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A B S T R A C T

There is compelling evidence that synergistic drug combinations have become promising strategies for com-
bating complex diseases, and they have evident predominance comparing to traditional one drug - one disease
approaches. In this paper, we develop a computational method, namely SyFFM, that takes pharmacological data
into consideration and applies field-aware factorization machines to analyze and predict potential synergistic
drug combinations. Firstly, features of drug pairs are constructed based on associations between drugs and
target, and enzymes, and indication areas. Then, the synergistic scores of drug combinations are obtained by
implementing field-aware factorization machines on latent vector space of these features. Finally, synergistic
combinations can be predicted by introducing a threshold. We applied SyFFM to predict pairwise synergistic
combinations and three-drug synergistic combinations, and the performance is good in terms of cross-validation.
Besides, more than 90% combinations of the top ranked predictions are proved by literature and the analysis of
parameters in model shows that our method can help to investigate and explain synergistic mechanisms un-
derlying combinatorial therapy.

1. Introduction

Synergistic drug combinations consist of two or more active phar-
maceutical ingredients (APIs), which are developed to target multiple
diseases or conditions, such as Exforge (amlodipine/valsartan).
Accumulated studies have shown that synergistic drug combinations
are widely used in the treatment of cancer, AIDs and other complex
diseases [12,16]. Christie M. Ballantyne et al. found that the ther-
apeutic effect of the combination of ezetimibe and simvastatin (Vy-
torin) was significant for treatment of hypercholesterolemic patients
[3]. Zhong et al. have found that Homoharringtonine combining with
arsenic trioxide could induce apoptosis of RPMI 8226 cell line [63].
Drug combinations could improve medication compliance by reducing
the pill burden of patients. Moreover, drug combinatorial therapy has
better efficacy and smaller side effect than single drugs because of the
fact that the development and progression of systemic diseases often
involve in complex biological processes. Investments in synergistic drug
combinations have emerged and become an increasingly important
strategy because of the high failure rate in new drug development pi-
peline and high costs in marketing new drugs [15]. It also has been
argued that synergistic drug combinations played vital roles in drug

development as a new paradigm of drug discovery [24].
Despite of more attentions have been paid to research on synergistic

drug combinations, there are still a lack of effective prediction methods.
Most synergistic combinations were found using exhaustive methods,
such as high-throughput screening or pure experimental tests, which
are time-consuming and costly. Therefore, a number of computational
approaches for synergistic combinations prediction have been emerged
with the growth of biological datasets [36]. For example, Zhao et al.
proposed a computational method to predict novel combinations by
integrating molecular and pharmacological data, but its performance is
limited by the feature constructed in this model [62]. Ligeti et al.
presented a prediction model by applying a propagation algorithm on a
protein-protein association network [38], but the construction of net-
work is affected by incompleteness of biological data. Sun et al. con-
structed support vector machines and naïve Bayesian classifiers on
Hadoop for drug combination prediction, but it cannot explain sy-
nergistic mechanisms [51]. Chen et al. collected synergistic antifungal
drug combinations and construct the first Antifungal Synergistic Drug
Combination Databases (ASDCD) [10] and developed a semi-supervised
algorithm implemented on drug-target interactions and drug chemical
structures data [11], but its predictive performance is evaluated only on
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antifungal drugs. Liu constructed features of drug pairs using some
feature selection techniques and predicted potential synergistic drug
combinations by applying random forest algorithm [41]. Based on drug
target network and drug induced gene expression profiles [26], Li built
a prediction model named by SyDRa using random forest algorithm
[37], which is a simple and effective computational model. However, it
is a cancer-specific model and it was not tested on other diseases. Be-
sides, most of these quantitative and qualitative prediction methods are
proposed to pairwise synergistic combinations and cannot be applied to
predict multi-drug synergistic combinations.

In this paper, by considering synergistic mechanisms as combina-
tions of their pharmacological characteristics [8], we proposed a new
model, namely SyFFM, to infer potential pairwise synergistic combi-
nations and three-drug synergistic combinations. Drug targets, meta-
bolic enzymes and ATC (Anatomical Therapeutic Chemical Classifica-
tion System) were collected for constructing features of drug
combinations and FFM (Field-aware Factorization Machines) [30] were
applied to calculate the synergistic scores. FFM models pairwise inter-
actions via inner products of respective feature latent vectors, and it has
good performance under huge sparsity. Using factorized parameters,
FFM provides a new perspective to investigate interactions between
drugs. SyFFM was evaluated on various datasets, and the good pre-
dictive performance suggests that it would help to identify novel drug
combinations effectively. Analysis on the parameters of SyFFM de-
monstrates that the new model can provide insights to uncover the
synergistic mechanisms.

2. Methods

Let = ⋯D d d d{ , , , }n1 2 denotes the drug set, = ⋯T t t t{ , , , }r1 2 be the
target set, = ⋯E e e e{ , , , }q1 2 be the enzyme set and = ⋯A a a a{ , , , }p1 2 be
the ATC set. For each drug pair d d( , )i j , yij is defined to indicate their
synergistic relationship, =y 1ij if d d( , )i j is an approved synergistic
combination, and = −y 1ij if not.

2.1. Features construction

For each drug pair d d( , )i j , we constructed its feature vector
=F F F F( , , )ij ij

T
ij
E

ij
A as follows,

1. Target pairs of d d( , )i j , Fij
T : (i) Denote the targets of di as =T t{ }d ii and

the target pairs of d d( , )i j as ∈ ∈t t t T t T{( , )}, ,s k s d k di j. (ii) Collect the
target pairs of all synergistic drug combinations, written

=T t t{( , )}syn p q . In other words, each pair t t( , )p q inTsyn is a target pair
of at least one synergistic drug combination and the target pairs in
Tsyn were sorted order by target ID. (iii) Construct a 0–1 row vector
Fij

T and =F Tij
T

syn , where the k-th components of Fij
T is 1 if the k-th

target pair is one target pair of d d( , )i j . Otherwise, the k-th compo-
nents of Fij

T is 0.
2. Enzyme pairs of d d( , )i j , Fij

E: The enzyme pairs of all synergistic drug
combinations could be obtained according to drug-enzyme asso-
ciations, recorded as Esyn. Sort the enzyme pairs in Esyn by enzyme ID
and construct a 0–1 row vector Fij

E. The components of Fij
E is set in a

similar way as described above for the construction of Fij
T .

3. ATC pairs of d d( , )i j , Fij
A: The ATC pairs of all synergistic drug

combinations could be obtained according to drug-ATC associations,
recorded as Asyn. Sort the ATC pairs in Asyn by ATC ID and construct
a 0–1 row vector Fij

A. The components of Fij
A is set in a similar way as

described above for the construction of Fij
T .

4. Feature vector of d d( , )i j , Fij: Concatenate three features together,
and the feature vector of d d( , )i j was denoted as

⎜ ⎟= ⎛
⎝

⎞
⎠

=F f F F F( , , )ij ij
k

k
ij
T

ij
E

ij
A . Here, ∈C T arget E nzyme A TC{ ( ), ( ), ( )}k

is referred to as a filed of feature fij
k and each components fij

k is
referred to as a feature. It is worth noting that the features

constructed by our method are very sparse due to incomplete
pharmacological data and the fact that most drugs do not have the
same targets, enzymes or ATC.

2.2. SyFFM on synergistic drug combinations prediction

Degree-2-polynomial mappings (Poly2) has been recorded as an
effective approach to learn information implicit in feature conjunctions
[7,34]. Based on this, we can simplify synergistic mechanisms as
combinations of pharmacological characteristics, and for each drug pair
d d( , )i j , the combinations of features can be represented by a linear
function

∑ ∑ ∑= +ϕ w F w f f w f( , )ij
k l

k l ij
k

ij
l

k
k ij

k
,

(1)

wk l, and wk denoted the contribution values of feature interaction

⎜ ⎟
⎛
⎝

⎞
⎠

f f,ij
k

ij
l and a single feature fij

k to the synergistic relationship between di

and dj, respectively. ϕ w F( , )ij is modeled to be an indicator to measure
the strength of synergy between di and dj, so ϕ w F( , )ij should be learned
approximating to the real label yij.

Unfortunately, the above function could not reflect the real inter-
actions between different features accurately. Take feature interactions

⎜ ⎟
⎛
⎝

⎞
⎠

f f,ij
k

ij
l1 and ⎜ ⎟

⎛
⎝

⎞
⎠

f f,ij
k

ij
l2 for example, fij

l1 may affect the interaction be-

tween fij
k and fij

l2. However, wk l, 1 is independent from wk l, 2 in the above
function and they could not capture this mutually dependent relation-
ship.

So, we improved ϕ by implementing FFM, which replaces all in-
teractions by mapping similar features to be embedded near each other
into several latent spaces according to fields it belongs to. Thus, dot
product between latent vectors would capture interactions related to
similar features and interactions not recorded in the available dataset
are also allowed to caught. Although higher order of interactions could
be estimated, we only considered first and second order due to high
computational complexity. In our dataset, each feature can be re-
presented by three latent vectors v v v, ,T E A and the contribution value of

feature interaction ⎜ ⎟
⎛
⎝

⎞
⎠

f f,ij
k

ij
l can be represented by product of their

corresponding latent vectors, writren by 〈 〉v v,k C l C, ,l k . The latent vectors
would help to extract the potential interactions between two drugs and
ϕ w F( , )ij can be rewritten as

∑ ∑ ∑= 〈 〉 +ϕ v w F v v f f w f( , , ) ,ij
k l

k C l C ij
k

ij
l

k
k ij

k
, ,l k

(2)

For example, the feature vector of a drug combination is
=f f f f( , , )1 2 3 , and ∈f T arget( )1 , ∈f E nzyme( )2 , ∈f A TC( )3 , then the

interaction of features can be represented as follows,

〈 〉 + 〈 〉 + 〈 〉 + + +v v f f v v f f v v f f w f w f w f, , ,f E f T f A f T f A f E, , 1 2 , , 1 3 , , 2 3 1 1 2 2 3 31 2 1 3 2 3

(3)

Indicator ϕ v w F( , , )ij should be learned to approximate the real sy-
nergistic relationship yij. Logistic loss function is chosen to learn feature
interactions, which is a widely used loss function to penalize incorrect
predictions in classification problem. In addiction, l2-regularization
terms are introduced to prevent overfitting of SyFFM and generalize
SyFFM to other drugs not included in the available dataset. Thus, the
problem of synergistic drug combinations prediction would be con-
verted to learn v and w by solving the following optimization problem,

∑ + − + +y ϕ v w F λ v λ wmin log(1 exp( ( , , )))
2 2v w i j

ij ij
, ,

2
2

2
2

(4)

We implemented stochastic gradient methods to derive the optimal
solution of this optimization problem. Let v w( , )* * be the optimum so-
lution, and the synergistic score between di and dj was defined as
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ϕ v w F( , , )ij
* * . Given a threshold θ, d d( , )i j was predicted as a synergistic

combination if its synergistic score was larger than θ, and θ was se-
lected by cross validations. The code of field-aware factorization ma-
chines can be got at https://www.csie.ntu.edu.tw/∼cjlin/libffm/ con-
tributed by the Machine Learning Group at National Taiwan University.

3. Results

3.1. Prediction on pairwise synergistic drug combinations

SyFFM was implemented on three datasets respectively, DCDB data
(including 946 approved pairwise synergistic drug combinations, 759
drugs from DCDB [40]), NData (68 approved pairwise synergistic
combinations and 92 drugs from paper [28]) and FDA data (184 ap-
proved pairwise synergistic combinations and 238 drugs from FDA until
November 2010). In DCDB, there are 287661 possible pairs of 759
drugs and 3‰ were approved to be synergistic combinations. Simi-
larly, there are 1% pairs in NData and 6‰ pairs in FDA data were
approved to be synergistic combinations. In each dataset, we regarded
these approved synergistic combinations as ’positive samples', and the
’negative samples’ were obtained by sampling from the random pairs of
all drugs. We set different ratios of positive-to-negative samples (1:1,
1:2, 1:3, 1:4, 1:5) and analysis the impact of ratios on performance of
SyFFM.

Firstly, 5-fold cross validation was implemented to evaluate our
method. To guarantee the nonrandom of the prediction results, we
implemented our method on 50 different negative samples and the
optimal parameters were adjusted by cross validation. We got average
AUC (DCDB)=0.925 (0.87 ∼ 0.93), AUC (NData)= 0.876 (0.84 ∼
0.92), AUC (FDA)=0.896(0.86 ∼ 0.92) (Fig. 1). Secondly, the sy-
nergistic scores obtained by our method were sorted in descending
order, for DCDB data, SyFFM correctly retrieved all associations in the
top-400 records, 697 in the top-700 records and 791 in the top-800
records. For NData, SyFFM correctly retrieved 40, 59, 67 in the top-40,
60, 80 records. For FDA data, SyFFM correctly retrieved 48 93, 135 in
the top-50, 100, 150 records. (Fig. 1).

Synergistic combinations in FDA were updated after November
2010 and the predictive ability of SyFFM for potential synergistic drug
combinations is evaluated by implemented on FDA data (until
November 2010). 11 potential synergistic combinations are predicted
by SyFFM and 9 are confirmed by literature, which is shown in Table 1.

3.2. The impact of ratios of positive-to-negative samples on performance of
SyFFM

To test the impact of different proportions of positive and negative
samples on the performance of SyFFM, we randomly selected different
numbers of negative samples from all non-approved drug pairs. AUC,
AUPR and F1 score are used and the result is shown in Table 2, which
means that the performance of SyFFM is getting worse as the number of
negative samples increased. According to the above analysis, we set the
ratio of positive-to-negative to be 1:1.

3.3. Prediction on three-drug synergistic combinations

We also evaluated the performance of SyFFM on 295 approved
three-drug synergistic combinations collected from DCDB, including
368 drugs. Each three-drug combination was regarded as three pairwise
drug combination, for example, three-drug combination d d d( , , )i j k was
regarded as d d( , )i j , d d( , )i k and d d( , )j k . If d d d( , , )i j k is a synergistic
combination, then three pairwise combinations are treated as sy-
nergistic combinations (we record this hypothesis as H ). In this way,
we converted three-drug synergistic combinations prediction to pair-
wise synergistic drug combinations prediction, and the three-drug
combination is predicted as synergistic if and only if all the corre-
sponding three pairwise drug combinations are predicted as synergistic
combinations.

By decomposing entire three-drug combinations of 368 drugs into
pairwise combinations, we implemented SyFFM and the pairwise

Fig. 1. The results of SyFFM on pairwise synergistic drug combinations.

Table 1
The 11 potential synergistic drug combinations predicted by SyFFM and 9 are
confirmed by literature.

Drug 1 Drug 2 Evidence of synergy
combinations

ampicillin sodium tazobactam PMID:24041466
esomeprazole magnesium sodium bicarbonate None
trandolapril hydrochlorothiazide PMID: 7527107
dienogest ethinyl estradiol PMID: 20394455
eprosartan mesylate amlodipine besylate None
tenofovir disoproxil

fumarate
lamivudine PMID:13130407

niacin atorvastatin calcium PMID:10095800
trandolapril amlodipine besylate None
norelgestromin Ethinyl Estradiol PMID: 11849630
Ethinyl estradiol ethynodiol diacetate PMID: 2046084
desogestrel Ethinyl estradiol PMID: 9673846
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combinations were predicted. Then three-drug combinations could be
predicted by screening the corresponding pairwise combinations. We
got AUC of 0.946 in terms of 5-fold cross validation on the entire
pairwise combinations (Fig. 2(blue curve)) and AUC of 0.944 on the
entire three-drug combinations (Fig. 2(yellow curve)).

3.4. Analysis of feature vectors of drug pairs

In order to verify the influences of features defined in our method,
we used target pairs Fij

T , enzyme pairs Fij
E or ATC pairs Fij

A to be the
feature vector of drug pair d d( , )i j . Then, field-aware factorization ma-
chines were implemented on pairwise drug combinations using the new
feature vectors respectively. The average AUCs achieved using new
feature vectors were 0.706, 0.679 and 0.855, respectively, which was
shown in Fig. 3. The performance of our method was not satisfying in
terms of AUCs under 5-fold cross validation, which indicates that in-
teractions between features from different fileds play important roles in
synergistic mechanisms.

3.5. Analysis of parameters of SyFFM

The coefficients in function ϕ indicate the contribution values of the
corresponding features or feature interactions. Incorporating biological
knowledge, we analyzed coefficients obtained on the prediction of
pairwise drug combinations.

We sorted coefficients of single features (i.e. the first order coeffi-
cients w) in descending way and found that the features corresponding
to top-10 coefficients are all target pairs. The result is shown in Table 3.

It is shown from the table that these target pairs are keys to the
mechanism of synergy. Since a target is involved in different biological
pathways [9,19], the multiple interactions between different targets
may be applied in treatment of other diseases. For example, the acti-
vation of progesterone receptor can also inhibit the growth of breast
tumors by changing the synthesis of estrogen receptor chromatin
[49,53]; both ACE and AR play an important roles in the regulation of

plasma, and the American Diabetes Association also suggested using
ACE inhibitors or AR inhibitors to treat diabetes [22,47]; sitagliptin,
inhibitors of DDP-4, can regulate the expression of PPAR and may have
a protective effect on myocardial cells [35]; both 5′-AMPK and DDP-4
are targets of polycystic ovary syndrome [55]. These findings show that
our model finds important features of synergism and may help to ex-
plain the synergistic mechanism between two drugs.

3.6. Comparison with previously methods for predicting synergistic drug
combination

Using DCDB data, we compared the prediction performance be-
tween SyFFM and Bai's method proposed in Ref. [4]. Bai's method is a
synergistic drug combination prediction model by applying a novel
improved naïve Bayesian algorithm on various types of features (tar-
gets, side effects, pathways, enzymes, transporters). The comparison
result of leave-one-out cross validation is shown in Table 4.

4. Conclusions

By representing drug combinations as combinations of their phar-
macological characteristics, we proposed a computational synergistic
drug combination prediction approach, namely SyFFM. The features of
drug combinations are constructed by integrating pharmacologic data
such as drug targets and enzymes, and the synergistic scores between
drugs are obtained by implementing field-aware factorization ma-
chines. SyFFM achieves good performances by predicting pairwise sy-
nergistic drug combinations and three-drug synergistic combinations,
and plenty of prediction results are validated by various databases and
literature. We demonstrated that SyFFM provides biological explana-
tions for the synergistic principles underlying combinatorial therapy
and offers a new method for studies on synergistic mechanisms.

However, several potential limitations exist in SyFFM. Firstly, the
performance of model is limited due to the incompletion data about
synergistic drug combinations. Secondly, SyFFM relies on the feature
patterns enriched in synergistic combinations and other feature con-
struction approaches may be more preferable to be adopted. It is worth
noting that the strict hypothesisH would introduce unreasonable bias
for n-drug combinations with n increases and the computation com-
plexity would present to be an exponential growth. So we only test
SyFFM on pairwise and three-drug combinations, and the application of
SyFFM to multi-drug synergistic combinations still has to be improved
further. How to build a better synergistic drug combinations prediction
model by utilizing diverse knowledge on drugs remains be an challenge
for future research.

Table 2
The performance of SyFFM of different ratios of positive-to-negative samples.

Ratio of positive-to-negative AUC AUPR F1 score

1:1 0.925 0.934 0.7611
1:2 0.8773 0.8287 0.7405
1:3 0.8318 0.7629 0.7162
1:4 0.7435 0.6959 0.6963
1:5 0.7377 0.6976 0.6759

Fig. 2. The results of SyFFM on three-drug synergistic combinations.

Fig. 3. The results of SyFFM using three new feature vectors.
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Budesonide; Formoterol Chronic Obstructive Pulmonary Disease; Asthma;

Bronchiectasis [46,59]
5′-AMPK DDP-4 Alogliptin benzoate; Metformin

Hydrochloride
Type 2 Diabetes Mellitus [2]

Metformin; Sitagliptin Type 2 diabetes who do not use daily insulin injections;
Diabetes Mellitus, Type 2 [57]

DNA Ribonucleoside-diphosphate
reductase subunit M2

Fluorouracil; SC144 Colorectal cancer [40]

Renin AR Aliskiren; Irbesartan Hypertension [40]
Progesterone receptor GnRH Leuprorelin acetate; Acetynone

acetonidone
For initial management of the painful symptoms of
endometriosis and for management of recurrence of symptoms
[40]

Follicle-stimulating hormone
receptor

GnRH-R Buserelin; Pregnyl Ovarian Hyperstimulation [25]

Angiotensin-converting
enzyme

Voltage-dependent calcium
channel gamma-1 subunit

None approved in DCDB

Table 4
Comparison result of SyFFM and Bai's method using leave-one-out cross vali-
dation.

Method Precision Recall F1 score Accuracy

SyFFM 0.9983 0.4573 0.9213 0.9255
Bai's method with targets 0.9008 0.5000 0.6431 0.7034
Bai's method with side effects 0.6957 0.6400 0.6667 0.6800
Bai's method with pathways 0.6133 0.6216 0.6174 0.6238
Bai's method with enzymes 0.6018 0.8095 0.6904 0.6115
Bai's method with transporters 0.4815 0.7500 0.5865 0.5339
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