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ABSTRACT A draft genome of 906 scaffolds of 115.8 Mb was assembled for Desmodes-
mus armatus, a diploid, lipid- and storage carbohydrate-accumulating microalga proven
relevant for large-scale, outdoor cultivation, and serves as a model alga platform for
improving photosynthetic efficiency and carbon assimilation for next-generation bio-
energy production.

Microalgae, having higher annual biomass production relative to terrestrial crops
and potential for cultivation in salt water on nonarable lands, are critical future

feedstocks for renewable liquid fuels (1–4). Desmodesmus, taxonomically divergent
from the genus Scenedesmus (5, 6), has been shown to exhibit phenotypic plasticity and
resilience, allowing survival in harsh and variable environments, including brackish and
salt water (7–12), and to possess other beneficial traits for outdoor, large-scale, biofuel-
relevant cultivation, as follows: it thrives in temperatures of 35 to 45°C (13–15), resists
toxins (12) and grazers (16), accumulates microcrystalline guanine and polyphosphate
(17) and lutein as an important coproduct for aquaculture (15), settles rapidly (13), and
has diverse, sporopollenin-containing cell walls (18–20). Desmodesmus achieved areal
harvest yield productivities of 9 to 20 g/m2 day (annual average of 11.4 g/m2 day) over
the course of 2 years in outdoor, large-scale saltwater cultivation (2, 11, 21, 22) and can
accumulate �55% dry cell weight (dcw) lipids (14, 23) or carbohydrates (13), both
important cellular components for biofuels, making it amenable to a fractionation-
based conversion pathway (24–26). Here, we report the draft nuclear and chloroplast
genomes, ploidy, and potential bioenergy-relevant engineering targets of D. armatus.

D. armatus (Fig. 1), originally isolated from Las Cruces, NM, wastewater treatment
ponds in 2012, was grown photoautotrophically in flat-sided bottles in modified
artificial seawater medium (MASM) under constant illumination (4000K LED flat panels,
180 �mol photons/m2), supplemented with 2% CO2. MASM contains the following
(g/liter): NaCl (8), MgSO4·7H2O (2.5), KCl (0.6), NaNO3 (0.85), CaCl2·2H2O (0.3), Tris (1),
KH2PO4 (0.05), NH4Cl (0.03), thiamine-HCl (3.5 mM stock; 1 ml/liter), cyanocobalamin
(10 �g/L stock; 1 ml), and trace element stock (6 ml/liter). Trace element stock was
made up of the following (g/liter): Na2-EDTA (1.0), FeCl3·6H2O (0.2), MnCl2·4H2O (0.072),
ZnCl2 (0.02), Na2MoO4·2H2O (0.013), and CoCl2·6H2O (0.004). Genomic DNA was ex-
tracted from midexponential cells as described (27). PacBio sequence data consisted of
average polymerase reads of 741,936 � 76,024 bp, having a mean insert length of
6,026 � 784 bp and generating a total assembly size of 116.31 Mb in 906 contigs with
an N50 value of 341,806 bp and a GC content of 56.6%, and was determined to be
diploid (28). This compares with the genomes of Tetradesmus obliquus (108.72 Mb; 29)
and Scenedesmus obliquus (207.97 Mb; 30). Sixteen scaffolds (totaling 112,885 bp)
contain chloroplast sequences identified using BLASTN against published chloroplast
genomes for Chlorella vulgaris C-27 (31) and Monoraphidium neglectum (32). Proteins
that may be beneficial for a robust, outdoor, bioenergy-relevant alga were identified.
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The presence of homologs of Chlamydomonas reinhardtii STT7 and LHCSR1/3 and the
dioxygen reductases Flv3 and PTOX confirms the ability for state transition and nonpho-
tochemical quenching processes involved in energy dissipation essential for maintaining
photosynthetic electron transport chain integrity in high or fluctuating irradiances (33) and
may be useful targets for the improvement of photosynthetic efficiency and harvest yields
in open ponds. Polyphosphate kinase was also identified, suggesting polyphosphate
production as an energy or phosphate reserve. In conclusion, the innate robustness and
proven reliability of D. armatus in outdoor mass culture provides a robust yet flexible
chassis for genetic engineering efforts, potentially leading to the commercial use of D.
armatus as a bioenergy-relevant alga.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number VIIQ00000000.
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