivative to satisfy (4):

dx̂iðtÞ=dt ¼ 0 ð4Þ

The solutions of (4) were the x-axes of the extrema. The number of the solutions was (k−1).

The solutions were arranged in value from the smallest to the largest: ti1
�; ti2

�; � � � ; t �iðk� 1Þ. Their

corresponding extrema on the fitting curve were arranged as x̂ iðt �i1Þ; x̂ iðt �i2Þ; � � � ; x̂ iðt �iðk� 1ÞÞ. The

function values x̂ iðaÞ and x̂ iðbÞ of the fitting function x̂ iðtÞ respectively denotes the values of

the interval endpoints a and b for the number of operations.

2.2.2 Representation of parameter stability. That yi ¼ fx̂ iðaÞ; x̂ iðt �i1Þ; x̂ iðt �i2Þ; � � � ;
x̂ iðt �iðk� 1ÞÞ; x̂ iðbÞg is the set of all extrema and end points for the initial parameter information

of the fitting curve for the i–th sample, and the number of elements for the set yi is k + 1. Thus,

yi(j) was defined as the j–th element of the set yi. Hence, the difference between elements adja-

cent to the set yi was estimated using (5):

DyiðjÞ ¼ jyiðjþ 1Þ � yiðjÞjðj ¼ 1; 2; � � � ; kÞ ð5Þ

Where max(yi) is the maximum of all the elements of the set yi and min(yi) is the minimum

of all the elements of the set yi. Hence, the maximum difference between all the extrema and

end points on the y-axis of the fitting curve was estimated using (6):

Dymax ¼ maxðyiÞ � minðyiÞ ð6Þ

In Figs 3 and 4, curves (1), (2), and (3) present different levels of parameter stability. Nota-

bly, In Fig 3, curves (1) and (2) share almost the same total level of stability [namely,

Fig 3. Diagram of performance parameter’s stability(a).

doi:10.1371/journal.pone.0167429.g003

Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices

PLOS ONE | DOI:10.1371/journal.pone.0167429 December 1, 2016 6 / 14



Xk

j¼1

Dy1ðjÞ ¼
Xk

j¼1

Dy2ðjÞ], whereas the values for the maximum difference between the extrema

are not identical (namely, Δymax_1 6¼ Δymax_2). In Fig 4, the values Δymax of curves (2) and (3)

are almost identical, whereas the total levels of stability
Xk

j¼1

DyiðjÞ (i = 2, 3) in both curves are

not same.

In sum, the stability of the initial parameter information was related to not only Δyi(j),

j = 1,2,� � �,k but to Δymax. Thus, the weighted-average adjacent difference and maximum dif-

ference between end points and extrema were defined as the levels of parameter stability;

larger differences were related to higher weight values of these differences. The weight wi(j)
of the j–th difference for the i–th sample and the weight wi(k + 1) of Δymax were estimated

using (7):

wiðjÞ ¼ DyiðjÞ=ð
Xk

j¼1

DyiðjÞ þ DymaxÞ

wiðkþ 1Þ ¼ Dymax=ð
Xk

j¼1

DyiðjÞþDymaxÞ

ð7Þ

8
>>>>><

>>>>>:

Fig 4. Diagram of performance parameter’s stability(b).

doi:10.1371/journal.pone.0167429.g004
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The stability of the initial parameter information for the i–th sample was estimated using

(8):

~yi ¼
Xk

j¼1

wiðjÞ � DyiðjÞ þ ðwiðkþ 1Þ � DymaxÞ ð8Þ

3. Selection of the best wavelet packet basis

Based on their equations, the initial parameter information value was defined as the level of

parameter value and the parameter stability was defined as the level of parameter variation.

However, the orders of magnitude of parameter value and stability might differ from each

other. To facilitate a comprehensive analysis of both indicators and neutralize the influence of

the difference between their orders of magnitude, both indicators were normalized and their

relationship with lifetime was subsequently modeled.

3.1 Normalization

When the performance of an electronic device is measured, parameters that perform better

with higher values are defined as benefit parameters; parameters that perform better with

lower values are defined as cost parameters; and parameters that perform well with moderate

values are defined as moderate parameters. Respectively, I1, I2, and I3 denote the sets of bene-

fit, cost, and moderate parameters.

The equation X = {x1,x2,� � �,xn} was defined as the sample set; n was defined as the number

of samples; X ¼ fx1; x2; � � � ; xng was defined as the set of parameter values in n samples; and

~y ¼ f~y1; ~y2; � � � ; ~yng was defined as the set of parameter stability levels in n samples. Hence,

the normalized parameter value xg(i) of the i–th sample was estimated using (9):

xgðiÞ ¼

ðxc1 � xiÞ=ðxc1 � xminÞ xi 2 I1

ðxi � xc2Þ=ðxmax � xc2Þ xi 2 I2

jxi � xc3j=maxðjxmax � xc3j; jxmin � xc3jÞ xi 2 I3

ð9Þ

8
><

>:

Where i = 1,2,� � �,n and xc1, xc2, xc3 represent the optimal values for I1, I2 and I3, respectively;

and xmax and xmin are the maximum and minimum of the set x
The normalized parameter values yg(i) of the i–th sample were estimated using (10):

ygðiÞ ¼ ðyi � ycÞ=ð~ymax � ycÞ ð10Þ

Where i = 1,2,� � �,n; ~ymax is the maximum of the set ~y; and yc is the reference value of param-

eter stability when the device operated at its highest performance.

When an electronic device operates at its highest performance, the performance parameters

xc1, xc2, and xc3 and the reference value yc should be specified on the basis of its design parame-

ters. Furthermore, after parameter value and stability were normalized using (9) and (10)

respectively to [0, 1], the closer the values of both indicators were to 1, the more poorly the

device performed, whereas the closer these values were to 0, the more efficiently the device

performed.

3.2 Data modeling

The equation xg = {xg(1),xg(2),� � �,xg(n)} was defined as the sample set, xg = {x(1),x(2),� � �,x(n)}

as the set of normalized parameter values in n samples, yg = {yg(1),yg(2),� � �,yg(n)} as the set of

normalized parameter stability levels in n samples, and Tg = {T1,T2,� � �,Tn} as the set of the

actual lifetime periods of n samples.

Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices
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When n is large, artificial intelligence algorithms such as BP neural networks can be used to

model the relationship of xg and yg with lifetime T. Details about modeling algorithms are

referred to in [33]. When n is small, a criterion should be developed and the relationship

between the criterion and lifetime should be established, instead of using artificial intelligence

algorithms. And Fig 5 illustrates the possible distributions of two criteria for the initial parame-

ter information, with xg being the horizontal axis and yg the vertical axis.

In Fig 5, a1,a2 and a3 denote the distributions of normalized parameter means and volatili-

ties of three different samples. The distributions of a1 and a2 on the x-axis are identical, as well

as those of a1 and a3 on the y-axis. This indicates that a1 performed more efficiently than a2

and a3 did but that the performance of a2 and a3 could not be determined. Thus, the criteria of

samples were obtained by estimating the weighted distance between the data points and origin

in the samples, as expressed by (11):

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � x2

bðiÞ þ b � y2
bðiÞ

p
ð11Þ

Where α and β are weighting factors, and α + β = 1. The values of α and β depended on the

ration of xb(i)/yb(i), which was determined by the relative contribution of initial parameter

value and stability to the performance of electronic devices. If the initial parameter informa-

tion value contributed more than initial parameter information stability did to device

Fig 5. Diagram of the values of initial parameter information’s two indicators.

doi:10.1371/journal.pone.0167429.g005
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performance, then α> β. If initial parameter information stability contributed more than ini-

tial parameter information value did to device performance, then α< β. If both equally con-

tributed to device performance, then α = β = 0.5.

Based on the definition of criterion, the function model of criterion and device lifetime is

established, as expressed by (12):

T ¼ f ðdÞ ð12Þ

Where T is device lifetime and d is the criterion of a device.

4. Case analysis

Contact resistance is one of the main performance indicators for electromagnetic relays, and

when it is low and stable, the electronic devices perform optimally. Accordingly, this study

defined the contact resistance for the first 1000 operations of electromagnetic relays as the ini-

tial contact resistance of the relays.

A whole lifetime test was performed on eight samples relays to obtain their individual life-

times. The contact resistance after each closing of the contact point was measured.

The initial contact resistances and parameter stability of the samples were quantified to

model the relationship between these values and the lifetime of the samples:

1. The PDFs for the initial contact resistance of all the samples were derived using KDE, and

(2) was applied to derive the means of the initial contact resistance of the samples.

2. Curve fitting was performed on the initial contact resistance of the samples to derive the

extrema and end points, and (5), (6), and (7) were used to derive parameter stability.

3. The contact resistance of the samples was a cost parameter; thus, xc2 = 0 and yc = 0, and (9)

and (10) were used to derive the normalized parameter values and stability.

4. Because of the limited sample size, a modeling algorithm was employed to establish lifetime

prediction models for the samples. Furthermore, with α = 0.7 and β = 0.3, criteria for the

samples were obtained using (11). Table 1 tabulates the actual lifetime and initial contact

resistance of each sample.

5. The relational function for the criterion d and lifetime T (unit: 10,000 times) for each relay

that were obtained using polynomial fitting was expressed by (13):

T ¼ � 609:4d3 þ 1242:7d2 � 816:9d þ 174:8 ð13Þ

Table 1. Calculation results of samples.

Sample number before normalization after normalization actual lifetime T/time Criterion d

mean/mΩ fluctuation/mΩ mean value fluctuation

1 5.81 1.68 1.00 0.62 18 514 0.90

2 5.78 1.91 0.99 0.70 1 540 0.92

3 5.22 2.72 0.90 1 1 965 0.93

4 5.38 2.11 0.93 0.77 31 150 0.88

5 5.39 2.40 0.93 0.88 12 247 0.91

6 5.16 2.11 0.89 0.77 40 804 0.86

7 5.31 0.75 0.91 0.27 46 018 0.78

8 5.45 1.07 0.94 0.39 44 312 0.81

doi:10.1371/journal.pone.0167429.t001
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Fig 6 shows the fitting curve of the relationship between the criteria and actual lifetimes of

all the samples.

The aforementioned estimation method was subsequently applied to estimate the initial

contact resistance of an additional sample, and its parameter mean and stability before and

after normalization can be seen from Table 2.

A whole lifetime test was conducted on the sample to estimate its actual lifetime, and (13)

was used to derive its predicted lifetime. Comparison of predicted life and actual life can be

seen from Table 3.

5. Conclusion

Initial parameter information indicates potential defects in electronics; higher levels of such

defects suggest shorter lifetimes. This study proposed models for the relationships between the

initial parameter information and lifetimes of several samples of an electronic device when the

levels of benefit, cost, and moderate parameters were appropriate and stable. Parameter value

and stability were quantified for small-sample modeling to model the relationship between the

initial contact resistance and lifetime of several sample relays. The relative error between pre-

diction lifetime obtained by prediction model and actual lifetime obtained by whole lifetime

test is 15.4%. And the findings of this study indicate two conclusions:

Fig 6. The relation between evaluation index and lifetime.

doi:10.1371/journal.pone.0167429.g006

Table 2. Calculation results of a new sample.

before normalization after normalization Evaluating indicator

mean/mΩ fluctuation/mΩ mean fluctuation

new sample 5.38 2.25 0.93 0.82 0.8962

doi:10.1371/journal.pone.0167429.t002
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1. The means of the initial parameter information derived using the probability-weighted

average method denote the values of the parameters, and the difference between the

extrema and end points on the fitting curve of the parameters represents the stability of the

parameters. These quantitative analyses inform the lifetime prediction of electronics based

on their initial parameter information.

2. When the sample size is limited, the relationship between criteria and lifetime that is estab-

lished using the weighted distance method can be modeled to perform lifetime predictions.

The lower the criteria are, the longer the predicted lifetime is.
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