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Abstract

Plasmode is a term coined several years ago to describe data sets that are derived from real data but for which some truth is
known. Omic techniques, most especially microarray and genomewide association studies, have catalyzed a new zeitgeist of
data sharing that is making data and data sets publicly available on an unprecedented scale. Coupling such data resources
with a science of plasmode use would allow statistical methodologists to vet proposed techniques empirically (as opposed
to only theoretically) and with data that are by definition realistic and representative. We illustrate the technique of
empirical statistics by consideration of a common task when analyzing high dimensional data: the simultaneous testing of
hundreds or thousands of hypotheses to determine which, if any, show statistical significance warranting follow-on
research. The now-common practice of multiple testing in high dimensional experiment (HDE) settings has generated new
methods for detecting statistically significant results. Although such methods have heretofore been subject to comparative
performance analysis using simulated data, simulating data that realistically reflect data from an actual HDE remains a
challenge. We describe a simulation procedure using actual data from an HDE where some truth regarding parameters of
interest is known. We use the procedure to compare estimates for the proportion of true null hypotheses, the false
discovery rate (FDR), and a local version of FDR obtained from 15 different statistical methods.
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Introduction

‘‘Omic’’ technologies (genomic, proteomic, etc.) have led to

high dimensional experiments (HDEs) that simultaneously test

thousands of hypotheses. Often these omic experiments are

exploratory, and promising discoveries demand follow-up labora-

tory research. Data from such experiments require new ways of

thinking about statistical inference and present new challenges.

For example, in microarray experiments an investigator may test

thousands of genes aiming to produce a list of promising

candidates for differential genetic expression across two or more

treatment conditions. The larger the list, the more likely some

genes will prove to be false discoveries, i.e. genes not actually

affected by the treatment.

Statistical methods often estimate both the proportion of tested

genes that are differentially expressed due to a treatment condition

and the proportion of false discoveries in a list of genes selected for

follow-up research. Because keeping the proportion of false

discoveries small ensures that costly follow-on research will yield

more fruitful results, investigators should use some statistical

method to estimate or control this proportion. However, there is

no consensus on which of the many available methods to use [1].

How should an investigator choose?

Although the performance of some statistical methods for

analyzing HDE data has been evaluated analytically, many

methods are commonly evaluated using computer simulations.

An analytical evaluation (i.e., one using mathematical derivations

to assess the accuracy of estimates) may require either difficult-to-

verify assumptions about a statistical model that generated the

data or a resort to asymptotic properties of a method. Moreover,

for some methods an analytical evaluation may be mathematically

intractable. Although evaluations using computer simulations may

overcome the challenge of intractability, most simulation methods

still rely on the assumptions inherent in the statistical models that

generated the data. Whether these models accurately reflect reality

is an open question, as is how to determine appropriate

parameters for the model, what realistic ‘‘effect sizes’’ to

incorporate in selected tests, as well as if and how to incorporate

correlation structure among the many thousands of observations

per unit [2].
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Plasmode data sets may help overcome the methodological

challenges inherent in generating realistic simulated data sets. Catell

and Jaspers [3] made early use of the term when they defined a

plasmode as ‘‘a set of numerical values fitting a mathematico-

theoretical model. That it fits the model may be known either because

simulated data is produced mathematically to fit the functions, or

because we have a real—usually mechanical—situation which we

know with certainty must produce data of that kind.’’ Mehta et al.

(p. 946) [2] more concisely refer to a plasmode as ‘‘a real data set

whose true structure is known.’’ The plasmodes can accommodate

unknown correlation structures among genes, unknown distributions

of effects among differentially expressed genes, an unknown null

distribution of gene expression data, and other aspects that are

difficult to model using theoretical distributions. Not surprisingly, the

use of plasmode data sets is gaining traction as a technique of

simulating reality-based data from HDEs [4].

A plasmode data set can be constructed by spiking specific

mRNAs into a real microarray data set [5]. Evaluating whether a

particular method correctly detects the spiked mRNAs provides

information about the method’s ability to detect gene expression.

A plasmode data set can also be constructed by using a current

data set as a template for simulating new data sets for which some

truth is known. Although in early microarray experiments, sample

sizes were too small (often only 2 or 3 arrays per treatment

condition) to use as a basis for a population model for simulating

data sets, larger HDE data sets have recently become publicly

available, making their use feasible for simulation experiments.

In this paper, we propose a technique to simulate plasmode data

sets from previously produced data. The source-data experiment

was conducted at the Center for Nutrient–Gene Interaction

(CNGI, www.uab.edu/cngi), at the University of Alabama at

Birmingham. We use a data set from this experiment as a template

for producing a plasmode null data set, and we use the distribution

of effect sizes from the experiment to select expression levels for

differentially expressed genes. The technique is intuitively

appealing, relatively straightforward to implement, and can be

adapted to HDEs in contexts other than microarray experiments.

We illustrate the value of plasmodes by comparing 15 different

statistical methods for estimating quantities of interest in a

microarray experiment, namely the proportion of true nulls

(hereafter denoted p0), the false discovery rate (FDR) [6] and a

local version of FDR (LFDR) [7]. This type of analysis enables us,

for the first time, to compare key omics research tools according to

their performance in data that, by definition, are realistic

exemplars of the types of data biologists will encounter. The

illustrations given here provide some insight into the relative

performance characteristics of the 15 methods in some circum-

stances, but definitive claims regarding uniform superiority of one

method over another would require more extensive evaluations

over multiple types of data sets.

Results

Simulation Design – Producing the Plasmode Data Sets
Steps for plasmode creation that are described herein are

relatively straightforward. First, an HDE data set is obtained that

reflects the type of experiment for which statistical methods will be

used to estimate quantities of interest. Data from a rat microarray

experiment at CNGI were used here. Other organisms might

produce data with different structural characteristics and methods

may perform differently on such data. The CNGI data were

obtained from an experiment that used rats to test the pathways

and mechanisms of action of certain phytoestrogens [8,9]. In brief,

rats were divided into two large groups, the first sacrificed at day

21 (typically the day of weaning for rats), the second sacrificed at

day 50 (the day, corresponding to late human puberty, when rats

are most susceptible to chemically induced breast cancer). Each of

these groups was subdivided into smaller groups according to diet.

At 21 and 50 days, respectively, the relevant tissues from these rat

groups were appropriately processed, and gene expression levels

were extracted using GCOS (GeneChip Operating Software). We

exported the microarray image (*.CEL) files from GCOS and

analyzed them with the Affymetrix Package of Bioconductor/R to

extract the MAS 5.0 processed expression intensities. The arrays

and data were investigated for outliers using Pearson’s correlation,

spatial artifacts [10] and a deleted residuals approach [11]. It is

important to note that only one normalization method was

considered, but the methods could be compared on RMA

normalized data as well. In fact, comparisons of methods’

performances on data from different normalization techniques

could be done using the plasmode technique.

Second, an HDE data set that compares effect of a treatment(s) is

analyzed and the vector of effect sizes is saved. The effect size used

here was a simple standardized mean difference (i.e., a two sample t-

statistics) but any meaningful metric could be used. Plasmodes, in

fact, could be used to compare the performance of statistical

methods when different statistical tests were used to produce the P-

values. We chose two sets of HDE data as templates to represent two

distributions of effect sizes and two different null distributions. We

refer to the 21-day experiment using the control group (8 arrays)

and the treatment group (EGCG supplementation, 10 arrays) as

data set 1, and the 50-day experiment using the control group (10

arrays) and the treatment group (Resveratrol supplementation, 10

arrays) as data set 2. There were 31,042 genes on each array, and

two sample pooled variance t-tests for differential expression were

used to create a distribution of P-values. Histograms of the

distributions for both data sets are shown in Figure 1.

The distribution of P-values for data set 1 shows a stronger

signal (i.e., a larger collection of very small P-values) than that for

data set 2, suggesting either that more genes are differentially

expressed or that those that are expressed have a larger magnitude

treatment effect. This second step provided a distribution of effects

sizes from each data set.

Author Summary

Plasmode is a term used to describe a data set that has
been derived from real data but for which some truth is
known. Statistical methods that analyze data from high
dimensional experiments (HDEs) seek to estimate quanti-
ties that are of interest to scientists, such as mean
differences in gene expression levels and false discovery
rates. The ability of statistical methods to accurately
estimate these quantities depends on theoretical deriva-
tions or computer simulations. In computer simulations,
data for which the true value of a quantity is known are
often simulated from statistical models, and the ability of a
statistical method to estimate this quantity is evaluated on
the simulated data. However, in HDEs there are many
possible statistical models to use, and which models
appropriately produce data that reflect properties of real
data is an open question. We propose the use of
plasmodes as one answer to this question. If done
carefully, plasmodes can produce data that reflect reality
while maintaining the benefits of simulated data. We show
one method of generating plasmodes and illustrate their
use by comparing the performance of 15 statistical
methods for estimating the false discovery rate in data
from an HDE.

Evaluating Methods with Plasmodes
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Next, create the plasmode null data set. For each of the HDE

data sets, we created a random division of the control group of

microarrays into two sets of equal size. One consideration in doing

so is that if some arrays in the control group are ‘different’ from

others due to some artifact in the experiment, then the null data

set can be sensitive to how the arrays are divided into two sets.

Such artifacts can be present in data from actual HDEs, so this

issue is not a limitation of plasmode use but rather an attribute of

it, that is, plasmodes are designed to reflect actual structure

(including artifacts) in a real data set. We obtained the plasmode

null data set from data set 1 by dividing the day 21 control group

of 8 arrays into two sets of 4, and for data set 2 by dividing the

control group of 10 arrays into two sets of 5 arrays. Figure 2 shows

the two null distributions of P-values obtained using the two

sample t-test on the plasmode null data sets. Both null distributions

are, as expected, approximately uniform, but sampling variability

allows for some deviation from uniformity.

A proportion 12p0 of effect sizes were then sampled from their

respective distributions using a weighted probability sampling

technique described in the Methods section. What sampling

probabilities are chosen can be a tuning parameter in the

plasmode creation procedure. The selected effects were incorpo-

rated into the associated null distribution for a randomly selected

proportion 12p0 of genes in a manner also described in the

Methods section. What proportion of genes is selected may depend

upon how many genes in an HDE are expected to be differentially

expressed. This may determine whether a proportion equal to 0.01

or 0.5 is chosen to construct a plasmode. Proportions between 0.05

and 0.2 were used here as they are in the range of estimated

proportions of differentially expressed genes that we have seen

from the many data sets we have analyzed.

Finally, the plasmode data set was analyzed using a selected

statistical method. We used two sample t-tests to obtain a

plasmode distribution of P-values for each plasmode data set

because the methods compared herein all analyze a distribution of

P-values from an HDE. P-values were declared statistically

significant if smaller than a threshold t. Box 1 summarizes symbol

definitions.

When comparing the 15 statistical methods, we used three values

of p0 (0.8, 0.9, and 0.95) and two thresholds (t= 0.01 and 0.001).

For each choice of p0 and threshold t, we ran B = 100 simulations.

All 15 methods provided estimates of p0, 14 provided estimates of

FDR, and 7 provided estimates of LFDR. Because the true values of

p0 and FDR are known for each plasmode data set, we can compare

the accuracy of estimates from the different methods.

Methods for Estimating FDR
There are two basic strategies for estimating FDR, both

predicated on an estimated value for p0, the first using

equation (1) below, the second using a mixture model approach.

Figure 1. Distribution of P-values from tests for differential expression for the two data sets. P-values were computed from the original
data using two sample pooled variance t-tests.
doi:10.1371/journal.pgen.1000098.g001

Box 1: Notation for parameters used in modeling high
dimensional data

p0 = A true proportion of genes for which there is no
differential expression. This value is controlled by the
experimenter in a simulation study.
12p0 = the proportion of genes that are truly differentially
expressed.
p̂0 = An estimate of p0 obtained using a statistical method
on data from an HDE.
t= A threshold set by the investigator below which P-
values are declared statistically significant.

Evaluating Methods with Plasmodes
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Let PK = M/K be the proportion of tests that were declared

significant at a given threshold, where M and K were defined with

respect to quantities in Table 1. Then one estimate for FDR at this

threshold is,

dFDRFDR~
p̂p0t

PK

ð1Þ

The mixture model (usually a two-component mixture) approach

uses a model of the form,

f p; p0,hð Þ~p0f0 pð Þz 1{p0ð Þf1 pð Þ ð2Þ

where f is a density, p represents a P-value, f0 a density of a P-value

under the null hypothesis, f1 a density of a P-value under the

alternative hypothesis, p0 is interpreted as before, and h a (possibly

vector) parameter of the distribution. Since valid P-values are

assumed, f0 is a uniform density. LFDR is defined with respect to

this mixture model as,

LFDR~
p0

p0z 1{p0ð Þf1 tð Þ : ð3Þ

FDR is defined similarly except that the densities in (3) are

replaced by the corresponding cumulative distribution functions

(CDF), that is,

FDR~
p0t

p0tz 1{p0ð ÞF1 tð Þ ð4Þ

where F1(t) is the CDF under the alternative hypothesis, evaluated

at a chosen threshold t. (There are different definitions of FDR

and the definition in (4) is, under some conditions, the definition of

a positive false discovery rate [12]. However, in cases with a large

number of genes many of the variants of FDR are very close [13]).

The methods are listed for quick reference in Table 2. Methods

1–8 use different estimates for p0 and, as implemented herein,

proceed to estimate FDR using equation (1). Method 9 uses a

unique algorithm to estimate LFDR and does not supply an

estimate of FDR. Methods 10–15 are based on a mixture model

framework and estimate FDR and LFDR using equations (3) and

(4) where the model components are estimated using different

techniques. All methods were implemented using tuning param-

eter settings from the respective paper or ones supplied as default

values with the code in cases where the code was published online.

Figure 2. Distribution of P-values for the two plasmode null data sets. P-values were computed from two sample pooled variance t-tests.
doi:10.1371/journal.pgen.1000098.g002

Table 1. Quantities of interest in microarray experiments.

Genes for which there is not a real effect Genes for which there is a real effect

Genes not declared significant at designated threshold A B

Genes declared significant at designated threshold C D

A+B+C+D = K = the number of genes analyzed in a microarray experiment. M = C+D is the number of rejected null hypotheses.
doi:10.1371/journal.pgen.1000098.t001

Evaluating Methods with Plasmodes
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Results of the Statistical Methods Tests
First, to compare their differences, we used the 15 methods to

analyze the original two data sets, with data set 1 having a

‘‘stronger signal’’ (i.e., lower estimates of p0 and FDR). Estimates

of p0 from methods 3 through 15 ranged from 0.742 to 0.837 for

data set 1 and 0.852 to 0.933 for data set 2. (Methods 1 and 2 are

designed to control for rather than estimate FDR and are designed

to be conservative; hence, their estimates were much closer to 1.)

Results of these analyses can be seen in the Supplementary Tables

S1 and S2.

Next, using the two template data sets we constructed plasmode

data sets in order to compare the performance of the 15 methods

for estimating p0 (all methods), FDR (all methods except method

9), and LFDR (methods 9–15). Figures 3 and 4 show some results

based on data set 2. More results are available in the Figures S1,

S2, S3, S4, S5, and S6.

Figure 3 shows the distribution of 100 estimates for p0 using

data set 2 when the true value of p0 is equal to 0.8 and 0.9.

Methods 1 and 2 are designed to be conservative (i.e., true values

are overestimated). With a few exceptions, the other methods tend

to be conservative when p0 = 0.8 and liberal (the true value is

underestimated) when p0 = 0.9. The variability of estimates for p0

is similar across methods, but some plots show a slightly larger

variability for methods 12 and 15 when p0 = 0.9.

Figure 4 shows the distribution of estimates for FDR and LFDR

at the two thresholds. The horizontal lines in the plots show the

mean (solid line) and the minimum and maximum (dashed lines) of

the true FDR value for the 100 simulations. A true value for

LFDR is not known in the simulation procedure. The methods

tend to be conservative (overestimate FDR) when the threshold

t= 0.01 and are more accurate at the lower threshold. Estimates of

FDR are more variable for methods 11, 13, and 14 and estimates

for LFDR more variable for methods 13 and 14, with the

exception of a few unusual estimates obtained from method 9. The

Table 2. Fifteen methods with the source of the software
used herein.

Method Citation Source of code

1 Benjamini and Hochberg [6] GeneTS

2 Benjamini and Hochberg [14] GeneTS

3 Mosig et al., [15] Website

4 Storey & Tibshirani [16] Qvalue

5 Storey, Taylor, Siegmund [17] Qvalue

6 Schweder and Spjøtvoll [18] Coded by us

7 Dalmasso, Broët, and Moreau [19] Author website

8 Langaas, Lindqvist, Ferkingstad [20] Limma

9 Scheid and Spang [21] Twilight

10 Pounds and Morris [22] Author website

11 Pounds and Cheng [23] Author website

12 Liao et al., [24] Author website

13 Broberg [25] SAGx

14 Broberg [25] SAGx

15 Allison et al., [26] From authors

Most software was available as an R library at www.r-project.org, and was
otherwise available from an author’s website or coded by us.
doi:10.1371/journal.pgen.1000098.t002

Figure 3. Boxplots for estimates of p0 from 100 plasmodes based on data set 2 for the 15 methods. Two cases are shown representing A.
p0 = 0.8 and B. p0 = 0.9, represented by the horizontal line in the two plots A and B, respectively.
doi:10.1371/journal.pgen.1000098.g003

Evaluating Methods with Plasmodes
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high variability of FDR estimates from method 11 may be due to a

‘‘less than optimal’’ choice of the spanning parameter in a

numerical smoother (see also Pounds and Cheng [27]). We did not

attempt to tune any of the methods for enhanced performance.

Discussion

Researchers have been evaluating the performance of the

burgeoning number of statistical methods for the analysis of high

dimensional omic data, relying on a mixture of mathematical

derivations, computer simulations, and sadly, often single dataset

illustrations or mere ipse dixit assertions. Recognizing that the latter

two approaches are simply unacceptable approaches to method

validation [2] and that the first two suffer from limitations

described earlier, an increasing number of investigators are

turning to plasmode datasets for method evaluation [28]. An

excellent example is the Affycomp website (http://affycomp.

biostat.jhsph.edu/) that allows investigators to compare different

microarray normalization methods on datasets of known structure.

Other investigators have also recently used plasmode-like

approaches which they refer to as ‘data perturbation’ [29,30],

yet it is not clear that these ‘perturbed datasets’ can distinguish

true from false positives, suggesting greater need for articulation of

principles or standards of plasmode generation.

As more high dimensional experiments with larger sample sizes

become available, researchers can use a new kind of simulation

experiment to evaluate the performance of statistical analysis

methods, relying on actual data from previous experiments as a

template for generating new data sets, referred to herein as

plasmodes. In theory, the plasmode method outlined here will

enable investigators to choose on an empirical basis the most

appropriate statistical method for their HDEs.

Our results also suggest that large, searchable databases of

plasmode data sets would help investigators find existing data sets

relevant to their planned experiments. (We have already

implemented a similar idea for planning sample size requirements

in HDEs [31,32].) Investigators could then use those data sets to

compare and evaluate several analytical methods to determine

which best identifies genes affected by the treatment condition. Or,

investigators could use the plasmode approach on their own data

sets to glean some understanding of how well a statistical method

works on their type of data. Our results compare the performance

of 15 statistical methods as they process the specific plasmode data

sets constructed from the CNGI data. Although identifying one

uniformly superior method (if there is one) is difficult within the

limitations of this one comparison, our results suggest that certain

methods could be sensitive to tuning parameters or different types

of data sets. A comparison over multiple types of source data sets

Figure 4. Plots of estimated FDR (A and C) and LFDR (B and D) using the 15 methods in 100 plasmodes from data set 2 for the case
where p0 = 0.9. Estimates calculated at two thresholds t= 0.01 (A and B) and 0.001 (C and D) are shown. For the plots of FDR estimates, the
horizontal line is the mean of the 100 true values of FDR in the plasmodes and the horizontal dashed lines are the minimum and maximum. True
values of LFDR are not known.
doi:10.1371/journal.pgen.1000098.g004
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with different distributions of effects sizes could add the detail

necessary to clearly recommend certain methods over others [1].

Other papers have used simulation studies to compare the

performance of methods for estimating p0 and FDR (e.g., Hsueh et

al. [33]; Nguyen [34]; Nettleton et al. [35]). We compared

methods that use the distribution of P-values as was done in

Broberg [36] and Yang and Yang [37]. Unlike our plasmode

approach, most earlier comparison studies used normal distribu-

tions to simulate gene expression data and incorporated

dependence using a block diagonal correlation structure as in

Allison et al [26].

A key implication and recommendation of our paper is that, as

data from the growing number of HDEs is made publicly

available, researchers may identify a previous HDE similar to

one they are planning or have recently conducted and use data

from these experiments to construct plasmode data sets with which

to evaluate candidate statistical methods. This will enable

investigators to choose the most appropriate method(s) for

analyzing their own data and thus to increase the reliability of

their research results. In this manner, statistical science (as a

discipline that studies the methods of statistics) becomes as much

an empirical science as a theoretical one.

Methods

The quantities in Table 1 are those for a typical microarray

experiment. Let N = A+B and M = C+D and note that both N and

M will be known and K = N+M. However, the number of false

discoveries is equal to an unknown number C. The proportion of

false discoveries for this experiment is C/M. Benjamini

and Hochberg [6] defined FDR as,

FDR~E C=M I Mw0f g

h i
~E C=M Mw0j

h i
P(M.0) where

I{M.0} is an indicator function equal to 1 if M.0 and zero

otherwise. Storey [12] defined the positive FDR as

pFDR~E C=M Mw0j
h i

. Since P(M.0)$12(12t)K, and since K

is usually very large, FDR<pFDR, so we do not distinguish

between FDR and pFDR as the parameter being estimated and

simply refer to it as FDR with estimates denoted dFDRFDR (anddLFDRLFDR).

Suppose we identify a template data set corresponding to a two

treatment comparison for differential gene expression for K genes.

Obtain a vector, d, of effect sizes. One suggestion is the usual t-

statistic, where the ith component of d, is given by

di~
�XXi,trt{ �XXi,ctrl

SPi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ntrt
z 1

nctrl

q ð5Þ

where ntrt, nctrl are number of biological replicates in the treatment

and control group, respectively, X̄i,trt, X̄i,ctrl are the mean gene

expression levels for gene i in treatment and control groups, and

SP2
i ~

ni,trt{1ð ÞS2
i,trtz ni,ctrl{1ð ÞS2

i,ctrl

ni,trtzni,ctrl{2
, is the usual pooled sample variance

for the ith gene, where the two sample variances are given by S2
i,trt,

S2
i,ctrl . In what follows, we will use this choice for di since it allows

for effects to be described by a unitless quantity, i.e., it is scaled by

the standard error of the observed mean difference X̄i,trt2X̄i,ctrl for

each gene.

For convenience, assume that nctrl is an even number and divide

the control group into two sets of equal size. Requiring nctrl$4

allows for at least two arrays in each set, thus allowing estimates of

variance within each of the two sets. This will be the basis for the

plasmode ‘‘null’’ data set. There are
nctrl

nctrl=2

� �
ways of making

this division. Without loss of generality, assume that the first nctrl/2

arrays after the division are the plasmode control group and the

second nctrl/2 are the plasmode treatment group. Specify a value of

p0 and specify a threshold, t, such that a P-value #t is declared

evidence of differential expression. Execute the following steps.

1) Sample without replacement (12p0)K (rounding down to the

nearest integer) from the integers 1,…, K. Denote this set as

S*. This set will denote those genes that will be differentially

expressed.

2) Sample (12p0)K (rounding down) effect sizes without

replacement from the vector d with components given by

equation (5), where the ith component is selected with a

weighted probability,
dij jP
dij j

. Denote this vector as d*. This

will be the set of effect sizes used to differentially express

genes. The weighted probability sampling allows for the fact

that the original vector d contains effects for both

differentially expressed genes and genes corresponding to

true null hypotheses. Thus larger effects are more likely to be

selected, but the chance remains for very small effects to be

selected as well. The weighted probabilities could be

modified to allow for a higher (or lower) probability of large

effects being sampled and, as such, could be a tuning

adjustment in a plasmode simulation procedure.

3) For each expression level in the plasmode treatment group

and for each gene, j, in the set S*, add the amount d�j
:Sj,ctrl

where Sj,ctrl is the sample standard deviation for the jth gene

in the original control group. This is one plasmode data set

with a null reference data set obtained within the control

group but effect sizes borrowed from the full microarray

experiment.

4) Conduct a statistical test for differentially expressed genes on

the plasmode data set and record the distribution of P-

values. Determine which genes have P-values #t.

5) Note that p0 and the set S* are known, so a true value of

FDR for this data set is available. This true value will change

with each simulated data set since the set S* and the vector

d* will be different in each simulation.

6) Apply a statistical method that estimates p0, FDR, LFDR

and other quantities of interest. Estimates of FDR and

LFDR are computed at a preset threshold t. Some methods

compute these estimates at the observed P-values in which

case we interpolate the estimates computed at the two

nearest P-values above and below t.

7) Repeat steps 1–6 B times. Record summary statistics such as

the mean, standard deviation, and range of the true FDR

over the B plasmodes, and the summary statistics from the

estimates obtained from the statistical method that is being

evaluated.

8) Choose another threshold t and/or another value of p0 and

repeat for a new simulation case.

One can then obtain another data set and repeat the entire

process to evaluate a method on a different type of data, perhaps

from a different organism having a different null distribution, or a

different treatment type giving a different distribution of effect

sizes, d. Alternatively, one might choose to randomly divide the

control group again and repeat the entire process. This would help

assess how differences in arrays within a group or possible

correlation structure might affect results from a method. If some of

the arrays in the control group have systematic differences among
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them (e.g., differences arising from variations in experimental

conditions—day, operator, technology, etc.), then the null

distribution can be sensitive to the random division of the original

control group into the two plasmode groups, particularly if nctrl is

small.

Supporting Information

Figure S1 Boxplots plasmode simulations dataset 1.

Found at: doi:10.1371/journal.pgen.1000098.s001 (0.02 MB PDF)

Figure S2 Boxplots plasmode simulations dataset 2.

Found at: doi:10.1371/journal.pgen.1000098.s002 (0.02 MB PDF)

Figure S3 Plots of FDR & LFDR dataset 1.

Found at: doi:10.1371/journal.pgen.1000098.s003 (0.03 MB PDF)

Figure S4 Plots of FDR & LFDR dataset 1 at 0.9.

Found at: doi:10.1371/journal.pgen.1000098.s004 (0.03 MB PDF)

Figure S5 Plots of FDR & LFDR dataset 2.

Found at: doi:10.1371/journal.pgen.1000098.s005 (0.02 MB PDF)

Figure S6 Plots of FDR & LFDR dataset 2 at 0.9.

Found at: doi:10.1371/journal.pgen.1000098.s006 (0.03 MB PDF)

Table S1 Methods comparison dataset 1.

Found at: doi:10.1371/journal.pgen.1000098.s007 (0.02 MB PDF)

Table S2 Methods comparison dataset 2.

Found at: doi:10.1371/journal.pgen.1000098.s008 (0.02 MB PDF)
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