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ABSTRACT

Background: One of the increasingly accepted methods to evaluate the privacy of synthetic data is by measur-

ing the risk of membership disclosure. This is a measure of the F1 accuracy that an adversary would correctly

ascertain that a target individual from the same population as the real data is in the dataset used to train the

generative model, and is commonly estimated using a data partitioning methodology with a 0.5 partitioning

parameter.

Objective: Validate the membership disclosure F1 score, evaluate and improve the parametrization of the parti-

tioning method, and provide a benchmark for its interpretation.

Materials and methods: We performed a simulated membership disclosure attack on 4 population datasets: an

Ontario COVID-19 dataset, a state hospital discharge dataset, a national health survey, and an international

COVID-19 behavioral survey. Two generative methods were evaluated: sequential synthesis and a generative

adversarial network. A theoretical analysis and a simulation were used to determine the correct partitioning

parameter that would give the same F1 score as a ground truth simulated membership disclosure attack.

Results: The default 0.5 parameter can give quite inaccurate membership disclosure values. The proportion of

records from the training dataset in the attack dataset must be equal to the sampling fraction of the real dataset

from the population. The approach is demonstrated on 7 clinical trial datasets.

Conclusions: Our proposed parameterization, as well as interpretation and generative model training guidance

provide a theoretically and empirically grounded basis for evaluating and managing membership disclosure

risk for synthetic data.
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LAY SUMMARY

Membership disclosure is considered an important type of privacy risk for synthetic data. A commonly applied methodology

for evaluating membership disclosure is the partitioning method. We demonstrate theoretically and empirically through a

simulation on 4 population datasets that current parameterizations of this method can potentially give inaccurate estimates

of risk, and propose a more grounded parametrization. We further provide an interpretable version of that metric, a bench-

mark for deciding when membership disclosure is acceptably small, and a proposed metric to manage utility and member-

ship disclosure risk during the training of generative models which generate the synthetic datasets. Finally, we demonstrate

its application on 7 oncology clinical trial datasets.

VC The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 1

JAMIA Open, 5(4), 2022, 1–12

https://doi.org/10.1093/jamiaopen/ooac083

Research and Applications

https://orcid.org/0000-0003-3325-4149
https://academic.oup.com/
https://academic.oup.com/


INTRODUCTION

There has been growing interest in using synthetic data generation

(SDG) techniques to enable broader privacy-preserving sharing of

data for secondary purposes,1,2 and specifically for health data.3–13

While patient (re-)consent is one legal basis for making data avail-

able for secondary purposes, it is often impractical to get retroactive

consent under many circumstances and there is significant evidence

of consent bias.14 Anonymization is another approach for address-

ing privacy concerns when making health data available for secon-

dary analysis. However, there have been repeated claims of

successful reidentification attacks on anonymized data,15–21 eroding

public and regulator trust in this approach.21–30

There are multiple synthetic health datasets that are currently

available to a broad research community such as: the NIH National

COVID Cohort Collaborative (N3C),31 the CMS Data Entrepre-

neur’s Synthetic Public Use files,32 synthetic cardiovascular and

COVID-19 datasets available from the CPRD in the United King-

dom,33,34 A&E data from NHS England,35 cancer data from Public

Health England,36 a synthetic registry from the Dutch cancer regis-

try,37 synthetic variants of the French public health system claims

and hospital dataset (SNDS),38 and South Korean data from the

Health Insurance Review and Assessment service (the national

health insurer).39

The general assumption has been that synthetic data has low

identity disclosure risks because there is no unique or one-to-one

mapping between the records in the synthetic data with the records

in the original (real) data.40–47 However, there are additional risks

beyond identity disclosure that need to be managed for synthetic

datasets: (1) attribution risk (attribute disclosure conditional on

identity disclosure),48 and (2) membership disclosure.49,50 Our pri-

mary focus in this article is on evaluating membership disclosure for

synthetic data.

There has been a growing literature on assessing membership

disclosure risks for synthetic data.8,49–57 Membership disclosure is

when an adversary, using the information in synthetic data, deter-

mines that a target individual was included in the real dataset used

as input for SDG. Knowing that an individual was in the real data

can reveal sensitive attributes about that individual if the dataset

pertains to a particular disease, condition, or process. The target

individual is assumed to be from the same population as the real

dataset.

For example, if the real dataset pertains to a clinical study of

HIV patients, membership disclosure would reveal that the target

individual has HIV, or that they had participated in the study. Both

would be deemed inappropriate disclosures of private information.

A broader type of membership risk, referred to as a membership

inference attack, has been used to evaluate privacy risks for discrimi-

native machine learning models.58,59 There are multiple reasons

why membership inference attacks on machine learning models may

be performed. For example, if an organization wishes to see if any of

their own data was inappropriately used to train a machine learning

model to detect copyright infringement or a breach of contract, or a

regulator attempting to detect if some information was used without

individual consent. In the context of the current study, we are only

focused on membership inference attacks for the sole purpose of pri-

vacy violations. This distinction is important because the privacy

purpose imposes some pragmatic constraints on these attacks.

While we are not aware of real-world membership disclosure

attacks on synthetic datasets, the extensive and growing literature

on the topic has highlighted the risk. From a legal and compliance

perspective, it will arguably not be acceptable to share synthetic

data without demonstrating low membership disclosure risks.

One proposed method for estimating membership disclosure

requires the training of a shadow model,51 and using a discrimina-

tor, such as a random forest model, to distinguish between records

in and not in the training dataset. However, this approach makes a

strong assumption about the availability to the adversary of a large

reference dataset from the same population as the training data,60

which may be difficult to meet in practice. Another strong assump-

tion that is made is that the adversary would know the generative

model details including all the parametrizations. For example, a

data custodian would not generally share all of the trained weights

and hyperparameters of their generative models with the data users.

Therefore, in this article, we evaluate another and more com-

monly used partitioning method for estimating membership disclo-

sure risk of synthetic data, demonstrate through a theoretical and

empirical analysis that its default parametrization in the literature

could give inaccurate estimates of membership disclosure risk, and

define a parameterization that gives the same results as the ground

truth. We then provide a general benchmark to evaluate whether

membership disclosure is acceptably low or not, and apply the

membership disclosure metric to assess the risks for 7 clinical trial

datasets.

MATERIALS AND METHODS

Notation
We will use the notation in Table 1.

The partitioning membership disclosure attack method
An assessment of membership disclosure is performed by the data

custodian before a dataset is released. The data custodian does not

have access to the population that the real dataset was sampled

from, and therefore they will use an estimation procedure to com-

pute this disclosure risk. The estimation procedure should accurately

reflect the level of success that an adversary performing an attack

would achieve on average. If the estimation procedure does not meet

Table 1. The notation used in the article

Datasets

R The real dataset

P The population from which the real dataset is sampled

S Synthetic datasets

D The attack dataset

y A record in the attack dataset (ie, y 2 D)

y0 A record in the synthetic dataset (ie, y0 2 S)

r A record in the real dataset (ie, r 2 R)

Dataset sizes

n The number of records in the real dataset (ie, n ¼ jRj)
m The number of records in the attack dataset (ie, m ¼ jDj)
N The size of the population that R is sampled from (ie, N ¼ jPj)
t The proportion of the attack dataset records that are in the real

dataset

Hamming distance

L Hamming distance function

h Hamming distance threshold
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that objective, then it would not be useful for decision-making by

the data custodian.

Under the partitioning method a membership disclosure attack

occurs when an adversary has an attack dataset that is a sample

from the same population as the real dataset. The attack dataset

consists of one or more target individuals that the adversary intends

to compromise. Then the adversary matches records in the attack

dataset with the synthetic dataset. Membership disclosure occurs

when a matching record is also in the training dataset. This process

is illustrated in Figure 1. A key assumption in this process is that the

attack dataset is from the same population as the real dataset, other-

wise there is no reason for the adversary to expect that attack data-

set records would be in the real dataset.

Because the data custodian does not have access to the attack

dataset nor the population, they would need to estimate this risk

using a different procedure as described below. The starting assump-

tion for the partitioning method is that the synthetic data distribu-

tion approximates the real dataset distribution.61 Therefore, the

probability that the attack dataset belongs to the training dataset is

proportional to the probability that the attack dataset belongs to the

synthetic dataset. The partitioning method does not require a large

reference dataset, which explains why it is the most commonly

implemented in practice.8,49,50,53,55,56

The partitioning method is illustrated in Figure 2. Here the real

dataset is randomly split into 2 subsets, the training sample, and a

holdout sample. The training sample is then synthesized, and a syn-

thetic dataset is created. The holdout data provides records not used

in training for inclusion in the attack dataset.

We assume that an adversary has complete information on m

patients,49,50,53 where m� t are drawn from the training sample and m

�ð1� tÞ are drawn from the holdout sample. For example, if t ¼ 0:5

then the attack dataset is half training and half holdout. We set m ¼ s

�n were s is a sampling fraction from the real dataset. Previous work

did not demonstrate a pronounced change when the sampling fraction

was altered.49,50 Therefore, we will not consider s to be a key parameter.

We can then compute the minimum distance between every

record in D and all the records in synthetic dataset S. In the litera-

ture, the distance L is measured using the Hamming distance, and a

match for attack record y is considered to have occurred if

miny0 Lðy; y0Þ � h, where h is a predefined threshold and y0 is a

record in the synthetic dataset. Precision and recall metrics are then

computed based on the number of matched records that are in the

training dataset. These can be combined through their harmonic

mean into an F1 score:

F1 ¼ 2� precision� recall

precisionþ recall
(1)

The advantage of the F1 score is that it provides a single metric

that can be used for decision-making and optimization during the

training of the generative model.

The F1 score computed using this method is an estimate of the

expected success that an adversary would have when performing the

membership disclosure attack in Figure 1.

Parameterizing the partitioning method
Previous work using the partitioning method had set

t ¼ 0:5.8,49,50,53,55,56 In the analysis below, we show theoretically

and empirically that the accuracy of the estimate of the membership

disclosure F1 using the partitioning method is dependent on the

value of t, and that there is a valid value of t that is consistent with

the sample that an adversary would obtain when constructing an

attack dataset, irrespective of the size of the attack dataset.

The real dataset is a set of records R of size n ¼ jRj, and that a

synthetic version of this dataset is generated, denoted by the set of

records S. The attacker has another dataset represented by D which

is the attack dataset, and we let m ¼ jDj. Both R and D are inde-

Figure 1. The (ground truth) process for a membership disclosure attack which accounts for the fact that the attack dataset will be sampled independently from

the same population as the real dataset. The attack dataset is matched with the synthetic dataset to infer which records are in the real dataset.
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pendent random samples from the same population, which consists

of the set of records P and N ¼ jPj which is the size of the popula-

tion.

With the above setup, the probability that there are k individuals

in the overlap of R and D, such that k ¼ jR \Dj, can be expressed

as a hypergeometric distribution:

prðk ¼ xÞ ¼

N �m

n� x

 !
m

x

 !

N

n

 ! (2)

and this hypergeometric distribution has an expected value mn=N.

The proportion of individuals from the attack dataset that can plau-

sibly exist in the real dataset is therefore n/N, which is the sampling

fraction of the real dataset from the population.

This means that an adversary sampling an attack dataset from

the same population as the real dataset will have an expected pro-

portion of t ¼ n/N of records in the attack dataset that are also in

the real dataset. For the data custodian to correctly assess member-

ship disclosure, that same proportion that the adversary will have

should be used to give a correct estimate of the F1 score. Unless the

real dataset represents 50% of the population, setting t ¼ 0:5 will

not provide an attack dataset that is reflective of the expected attack

dataset that an adversary would have in practice. In the empirical

assessment below, we demonstrate the differences in the calculation

of the F1 score from the ground truth when t ¼ 0:5.

Empirical demonstration
In this empirical demonstration, we simulate an actual membership

disclosure adversary attack on synthetic datasets as illustrated in

Figure 1 and compute the F1 score for the adversary. This is the

ground truth in that it provides the correct F1 success rate of a mem-

bership disclosure attack.

This ground truth simulation assumes that the adversary samples

1000 records randomly from the population and matches these

records with the synthetic records. Records that match are claimed

to also be in the training dataset. The claims are evaluated by com-

puting the F1 score. This process models the adversary behavior of

the membership disclosure attack as defined in the literature.

We then simulate the partitioning method illustrated in Figure 2

while varying the value of t and also compute the F1 score each

time. For this simulation, we randomly select a value of t between 0

and 1 for each iteration of the simulation.

The 2 approaches are then compared to determine when they

give the same results (ie, at what value of t are the F1 score values

the same). This is the value of t that should be used when computing

membership disclosure using the partitioning method since that is

the value which gives the same result as the ground truth.

For these simulations, we ran 50 iterations for each study point

where we varied the parameters as follows: (1) the t parameter was

varied randomly from 0 to 1, (2) the size of the attack dataset was

fixed at 1000 observations, although when we varied that parame-

ter it had no impact on the results as we just need sufficient obser-

vations to get a stable value for F1, (3) the training dataset size was

set to 5k, 15k, and 25k, (4) the Hamming distance threshold was

set to 5 which is within the range of values commonly used in the

literature,61 (5) 2 generative models were used, and (6) 4 different

datasets.

The first type of generative models was a sequential tree-based

synthesizer.62 This has been used to synthesize health and social sci-

ences data,63–71 and applied in research studies on synthetic

data.63,72,73 The second is CTGAN,74 which is a generative adversa-

rial network (GAN) architecture. GANs have been applied often for

the synthesis of health data.41,49,50,53,55,75 These 2 types of genera-

tive models are representative of those used in practice.

We used 4 datasets as the population in our simulations summar-

ized in Table 2. These datasets were selected as they reflect heteroge-

neous data collection contexts including care settings, public health,

and surveys. They also vary in data complexity. We set up the data-

set sizes so that there is realistic variation in the sampling fractions

of the real datasets that were used.

Interpreting the partitioning method F1 score
The F1 score is known to depend on the distribution of positive

classes, which in our case is the proportion of real records in the

Figure 2. An overview of the membership disclosure evaluation process that is commonly used in the literature.
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attack dataset. This means that the F1 value by itself will not have a

consistent interpretation across different datasets with varying dis-

tributions.

We propose to interpret the obtained F1 score relative to the

maximum that the adversary would obtain with no background

knowledge about the real dataset. The highest F1 score that can be

obtained by the adversary with no background knowledge would be

if they classify all of the records in the attack dataset as being in the

real dataset. This value would be obtained irrespective of any syn-

thesis—its only assumption is that the adversary has drawn a sample

of targets from the same distribution as the training dataset and

does not depend on the availability of a synthetic dataset. In such a

case the maximum F1 score from classifying all records in the attack

dataset as being in the real dataset would be:

Fmax ¼ 2�
n N

1þn N=

.
(3)

As N grows for a fixed n, Fmax ! 0, and Fmax ¼ 1 when n ¼ N.

This maximum F1 score is a function of the proportion of the

population that is in the real dataset. The larger that proportion the

greater the success of the adversary by using this naı̈ve strategy.

That is not surprising in that the more individuals in the real dataset,

claiming that a randomly selected person from the population is in

the training dataset is more likely to be correct.

Note that if the adversary randomly assigns attack records to a

training dataset based on a probability of 0.5, their F1 score would

be lower than Equation (3). Therefore, there is no reason for an

adversary to follow that suboptimal approach.

The naı̈ve maximum value in Equation (3) will be the case even

if another privacy enhancing technology was used instead of syn-

thetic data generation. For example, if risk-based deidentification

methods were used76 the maximum F1 score from a naı̈ve member-

ship disclosure attack would be the same. Under this naı̈ve attack

recall is by definition equal to 1 and precision is equal to n/N.

The F1 score produced using the partitioning method can be

interpreted with respect to this maximum value. We define a cor-

rected F1 score to reflect membership disclosure that is similar in

construction to other metrics such as Cohen’s Kappa,77 and denote

it with M:

M ¼ F � Fmax

1� Fmax
(4)

Note that M is undefined when Fmax ¼ 1 since no additional

improvements are possible.

Previous researchers have used a 20% improvement over a naive

baseline as an acceptable threshold for membership disclosure risk

for synthetic data,8 and therefore, we can use that as a cutoff. In

such a case, we would define acceptable membership disclosure risk

as M � 0:2. If the M value is negative then the adversary actively

matching the attack dataset with the synthetic dataset would pro-

duce results worse than the naı̈ve approach which means that using

the synthetic dataset in a membership disclosure attack reduces the

relative success of the adversary.

RESULTS

The graphs in Figures 3–6 show the results for the COVID, Wash-

ington, CCHS, and Nexoid datasets, respectively. The plots show

the F1 score using the partitioning method as the t value is varied.

The ground truth F1 score based on a simulation of a membership

disclosure attack by an adversary is relatively fixed across iterations

since it is not affected by the value of t.

Our results show that:

(a) The t value for the partitioning method has a nontrivial impact

on the F1 score. We can see the values varying significantly

across the range.

(b) The partitioning method only gives the same F1 score as the

ground truth when t ¼ n/N which is where the 2 lines in the

plots intersect. The values of t ¼ n/N are the same values where

the ground truth and the partitioning method intersect in the

graphs.

(c) Setting t ¼ 0:5 would not give us correct estimates of the actual

membership disclosure F1 score, and sometimes the error can

be quite large. Depending on whether the real data sampling

fraction is above or below t ¼ n/N point, the F1 score of the

partitioning method can be substantially higher than or lower

than the ground truth value.

These results are consistent across the datasets, generative mod-

els, and dataset sizes.

An adversary with a random sample of target individuals from

the population will not achieve t ¼ 0:5 all the time and therefore

always using that value will not give a true reflection of the perform-

ance of an adversary attack. When the sampling fraction is equal to

50%, the default partitioning method with t ¼ 0:5 gives the same

result as the ground truth.

To further demonstrate that the correct parameterization of the

partitioning method is t ¼ n/N, in Table 3(a) are the mean values of

the F1 score from the ground truth simulation and another simula-

tion where we set t ¼ n/N with the same number of iterations. As

can be seen, the F1 score is very similar between the 2, further sup-

porting the conclusion that this is an accurate reflection of the per-

formance of a membership disclosure attack.

The M values for our 3 datasets are shown in Table 3(b). All the

values are below the threshold. The specific membership disclosure

value is a function of the combination of dataset complexity and the

generative model that is used.

DISCUSSIONS

Summary
Membership disclosure is considered an important privacy risk for

synthetic data, and needs to be evaluated before such datasets can be

used and disclosed for secondary purposes. The partitioning method

for estimating membership disclosure makes reasonable assumptions

about the information that an adversary has access to and is often

used in the literature.

The partitioning method splits the real dataset into a training

dataset and a holdout dataset. The training dataset is used to gener-

ate the synthetic data. An attack dataset is constructed with a certain

proportion of it from the training dataset, and the rest from the

holdout. The default in the literature is a proportion of 0.5. Then a

matching exercise between the attack and synthetic dataset is per-

formed. Matches are predicted to be in the training dataset, and the

accuracy of that prediction is evaluated using an F1 score.

We showed theoretically and empirically through simulations

that the proportion of training records included in the attack dataset

has a nontrivial impact on the accuracy of the F1 score, and to give

valid results this proportion must be equal to the sampling fraction

of the real dataset from the population. If this condition is not met,

JAMIA Open, 2022, Vol. 5, No. 4 5



Table 2. The fields in the datasets used in our study (a) Ontario COVID-19 Case dataset, (b) Washington state hospital discharge database,

(c) The Canadian Community Health Survey data, and (d) the Nexoid COVID-19 behavioral survey

Variable Definitions Variable Definitions

(a) (b)

Date reported Number of days since 1 January 2020; this variable

was discretized into 20 groups

AGE Patient age in years

Health region 34 unique regions AMONTH Admission month

Age group Decades from 20 to 80þ (ordinal) AWEEKEND Weekend admission (Y/N)

Gender Binary gender DIED Whether the patient died

Exposure close contact, outbreak, travel, not reported FEMALE Sex

Case status recovered, deceased, active LOS Length of stay

ZIP Patient ZIP code

AYEAR Admission year (2006 or 2007)

DX1-DX9 Diagnosis codes

(c) (d)

LBSG31 Employment status over the last 12 months (full/part

time)

survey_date Date survey was administered

SMKDSTY Type of smoker country Country of residence of the respondent

GEOGPRV Province of residence sex Sex

DHHGAGE Age (category) age Age in years

DHH_SEX Sex height, weight, bmi Height (cm), weigh (kg), and BMI

DHHGMS Marital status blood_type Blood type or “unknown”

DHHGLVG Living arrangements smoking Amount of cigarettes smoked

DHHGHSZ Household size Drugs (x6) Drugs that the respondent may be taking

GEN_08 Worked in a job or business over last 12 months risk_infection Calculated risk of infection with COVID-19

LBSGSOC Occupation group Risk_mortality Calculated mortality risk from COVID-19

EDUDH04 Highest level of education

SDC_8 Current student

SDCFIMM Immigrant or not

SDCGCGT Cultural or racial origin

INCGHH Household income

Figure 3. F1 score results for the COVID-19 dataset showing the ground truth from the simulation and the results using the partition method with h¼5. The n/N

values for 5k, 15k, and 25k are: 0.055, 0.165, and 0.276.
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the F1 score can be quite inaccurate and does not reflect the results

that an adversary would obtain in practice.

An interpretable adjustment of the F1 score computed through this

approach was proposed. This enables data custodians to determine

whether their membership disclosure values are acceptably small or not.

The work in this article built on existing methods for assessing

membership disclosure while addressing a common assumption in

its calculation that has resulted in potentially inaccurate results. Our

approach provides a validated and interpretable metric that can be

applied on synthetic datasets.

It is necessary to provide a value for the population size. This

can be defined by the prevalence of a disease in a particular geogra-

phy, for example. We demonstrate this in the applications below.

Applications
We demonstrate the application of this membership disclosure met-

ric on 7 oncology clinical trial dataset. Given the increasing interest

in making clinical trial datasets available,78–80 the objective was to

determine what the privacy risks would be for synthetic variants,

Figure 4. F1 score results for the Washington dataset showing the ground truth from the simulation and the results using the partition method with h¼5. The n/N

values for 5k, 15k, and 25k are: 0.039, 0.116, and 0.194.

Figure 5. F1 score results for the CCHS dataset showing the ground truth from the simulation and the results using the partition method with h¼5. The n/N values

for 5k, 15k, and 25k are: 0.039, 0.117, and 0.196.

JAMIA Open, 2022, Vol. 5, No. 4 7



and whether these risks would be deemed acceptably small. The 7

datasets we examine are from Project Data Sphere (see https://data.

projectdatasphere.org/).81

The population was defined as other similar trials, which is consis-

tent with Health Canada recommendations for defining the reference

population in privacy risk assessments.79 For each trial, we identified

other trials in the same therapeutic area over the same period and with

overlapping geographies from <clinicaltrials.gov>. The sequential

synthesis method was used to synthesize these trial datasets.

As can be seen from the results in Table 4, the membership dis-

closure risks are consistently below the threshold that we had

defined earlier. These suggest that sequential synthesis can be a use-

ful generative approach for protecting the membership disclosure

risks of oncology clinical trial datasets, and enable their broader

sharing within the research community. This is appealing given that

previous results have shown that sequential synthesis can have good

utility for oncology clinical trial data11 and for observational data-

sets.82

This example application demonstrates how the population size

was determined for clinical trial datasets. In the general context of

disclosure risk estimation models, it is common to have to provide a

population size value.83–85 In cases where determining the popula-

Figure 6. F1 score results for the Nexoid dataset showing the ground truth from the simulation and the results using the partition method with h¼ 5. The n/N val-

ues for 5k, 15k, and 25k are: 0.1, 0.3, and 0.5.

Table 3. F1 score results: (a) the ground truth F1 values (from the simulation) versus the F1 values estimated using the partitioning method

with t ¼ n/N, and (b) the mean M results on 50 iterations for the 4 datasets

(a)

Dataset Sequential trees CTGAN

5k 15k 25k 5k 15k 25k

Act. Est. Act. Est. Act. Est. Act. Est. Act. Est. Act. Est.

F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1

COVID 0.105 0.104 0.283 0.283 0.426 0.432 0.104 0.104 0.28 0.284 0.431 0.432

Washington 0.146 0.148 0.34 0.334 0.456 0.454 0.066 0.07 0.168 0.169 0.235 0.24

CCHS 0.077 0.075 0.21 0.2 0.329 0.327 0.076 0.075 0.214 0.211 0.33 0.327

Nexoid 0.169 0.174 0.402 0.4 0.568 0.564 0.156 0.159 0.358 0.36 0.507 0.502

(b)

Dataset Sequential trees CTGAN

5k 15k 25k 5k 15k 25k

COVID �0.0002 �0.0009 �0.001 �0.0002 �0.0006 �0.0009

Washington 0.08 0.159 0.192 �0.003 �0.049 �0.122

CCHS �0.0002 0.0003 �0.0001 <�0.0001 0.0001 �0.0001

Nexoid �0.009 �0.114 �0.305 �0.027 �0.184 �0.492
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tion size is not obvious, one default option is to use the geographic

population size for the region that is covered by the dataset. If the

population size is underestimated then that results in an overestima-

tion of membership disclosure risk, and if the population size is

overestimated then that results in an underestimation of membership

disclosure risk. Therefore, to err on the conservative side it is prefer-

rable to use a lower value for the population size when there is

uncertainty. In the case of the default option for determining popu-

lation size, this means selecting the smallest region that covers a

dataset.

Risk mitigation
For a specific dataset, it is possible to ensure that the membership

disclosure risk is acceptably small by incorporating the M metric in

a risk-utility loss during hyperparameter tuning of the generative

model while it is being trained. The following loss metric can be

used:

lossRU ¼ �max ½M > 0:2� � 0:31þ 1

1þ eðM�1Þ

� �
; ½M � 0:2�

� �
�U

(5)

where U is some validated utility metric82 and ½� are Iverson brack-

ets. This loss proportionally penalizes the utility if the membership

disclosure is above the 0.2 threshold using a sigmoid function. If the

risk is at or below 0.2, then the loss is equal to the utility since in

that case the risk is deemed acceptable. If the risk is slightly above

the 0.2 threshold then the loss is almost equal to the utility, and

starts to decrease monotonically as the risk grows. The advantage of

lossRU is that privacy considerations are integrated within model

development rather than being a post hoc assessment.

Table 4. Summary of the oncology trials used on the analysis with the study size and the population, as well as the membership disclosure

risk

Dataset Population size (dataset size) M

Trial #1 (NCT00041197): National Cancer Institute

Tests if postsurgery receipt of imatinib could reduce the recurrence of gastrointestinal stromal tumors (GIST).

Imatinib is an FDA approved protein-tyrosine kinase inhibitor for treating certain cancers of the blood cells.

This drug is hypothesized to be effective against GIST as imatinib inhibits the kinase which experiences

gain of function mutations in up to 90% of GIST patients.86 At the time of this trial the efficacy of imatinib

for GIST as well as the optimal dosage for treatment of GIST was unknown.

1310 (n¼ 773) �1.42

Trial #2 (NCT01124786): Clovis Oncology

Most pancreatic cancer patients have advanced inoperable disease and potentially metastases. At the time of

this trial the first line therapy for patients with inoperable disease was gemcitabine monotherapy. One

transporter (hENT1: human equilibrative nucleoside transporter-1) has been identified as a potential pre-

dictor of successful treatment via gemcitabine. This trial compares standard gemcitabine therapy to a novel

fatty acid derivative of gemcitabine. This is hypothesized to be superior to gemcitabine in metastatic pancre-

atic adenocarcinoma patients with low hENT1 activity as it exhibits anticancer activity independent of

nucleoside transporters like hENT1, while gemcitabine seems to require nucleoside transporters for anti-

cancer activity.

19 255 (n¼ 367) �0.0137

Trial #3 (NCT00688740): Sanofi

This phase 3 trial compares adjuvant anthracycline chemotherapy (fluorouracil, doxorubicin, and cyclophos-

phamide) with anthracycline taxane chemotherapy (docetaxel, doxorubicin, and cyclophosphamide) in

women with lymph node positive early breast cancer.

21 875 (n¼ 746) �0.034

Trial #4 (NCT00113763): Amgen

This was a randomized Phase 3 trial examining whether panitumumab, when combined with best supportive

care, improves progression-free survival among patients with metastatic colorectal cancer, compared with

those receiving best supportive care alone.87,88 Patients included in the study had failed other chemotherapy

options available at the time of the study. Participants were enrolled between 2004 and 2005.

58 381 (n¼ 370) �0.0137

Trial #5 (NCT00460265): Amgen

This was also a randomized Phase 3 trial on panitumumab, but among patients with metastatic and/or recur-

rent squamous cell carcinoma of the head and neck. The treatment group received panitumumab in addi-

tion to other chemotherapy (Cisplatin and Fluorouracil), while the control group received Cisplatin and

Fluorouracil as first line therapy.89 Participants were enrolled between 2007 and 2009.

5868 (n¼ 520) �0.0947

Trial #6 (NCT00119613): Amgen

This was a randomized and blinded Phase 3 trial aimed at evaluating whether “increasing or maintaining

hemoglobin concentrations with darbepoetin alfa” improves survival among patients with previously

untreated extensive-stage small cell lung cancer. The treatment group received darbepoetin alfa with plati-

num-containing chemotherapy, whereas the control group received placebo instead of darbepoetin alfa.

16 484 (n¼ 479) �0.0322

Trial #7 (N0147): NCCTG

This was a randomized trial of 2686 patients with stage 3 colon adenocarcinoma that were randomly assigned

to adjuvant regimens with or without Cetuximab. After resection of colon cancer, Cetuximab was added to

the modified 6th version of the FOLFOX regimen including oxaliplatin plus 5-fluorouracil and leucovorin

(mFOLFOX6), fluorouracil, leucovorin, and irinotecan (FOLFIRI), or a hybrid regimen consisting of

mFOLFOX6 followed up by FOLFIRI.90 Our focus is on the secondary retrospective analysis of N0147

(the published secondary analysis).91

27 526 (n¼ 1543) 0.052

Note: The population includes the specific study participants. The n value indicates the number of trial participants for which we had data available.
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Limitations
In our analysis, we considered the mean results across our simula-

tions. The variation across the iterations was largely driven by sam-

pling variability. These results do not account for the worse case

situation, but only the average performance of our membership dis-

closure metric.

Our membership disclosure metric is applicable to tabular data,

which is consistent with the literature thus far.8,49,50,51,53,55,56

Future work should evaluate and extend these membership disclo-

sure estimators to longitudinal datasets.

There are other types of privacy risks in synthetic data beyond

just membership disclosure, such as attribution risks.43,48 In practice

all privacy risks should be considered when assessing synthetic data-

sets.
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