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Abstract

Combinatorial threshold-linear networks (CTLNs) are a special class of inhibition-dominated

TLNs defined from directed graphs. Like more general TLNs, they display a wide variety of

nonlinear dynamics including multistability, limit cycles, quasiperiodic attractors, and chaos.

In prior work, we have developed a detailed mathematical theory relating stable and unsta-

ble fixed points of CTLNs to graph-theoretic properties of the underlying network. Here we

find that a special type of fixed points, corresponding to core motifs, are predictive of both

static and dynamic attractors. Moreover, the attractors can be found by choosing initial con-

ditions that are small perturbations of these fixed points. This motivates us to hypothesize

that dynamic attractors of a network correspond to unstable fixed points supported on core

motifs. We tested this hypothesis on a large family of directed graphs of size n = 5, and

found remarkable agreement. Furthermore, we discovered that core motifs with similar

embeddings give rise to nearly identical attractors. This allowed us to classify attractors

based on structurally-defined graph families. Our results suggest that graphical properties

of the connectivity can be used to predict a network’s complex repertoire of nonlinear

dynamics.

Introduction

The vast majority of the literature on attractor neural networks has focused on fixed point

attractors. The typical scenario is that of a network that contains either a discrete set of stable

fixed points, as in the Hopfield model, or a continuum of marginally stable fixed points, as in

continuous attractor networks. Depending on initial conditions, or in response to external

inputs, the activity of the network converges to one of these fixed points. These are sometimes

referred to as static attractors, because the fixed point is in an equilibrium or steady state. But

neural networks, even very simple ones like threshold-linear networks (TLNs), can also exhibit

dynamic attractors with periodic, quasiperiodic, or even chaotic orbits. What network
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architectures support these more complex attractors? And can their existence be predicted

based on the structure of the underlying connectivity graph?

In this work, we tackle these questions in the context of combinatorial threshold-linear net-

works (CTLNs), which are a special class of TLNs defined from directed graphs. TLNs have

been widely used in computational neuroscience as a framework for modeling recurrent neu-

ral networks, including associative memory networks [1–8]. And CTLNs are a subclass that

are especially tractable mathematically [9–12]. What graph structures support dynamic attrac-

tors in CTLNs?

We begin by observing an apparent correspondence between a network’s minimal fixed

points and its attractors. This leads us to hypothesize that fixed points supported on a special

class of subgraphs, called core motifs, are predictive of both static and dynamic attractors.

Next, we test this hypothesis on a large family of CTLNs on small graphs of n = 5 nodes. We

find that, with few exceptions, fixed points supported on core motifs correspond precisely to

the attractors of the network. Moreover, we find that core motifs with similar embeddings in

the larger network give rise to nearly identical attractors. This enables us to classify the

observed attractors and identify common structural properties of the graphs that support

them. Our results illustrate how the structure of a network can be used to predict the emer-

gence of various attractors by way of graphical analysis.

Methods and models

We study dynamic attractors in a family of threshold-linear networks (TLNs). The firing rates

x1(t), . . ., xn(t) of n recurrently-connected neurons evolve in time according to the standard

TLN equations:

dxi

dt
¼ � xi þ

Xn

j¼1

Wijxj þ bi

" #

þ

; i ¼ 1; . . . ; n ð1Þ

where n is the number of neurons. The dynamic variable xiðtÞ 2 R�0 is the activity level (or

“firing rate”) of the ith neuron, and bi can represent a threshold or an external input. The values

Wij are entries of an n×n matrix of real-valued connection strengths. The threshold nonlinear-

ity ½��
þ
¼
def maxf0; �g is critical for the model to produce nonlinear dynamics; without it, the sys-

tem would be linear.

CTLNs

Combinatorial threshold-linear networks (CTLNs) are a special case of inhibition-dominated

TLNs, where we restrict to having only two values for the connection strengths Wij. These are

obtained as follows from a directed graph G, where j! i indicates that there is an edge from j
to i and j!= i indicates that there is no such edge:

Wij ¼

0 if i ¼ j;

� 1þ ε if j! i in G;

� 1 � d if j! i in G:

8
>>><

>>>:

ð2Þ

Additionally, CTLNs typically have a constant external input bi = θ in order to ensure the

dynamics are internally generated rather than inherited from a changing or spatially heteroge-

neous input. A CTLN is thus completely specified by the choice of a graph G, together with

three real parameters: ε, δ, and θ. We additionally require that δ> 0, θ> 0, and
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0 < ε <
d

dþ 1
. When these conditions are met, we say the parameters are within the legal

range. (The upper bound on ε ensures that subgraphs consisting of a single directed edge i! j
are not allowed to support stable fixed points [9].) Note that the upper bound on ε implies ε<
1, and so the W matrix is always effectively inhibitory. For fixed parameters, only the graph G
varies between networks. Unless otherwise noted, the simulations presented here have param-

eters θ = 1, ε = 0.25, and δ = 0.5. We will refer to these as the standard parameters.
We interpret the CTLN as modeling a network of n excitatory neurons, whose net interac-

tions are effectively inhibitory due to a strong global inhibition (Fig 1A). When j!= i, we say

j strongly inhibits i; when j! i, we say j weakly inhibits i. Note that because −1 − δ< −1< −1

+ ε, when j!= i neuron j inhibits i more than it inhibits itself via its leak term; when j! i, neu-

ron j inhibits i less than it inhibits itself. These differences in inhibition strength cause the

activity to follow the arrows of the graph (see Fig 1C).

Fixed points

Stable fixed points of a network are of obvious interest because they correspond to static attrac-

tors [3, 6, 7, 12]. One of the most striking features of CTLNs, however, is the strong connection

between unstable fixed points and dynamic attractors [10]. This is our main focus here.

A fixed point x� 2 Rn
of a TLN is a solution that satisfies dxi/dt|x=x� = 0 for each i 2 [n],

where ½n�¼def f1; . . . ; ng. The support of a fixed point is the subset of active neurons,

suppx� ¼ fi j x�i > 0g. CTLNs (and TLNs) are piecewise-linear dynamical systems, and we

typically require a nondegeneracy condition that is generically satisfied and implies nonde-

generacy in each linear regime [11]. As a result, we have that for a given network there can be

at most one fixed point per support. Thus, we can label all the fixed points of a network by

their support, σ = suppx� � [n]. We denote this collection of supports by:

FPðGÞ ¼ FPðG; ε; dÞ¼def fs � ½n� j s is a fixed point support of the associated CTLNg:

Note that once we know σ 2 FP(G) is the support of a fixed point, the fixed point itself is easily

recovered. Outside the support, we must have x�i ¼ 0 for all i =2 σ. Within the support, x� is

Fig 1. CTLNs. (A) A neural network with excitatory pyramidal neurons (triangles) and a background network of inhibitory interneurons (gray circles)

that produces a global inhibition. The corresponding graph (right) retains only the excitatory neurons and their connections. (B) TLN dynamics and

the graph of the threshold-nonlinearity [�]+ = max{0, �}. (C) A graph that is a 3-cycle (left) and its corresponding CTLN matrix W. (Right) A solution for

the corresponding CTLN, with parameters ε = 0.25, δ = 0.5, and θ = 1, showing that network activity follows the arrows in the graph. Peak activity

occurs sequentially in the cyclic order 123.

https://doi.org/10.1371/journal.pone.0264456.g001
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given by:

x�
s
¼ yðI � WsÞ

� 1
1s;

where Wσ is the induced submatrix obtained by restricting rows and columns to σ, and 1σ is a

column vector of all 1s of length |σ|.

A useful fact is that a fixed point for a CTLN with graph G is also a fixed point for any sub-

network containing its support. A subnetwork supported on σ is a CTLN for the induced sub-
graph G|σ obtained from G by restricting to the vertices of σ and keeping only edges i! j for i,
j 2 σ (see [11]). In particular, if σ 2 FP(G), then σ 2 FP(G|σ). The converse is not true: one can

have σ 2 FP(G|σ) in the subnetwork, but the fixed point may not survive the embedding into

the larger network, and so σ =2 FP(G).

Graph rules

In prior work, a series of graph rules were proven that can be used to determine fixed points of

a CTLN by analyzing the structure of the graph G [11, 12]. These rules are all independent of

the choice of parameters ε, δ, and θ. Some of the simplest graph rules are also quite powerful,

and can be used to fully determine FP(G) for many graphs. Note that these are only valid for

nondegenerate CTLNs, a condition defined in [11] that generically holds.

Table 1 lists a few of these rules, which were all proven in [11]. To state the rules, we need

some graph-theoretic terminology. A vertex i of a graph G is a source if it has no incoming

edges j! i, and it is a proper source if it also has at least one outgoing edge i! j. A sink is a

vertex with no outgoing edges. A graph is uniform in-degree with degree d if all vertices receive

exactly d incoming edges (see Fig 2). Note that a vertex can be a source or a sink in an induced

subgraph, G|σ, but not in the full graph G. Similarly, a subgraph G|σ may be uniform in-degree

even if the vertices of σ do not have the same in-degree within the full graph G.

The sources rule implies that there can be no fixed points supported on a pair of vertices {i,
j} corresponding to a single directed edge, i! j, since i is a proper source in the induced sub-

graph. The sinks rule tells us that the only singletons that can support fixed points correspond

to sinks of G. The uniform in-degree rule implies that cycles, which have uniform in-degree

d = 1, support fixed points if and only if there is no vertex outside the cycle receiving two or

more edges from it. It also implies that cliques of size m, which have uniform in-degree m − 1,

support fixed points if and only if they are target-free: that is, if and only if there is no vertex k
outside the clique receiving edges from all m vertices of the clique. In fact, we have shown in

[9] that target-free cliques, including sinks, correspond to stable fixed points. A third conse-

quence of the uniform in-degree rule is that if G|σ is an independent set (uniform in-degree 0),

then σ 2 FP(G) if and only if each i 2 σ is a sink in G.

To see how these graph rules, together with parity, can be used to work out FP(G), consider

the graph in Fig 3A. From the sinks rule we immediately see that {4} 2 FP(G), but no other sin-

gleton supports a fixed point. From the sources rules we see that none of the pairs {1, 2}, {2, 3},

Table 1. Graph rules for CTLNs.

rule name graph rule (theorem)

sources if i 2 σ is a proper source in G|σ or in G, then σ =2 FP(G)

sinks if σ = {i} is a singleton, then σ 2 FP(G) iff i is a sink of G
uniform if G|σ is uniform in-degree d, then

in-degree σ 2 FP(G),8k =2 σ, k receives at most d edges from σ
parity the total number of fixed points, |FP(G)|, is odd

https://doi.org/10.1371/journal.pone.0264456.t001
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{1, 3}, and {3, 4} are in FP(G), as they correspond to edges having a proper source. Using the

uniform in-degree rule we can also rule out the independent sets {1, 4} and {2, 4}, since 1 and 2

are not sinks. On the other hand, the uniform in-degree rule does imply that the 3-cycle {1, 2,

3} 2 FP(G). All other subsets of size three can be ruled out because they have a proper source

in the induced subgraph G|σ.

After checking all subsets of vertices of size 1, 2, or 3, we have found that only 4, 123 2 FP

(G). Here we are simplifying notation for fixed point supports by writing 4 instead of {4} and

123 instead of {1, 2, 3}. Now we can use parity to conclude that we must also have 1234 2 FP

(G), since this is the only remaining support and the total number of fixed points must be odd.

Note that the rules we have used apply irrespective of the choice of ε, δ or θ, provided they are

in the legal range. It follows that FP(G) = {4, 123, 1234} is invariant under changes of these

parameters.

Results

Core fixed points and core motifs

The starting point for this work was the following remarkable observation about CTLNs:

namely, that their fixed points appear to give rise to both static and dynamic attractors.

Fig 2. Uniform in-degree graphs. (A) All n = 3 graphs with uniform in-degree. (B) Cartoon showing survival rule for an arbitrary subgraph with

uniform in-degree d.

https://doi.org/10.1371/journal.pone.0264456.g002

Fig 3. An example CTLN and its attractors. (A) The graph of a CTLN. Using graph rules, we can compute FP(G). (B) Solutions to the CTLN with the

graph in panel A using the standard parameters θ = 1, ε = 0.25, and δ = 0.5. (Top) The initial condition was chosen as a small perturbation of the fixed

point supported on 123. The activity quickly converges to a limit cycle where the high-firing neurons are the ones in the fixed point support. (Bottom)

A different initial condition yields a solution that converges to the static attractor corresponding to the stable fixed point on node 4. (C) The three fixed

points are depicted in a three-dimensional projection of the four-dimensional state space. Perturbations of the fixed point supported on 1234 produce

solutions that either converge to the limit cycle shown in panel B, or to the stable fixed point. This fixed point thus lives on the boundary of the two

basins of attraction, and behaves as a “tipping point” between the two attractors.

https://doi.org/10.1371/journal.pone.0264456.g003
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Consider again the network in Fig 3A. From graph rules, we already saw that FP(G) = {4, 123,

1234}, irrespective of the choice of ε, δ or θ. The support 4 corresponds to a sink in the graph,

and gives rise to a stable fixed point (i.e., a static attractor). Initial conditions that are small per-

turbations of this fixed point will result in the network activity converging back to it (Fig 3B,

bottom). In contrast, the fixed point supported on 123 gives rise to a limit cycle (i.e., a dynamic

attractor). Initial conditions near this fixed point result in activity that converges to a periodic

trajectory whose high-firing neurons are 1, 2, and 3 (Fig 3B, top). The last fixed point, with full

support 1234, does not have a corresponding attractor. Initial conditions that are small pertur-

bations of this fixed point can either converge to the attractor for 4 or for 123 (Fig 3C). This

fixed point lies on the boundaries of the two basins of attraction, and can thus be considered a

“tipping point.”

Which fixed points correspond to attractors, and which ones are tipping points? Fig 3 pro-

vides a hint: the fixed points giving rise to attractors have supports 4 and 123, which are mini-
mal under inclusion in FP(G). The last fixed point, 1234, has a support that contains smaller

fixed point supports. We will call a fixed point minimal in G if its support σ is minimal in FP

(G).

Next, consider Fig 4A. Using the graph rules in Table 1, together with two additional rules

in [11] (Lemma 21 and graphical domination), we can work out FP(G) for this network as

well. We find that there are two minimal fixed points, supported on 125 and 235. Consistent

with our previous observations, each of these fixed points has a corresponding attractor. Spe-

cifically, we say that a fixed point corresponds to an attractor if

(i) initial conditions that are small perturbations from the fixed point lead to solutions that

converge to the attractor, and

(ii) the high-firing neurons in the attractor match the support of the fixed point.

Just as we saw in Fig 3, the induced subgraphs G|σ corresponding to the minimal fixed

point supports σ = 125 and σ = 235 are 3-cycles. Note, however, that the graph in Fig 4A actu-

ally has a third 3-cycle, 145, yet this one does not support a fixed point of G and also has no

corresponding attractor. The reason 145 =2 FP(G) is because node 3 receives two edges from

145, and so the uniform in-degree rule tells us the fixed point does not survive in the larger

graph. In contrast, both 125 and 235 do have fixed points that survive to the full network. We

see from this example that it is not enough to have a subgraph that supports an attractor. The

3-cycle whose fixed point does not survive the embedding has no corresponding attractor.

Does every minimal fixed point of G have a corresponding attractor? Unfortunately,

minimality is not enough. Fig 4B depicts a network built from the one in panel A by adding a

single node, 6. Because 6 receives edges from both 2 and 5, it ensures that the 125 and 235

fixed points do not survive to the full network. As a result, 1235 also dies but the fixed point

1245 remains and becomes minimal. This fixed point does not have a corresponding attractor,

however. Small perturbations of the fixed point for 1245 lead the network to converge to the

attractor corresponding to the other minimal fixed point, 236. The main difference between

these minimal fixed points is that 1245 is not minimal in its own subnetwork, G|1245, while 236

is still minimal in G|236. This motivates the following definition:

Definition 1 (core fixed point). We say that a fixed point of a CTLN on a graph G is a core
fixed point if its support σ 2 FP(G) is minimal (under inclusion) in FP(G) and is also minimal

in FP(G|σ).

Equivalently, σ is the support of a core fixed point if and only if σ 2 FP(G) and FP(G|σ) =

{σ}. This is because the minimality of σ in G|σ guarantees that σ is the unique fixed point of G|σ
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and also that it is minimal in G if it survives to σ 2 FP(G). The converse, however, is not true.

One can have σ minimal in G but not minimal in G|σ, simply because the fixed points below it

in the subnetwork did not survive to the larger one. This is what happened with the σ = 1245

fixed point in Fig 4B. These are precisely the minimal fixed points we are ruling out with the

above definition.

Since core fixed points must satisfy FP(G|σ) = {σ}, there are only certain subgraphs that can

support them. It is useful to give these graphs their own name:

Definition 2 (core motifs). Let G|σ be a subgraph of G that satisfies FP(G|σ) = {σ}. Then we

say that G|σ is a core motif of G. When the graph in question is understood, we may also refer

to the support itself, σ, as a core motif.

Using graph rules, it is easy to see that all cliques (all-to-all bidirectionally connected sub-

graphs) and cycles of any size are core motifs, and this holds for all choices of the CTLN

Fig 4. Correspondence between core fixed points and attractors. For each of the three graphs, FP(G) was computed using graph rules. Minimal fixed

points that are also core fixed points are shown in bold. (A) A network on five nodes with two core fixed points supported on 125 and 235. Each of the

two attractors of the network can be obtained via an initial condition that is a perturbation of one of these fixed points. The first attractor follows the

cycle 125 in the graph, while the second one follows the cycle 253. (B) A network with the same graph as in A, except for the addition of node 6.

Although there are two minimal fixed points, supported on 236 and 1245, only the fixed point for 236 is core and yields an attractor. Initial conditions

near the 1245 fixed point (denoted 1245 fp) produce solutions that stay near the (unstable) fixed point for some time, but eventually converge to the

same 236 attractor. (C) A larger network built by adding nodes 7, 8, and 9 to the graph in B, and flipping the 4! 3 edge. This CTLN has four core fixed

points, and no other minimal fixed points. Each core fixed point has a corresponding attractor: stable fixed points supported on 48 and 189, a limit cycle

supported on 236, and a chaotic attractor for 345.

https://doi.org/10.1371/journal.pone.0264456.g004
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parameters ε, δ, and θ, provided they are within the legal range [13]. However, there is a richer

variety of core motifs beyond cliques and cycles. Fig 5A–5C depicts all core motifs up to size

n = 4. Note that all the graphs in Fig 5A and 5B are uniform in-degree, but not all are cliques

or cycles. The second graph in Fig 5B has uniform in-degree 2 but no symmetry. Interestingly,

its corresponding attractor exhibits a (2,3) exchange symmetry, as neurons 2 and 3 fire syn-

chronously. Fig 5C shows the two core motifs of size n� 4 that are not uniform in-degree. The

first one has what we call a fusion attractor, as it appears to be a blend of the usual limit cycle

supported on 123 together with a fixed point supported on 4. The second graph in Fig 5C is an

Fig 5. Core motifs. (A-C) All core motifs of size n� 4. Note that every clique is a core motif, as are all cycles. (B-C) Attractors are shown for each core

motif of size 4 other than the 4-clique, whose attractor is a stable fixed point. (D-E) All n = 5 core motifs that are oriented graphs.

https://doi.org/10.1371/journal.pone.0264456.g005
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example of a cyclic union (see [11]), with a (2,3) exchange symmetry that is reflected in its

attractor. The attractors for the cliques are all stable fixed points, and the 3-cycle attractor is

the one we saw in Fig 1C.

There are many more core motifs of size n = 5. Fig 5D–5E shows all the ones that are ori-
ented, meaning the graphs have no bidirectional edges. Fig 5D shows the 5-cycle (left) and the

5-star (right), each having attractors that respect the cyclic symmetry. Fig 5E shows the

remaining three oriented core motifs and their corresponding attractors. Note that the second

attractor exhibits the same (2,3,4) symmetry as the first one, even though the dropped 4! 5

edge breaks the corresponding symmetry in the graph.

Every core fixed point is supported on a core motif, but not all core motifs in a graph give

rise to core fixed points. This is because the fixed point of a core motif may not survive the

embedding in the larger network. For example, singletons are core motifs, but they only yield

core fixed points if they are embedded as sinks in G. Similarly, all 3-cycles of a graph are core

motifs, but they can fail to have a surviving fixed point as in the case of 145 in Fig 4A.

The graph in Fig 4C has plenty of cycles and cliques, and these are all core motifs. However,

only the cliques supported on 48 and 189 and the 3-cycles supported on 236 and 345 have sur-

viving fixed points in FP(G). These are in fact all the core fixed points of G. Although FP(G)

has an additional 13 fixed points (shown in Fig 4C), none of them are minimal and so none

can be core. By systematically trying a battery of different initial conditions in the state space,

we were able to find only four attractors: two stable fixed points, a limit cycle, and a chaotic

attractor. As can be seen in Fig 4C (right), these attractors correspond precisely to the four

core fixed points we determined using graph rules. Moreover, each core fixed point was sup-

ported on a clique or a cycle core motif. In other words, by identifying the core motifs of the

network and applying the uniform in-degree rule, we were able to find all core fixed points via

a purely graphical analysis. These core fixed points were then predictive of the network’s static

and dynamic attractors.

We hypothesized that this pattern holds more generally: namely, that a network’s core fixed

points correspond to both its static and dynamic attractors. In the case of static attractors, our

hypothesis implies that every stable fixed point is a core fixed point, and hence its support is

minimal and corresponds to a core motif. In prior work, we explored an even stronger conjec-

ture: that every stable fixed point of a CTLN corresponds to a target-free clique [12]. In this

work, however, we test the complementary hypothesis that dynamic attractors correspond to

core fixed points that are unstable.

Attractor prediction

In order to focus on dynamic attractors, we decided to study graphs whose CTLNs contain no

stable fixed points, and hence no static attractors. In [9] it was shown that oriented graphs

with no sinks have no stable fixed points. We thus focused our attention on oriented graphs

with no sinks on n = 5 nodes. This family is large enough to encompass a rich variety of

dynamic phenomena, and small enough to be studied comprehensively.

Oriented graphs with no sinks. A directed graph is oriented if it has no bidirectional

edges i$ j. The graph in Fig 3A is oriented but has a sink, which corresponds to a static

attractor. The graph in Fig 4C has no sinks, but it has bidirectional edges and is thus not ori-

ented. It has both static and dynamic attractors. In contrast, the graphs in Fig 4A and 4B are

both oriented with no sinks, as are the graphs in Fig 5D and 5E. These networks are guaran-

teed to have only dynamic attractors, and are precisely the kind of networks we have chosen to

investigate. Note that their fixed points all have support of size at least three, a useful fact that

holds more generally:
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Lemma 3. Let G be an oriented graph with no sinks. Then for each σ 2 FP(G), |σ|� 3.

Proof. By the sinks rule, there are no singletons in FP(G). Now consider σ = {i, j}, with i! j.
By the sources rule, σ =2 FP(G). On the other hand, if σ = {i, j} but G|σ is an independent set (no

edge), then by the uniform in-degree rule for d = 0 we see that σ =2 FP(G), since i and j are not

sinks in G. As there are no subsets with bidirectional edges, it follows that σ =2 FP(G) for all σ of

size |σ|� 2.

For n = 3, there is only one oriented graph with no sinks: the 3-cycle. For n = 4, there are

seven such graphs (up to isomorphism). Three of them are obtained by adding a proper source

node to the 3-cycle, with one, two, or three outgoing edges. In addition to this, there is the

4-cycle and three more graphs obtained by adding a node to the 3 cycle that is not a source.

We call these the D, E, and F graphs (see Fig 6A). In total, there are eight (non-isomorphic)

oriented graphs with no sinks on n� 4 nodes. As before, FP(G) for each of these graphs could

be derived and core fixed points identified via graphical analysis. We then verified the corre-

spondence between core fixed points and attractors computationally, for CTLNs with the stan-

dard parameters. Fig 6 shows the attractors corresponding to the D, E, and F graphs, as well as

that of the 3-cycle and 4-cycle (S graph). The three graphs obtained by adding a source node to

the 3-cycle (not shown) have the same FP(G) and the same attractor as the 3-cycle. Only the F

graph has more than one core fixed point, but each one yields its own attractor, as predicted.

With so few graphs, however, this was not a strong test of our hypothesis.

Fig 6 contains an additional T graph (a.k.a. the “tadpole”) that is oriented, but has a sink.

We include it because it is useful in our method for classifying n = 5 oriented graphs with no

sinks, described below. Only the dynamic attractor is shown, but there is also a stable fixed

point supported on node 4. Indeed, the correspondence between core fixed points and attrac-

tors for this graph was already shown in Fig 3.

Note that each attractor in Fig 6A has a corresponding sequence, giving the order in which

the neurons reach peak activity within a single period of the limit cycle. Underlined numbers

correspond to low-firing neurons; for example, the sequence 1234 for the D attractor indicates

that node 4 has a low peak as compared to the other three. Since the trajectories for limit cycles

are periodic, the sequence is also understood to be periodic. Our convention is to select the

lowest-numbered high-firing neuron as the starting point.

Taxonomy of n = 5 oriented graphs with no sinks. For n = 5, there are many more ori-

ented graphs with no sinks. We developed a complete taxonomy of these graphs after splitting

them into two groups: graphs with at least one source, and graphs with no sources. There are

76 graphs in each group (up to isomorphism), for a total of 152 oriented graphs with no sinks.

The graphs with sources must have proper sources, since an isolated node is also a sink.

Fig 6B shows the family of graphs obtained by adding node 4 and then node 5 as sources to the

3-cycle. The dashed lines indicate optional edges. Keeping in mind that each added source

must have out-degree at least one, we count 30 graphs in this family, up to isomorphism. The

accompanying attractor is identical for every graph, and matches that of the isolated 3-cycle in

Fig 6A. The second family of graphs in Fig 6B comes from adding node 5 as a proper source to

the D graph. Since the D graph has no symmetry, we get 24 − 1 = 15 distinct graphs this way.

Here, too, each attractor is identical and matches that of the isolated D graph above. Fig 6B

shows the counts for all the other graph families obtained by adding a source. In total, there

are 76 of them.

The remaining oriented graphs with no sinks have no sources. It turns out that, other than

the 5-cycle, these can all be constructed from one of the D, E, F, T, or S base graphs in Fig 6A

by adding node 5 with at least one incoming and at least one outgoing edge. We developed a

simple notation for these constructed graphs, which is illustrated in Fig 6C. The notation uses

the letter of the base graph followed by the nodes sending incoming edge(s) to node 5, and
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Fig 6. Taxonomy of n = 5 oriented graphs with no sinks. (A) Base graphs used to construct n = 5 graphs, and their corresponding attractors. Each

attractor has a sequence, indicating the (periodic) order in which the neurons achieve their peak firing rates. (B) The oriented graphs with sources can

be constructed by adding proper sources to each of the base graphs. This yields 30 graphs from the 3-cycle base (left), 15 graphs from the D graph base

(right), and an additional 15, 11, and 5 graphs from the E, F and S graph bases. (C) All oriented graphs with no sources or sinks can be constructed from

one of the D, E, F, T, and S base graphs. The graph label completely specifies the graph by naming the base and indicating the incoming and outgoing

edges to the added node 5. (Left) For example, D1[2, 3] is the graph constructed from the D graph with added edges 1! 5 and 5! 2, 3. (Right) The

only oriented n = 5 graph with no sources or sinks that cannot be constructed in this way is the 5-cycle.

https://doi.org/10.1371/journal.pone.0264456.g006
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finally the nodes receiving the outgoing edges from 5, in brackets. For example, the graph

obtained from the D graph by adding the edges 1! 5 and 5! 2, 3 is denoted D1[2, 3]. (See

Supporting information for more details.) All remaining graphs with no sources or sinks can

be constructed in this manner, but many are constructible in more than one way. For example,

D12, 3] is isomorphic to E2[3]. In total, there are 75 non-isomorphic graphs obtained via this

construction. Together with the 5-cycle, these are precisely the 76 oriented graphs with no

sources or sinks on n = 5 nodes.

Parameter-independence of the attractor predictions. From prior work [11], we know

that for any oriented graph on n� 5 nodes, the set of fixed point supports FP(G) is indepen-

dent of the choice of CTLN parameters ε, δ, and θ, provided they are in the legal range. We

were thus able to completely work out FP(G) for each of the 152 graphs using graph rules,

Lemma 3, and a few additional facts from [11] (see Supporting information). From this graphi-

cal analysis, we also identified the core fixed points for each graph. Altogether, there were 191

core fixed points across the 152 graphs, with at least one core fixed point per graph.

We hypothesized that each of these (unstable) core fixed points corresponds to a dynamic

attractor, meaning that: (i) initial conditions near the fixed point yield solutions that converge

to the attractor, and (ii) the support of the core fixed point predicts the high-firing neurons in

the attractor. In other words, the core fixed points give us a concrete prediction for the attrac-

tors of the network, including how to find them. Note that while the exact firing rates at the

core fixed points depend on parameters, their supports in FP(G) are parameter-independent.

This means the prediction for the number of attractors and where they are localized within the

graph of the network is the same for all parameters ε, δ, θ in the legal range. Table 2 provides a

tally of the number of graphs and core fixed points for each subgroup of n = 5 graphs we

studied.

Testing the attractor predictions. Next, we performed extensive searches for the attrac-

tors of the CTLNs associated to each graph, with the standard parameters. This involved simu-

lations of network activity using a battery of initial conditions, including dozens of

perturbations of each fixed point (not only core fixed points) and the 32 corners of the unit

cube [0, 1]5. Remarkably, we found that every single observed attractor corresponded to a core

fixed point of the CTLN, and was thus accurately predicted by graphical analysis of the net-

work. In particular, there were no spurious attractors that were not predicted by core fixed

points. On the other hand, there were six core fixed points, across six different graphs, that did

not have a corresponding attractor. We refer to these predicted attractors that failed to be real-

ized as ghost or missing attractors. The results are summarized in Table 2.

The attractors were predicted irrespective of the CTLN parameters, but we initially tested

these predictions only in the standard parameters. Since there were ghost attractors that failed

to be realized, we wondered if these attractors might emerge in a different parameter regime.

For each of the six graphs with ghost attractors, we investigated CTLNs with higher inhibition

levels (i.e., higher δ). We found that by keeping θ = 1 and ε = 0.25, but increasing the inhibi-

tion to δ = 1.25, all six ghost attractors were observed as real attractors in the network. More-

over, all the other core fixed points continued to have corresponding attractors, and there

were no new spurious attractors (see Supporting information). In this parameter regime, the

prediction of attractors from core fixed points was perfect.

Modularity of attractors. Our taxonomy of oriented graphs with no sinks allowed us to

go further in our analysis of attractors. Other than the 5-cycle, each n = 5 graph was con-

structed from a base graph of three or four nodes, where the base graph contained a core motif

embedded in a canonical way. So rather than starting from a set of 152 graphs with arbitrary

orderings on the vertex labels, graphs with similarly embedded core motifs had their vertices

aligned. This ensured that similarities across attractors corresponding to isomorphic core
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motifs were readily apparent, without having to find the optimal permutations on x1, . . ., x5 to

make the trajectories align. In particular, we expected that activation sequences associated to

attractors for similarly embedded core motifs would be the same.

Beyond such combinatorial features, however, we expected considerable variation in the

precise trajectories of the attractors. After all, no two graphs are isomorphic, so the core motifs

across different graphs are never embedded in exactly the same way. In particular, for a given

choice of CTLN parameters, each graph yields a distinct dynamical system having a distinct W
matrix, with no pair of matrices being permutation-equivalent.

To our surprise, we discovered that attractors from different networks corresponding to

similarly embedded core motifs were often identical, or nearly identical. Moreover, the graphs

fit into simple graph families which could be described compactly via a set of common edges

across all graphs in the family, together with a set of optional edges that accounted for differ-

ences between graphs. We depict these families via master graphs, with optional edges shown

as dashed lines. Although the optional edges could alter FP(G), and even the number of attrac-

tors of a network, they left the aligned attractor for the graph family unchanged. Altogether we

found that the 185 attractors observed in the standard parameters fell into only 25 distinct

attractor classes, which we labeled att 1–25. The first attractor class, att 1, corresponds to the

“pure 3-cycle” attractor shown in Fig 6B (left), with 30 graphs. While several attractor classes

have only one graph, they vary considerably in size and the largest has 44 graphs. A full classifi-

cation of attractor classes, together with master graphs, is provided in Section 4 of the Support-

ing Information.

Fig 7 displays eight of the attractor classes comprising 98 attractors and 2 ghost attractors.

The first class shown, att 2, consists of all graphs obtained by adding a proper source to the

4-cycle. Note that since our graphs have no sinks, node 5 must have at least one outgoing edge.

Although there appear to be 24 − 1 = 15 possibilities, many of these are permutation-equivalent

and the total count is only 5 graphs. Each of these graphs has a single attractor corresponding

to the core fixed point supported on σ = 1234, as predicted. But the striking thing about these

attractors is that they all appear to be identical: not only do they have the same sequence of

activation, 1234, but the rate curves look exactly the same, matching the example shown in

Fig 7 (att 2, top left). The second class, att 4, also has optional edges coming out of node 5. In

this case, however, there is no symmetry, so all 23 − 1 = 7 options produce non-isomorphic

graphs. The reason there are 8 attractors of this type is that one of the graphs, corresponding to

choosing only the 5! 3 optional edge, has a symmetry that exchanges the 123 and 345 cycles.

This results in a second attractor, with sequence 3145, that is isomorphic to the first one.

Attractor classes att 5 and att 6 have graphs that break into two families: one with 5 as a

source node, and one where 5 receives a single edge from the base graph. Between them, they

account for 44 + 29 = 73 of the 191 observed attractors. Graphs in att 5 are constructed from D

and E base graphs, while the att 6 graphs all have an F graph as their base. The attractors for

each family of graphs are the same, irrespective of whether the graph contains a source. For att

5, they match the isolated D and E attractors in Fig 6A, and for att 6 they match the isolated F

attractor.

Table 2. Core fixed points and attractors for n = 5 oriented graphs with no sinks. The attractors were found in CTLNs with the standard parameters.

graphs # graphs # core fps # attractors # ghost atts # spurious atts

with a source 76 87 87 0 0

with no source 76 104 98 6 0

total 152 191 185 6 0

https://doi.org/10.1371/journal.pone.0264456.t002
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Fig 7. Attractor classes and master graphs. A sampling of attractor classes from the full classification for n = 5 oriented graphs with no sinks. Each attractor

emerges from multiple graphs which, once properly aligned, fit neatly into families that can be summarized by “master graphs” with optional edges depicted

via dashed lines. For families where FP(G) is invariant across all graphs, the full form is shown. Otherwise, only the common fixed point supports are given.

Some families always have two attractors: in these cases, the secondary attractor is shown as a “companion attractor” next to the relevant master graph. Note

that the graph for att 23 has an automorphism, shown in pink. The full classification and further details of our notational conventions are provided in the

Supporting Information.

https://doi.org/10.1371/journal.pone.0264456.g007
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Note that in att 5, the bottom graph family where 5 is not a source includes graphs where

234, 345, or 2345 is a core motif (a cycle). None of these cycles can have a core fixed point,

however, because node 1 receives two edges from it. In fact, FP(G) = {123} for all of these

graphs and they each have a single attractor. In contrast, each graph under att 6 has a second-

ary attractor corresponding to 234. For the 11 graphs in the family where node 5 is a source,

this is manifested as an isomorphic att 6. The remaining 7 graphs can be represented in two

ways, depending on whether we have the 4! 5 edge or the 1! 5 edge (by symmetry, these

are equivalent). In these cases, the secondary attractor is att 10, also shown in Fig 7. Note that

although att 6 and att 10 are both supported on an embedded 3-cycle and have a similar

appearance, the attractors are fundamentally different: att 6 does not involve node 5, while att

10 does include 5 as a low-firing node.

The last three classes shown in Fig 7 are att 18, att 21, and att 23. All three of these classes

contain graphs with symmetry, and this affects the attractors in different ways. In att 18, when

the 5! 1 edge is present the graph has a (3, 5) exchange symmetry that exchanges the 123 and

125 core fixed points. Consequently, there are two isomorphic versions of att 18 in this graph.

When 5!= 1, this symmetry is broken, and the attractor for 123 disappears (another attractor

for the 4-cycle 1245 emerges). We thus have a ghost attractor in the standard parameter

regime. At the higher δ parameters, this attractor is realized and matches the pair for the other

graph (see Supporting information).

Instead of exchanging multiple isomorphic attractors, symmetry can also fix an attractor.

This can manifest itself in two different ways: the nodes exchanged by the symmetry may have

synchronous activity in the attractor, or the attractor may display a time-translation symmetry,

where permuting the nodes simply shifts a trajectory in time. The latter is the kind of symme-

try we see in the isolated 3-cycle and 4-cycle attractors. In att 21, the graph without the 5! 4

edge has a (2, 5) exchange symmetry, and this leads to nodes 2 and 5 firing synchronously in

the attractor (see Fig 7, bottom left). The synchronous nodes are indicated by parentheses, so

that the sequence is 1(25)34. At higher values of δ, however, this synchrony is broken and the

attractor actually splits into two isomorphic limit cycles that are exchanged by the (2, 5) sym-

metry (see Supporting information). On the other hand, att 23 has a symmetry that manifests

itself as a time shift of the trajectory, fixing the attractor without any synchrony, similar to the

3-cycle case.

Table 3 gives a summary of the graph families and number of attractors for each of the 25

attractor classes. It also shows the sequence associated to each attractor. Note that different

attractor classes may have the same sequence. For example, att 4, att 5, and att 6 each have the

sequence 1234. However, as can be seen in Fig 7, the limit cycles are visually quite different. In

the Supporting Information, we provide a complete dictionary of all the oriented graphs with

no sources and sinks, together with their corresponding attractors and sequences. We also

exhibit the full set of attractor classes together with diagrams of their graph families, as in

Fig 7.

Altogether, we have observed that in addition to core fixed points accurately predicting all

the observed attractors, the embedded core motifs clustered into families of graphs that can be

compactly described via a set of common and optional edges. All graphs in the same attractor

class displayed identical or nearly identical attractors, even when the overall graph differed in

important ways (including in the other attractors). This striking modularity of the attractors

means that the same attractor, up to fine details of the dynamics, can be embedded in different

networks whose dynamics may vary considerably otherwise.

Failures of attractor prediction. For oriented graphs with no sinks up to n = 5 nodes, we

saw that all observed attractors were predicted by core fixed points. However, there were

instances of “ghost” attractors where a core fixed point had no corresponding attractor in the
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standard parameters, though these attractors were all observed in a higher δ regime. Fig 8A

illustrates what happens when initial conditions are chosen near a core fixed point with a miss-

ing attractor. The graph D2[4] has two core fixed points, supported on 123 and 1245. When

initial conditions are chosen near the 1245 fixed point, the solution quickly falls into the limit

cycle with sequence 12(35)4, which is isomorphic to att 21 (top right). However, when initial

conditions near the 123 fixed point are chosen, the activity initially spirals out with increasing

amplitude in a 123 sequence, but does not settle on the corresponding attractor. Instead, the

activity converges to the same attractor we saw before (bottom right). At higher δ, however,

the analogous initial condition does produce a different attractor (see Supporting informa-

tion). Fig 8B shows a graph where the ghost attractor is almost viable. Here it is the core fixed

point for 135 that has a missing attractor. Interestingly, initial conditions near this fixed point

appear to converge to an attractor supported on 135 (bottom right). However, the solution is

not stable and eventually the activity falls out of this pattern and converges to the attractor for

123 (top right).

Although we did have some prediction failures in the form of ghost attractors, every

attractor we observed for the n = 5 oriented graphs with no sinks was predicted by a core fixed

point. There were no “spurious” attractors (see Table 2). It turns out, however, that spurious

attractors can also occur as a failure of prediction. Fig 8C shows three graphs that have no core

Table 3. Graph families for attractor classes of n = 5 oriented graphs with no sinks. The “*” notation indicates a forbidden edge, while �s indicate optional edges. For

example, D2[*3,4,�] represents the pair of graphs D2[1, 4] and D2[4], which have no edge to node 3. See Supporting information for more details.

attractor sequence graph families # graphs # attractors # ghosts

att 1 123 3-cycle + sources 30 30 0

att 2 1234 4-cycle + source (aka S0[�]) 5 5 0

att 3 12345 5-cycle 1 1 0

att 4 1234 T4[�] 7 8 0

att 5 1234 D/E0[�] & D/E4[�] 30+14 = 44 30+14 = 44 0

att 6 1234 F0[�] & F4[�] 11+7 = 18 22+7 = 29 0

att 7 15234 D1[2,�], E1[�], & D/E[1, 4][2,�] 4+7+4 = 15 4+7+4 = 15 0

att 8 123(45) D/E3[*4,�] 5 5 0

att 9 12354 D/E3[4,�] 8 8 0

att 10 15234 F1[�] 7 7 0

att 11 12534 F2[3,�] & F[2, 4][3] 3+1 = 4 4+1 = 5 1

att 12 12354 F3[1,4,�] 2 4 0

att 13 12354 F3[*1,4,�] 2 0 2

att 14 123(45) F3[2] 1 3 0

att 15 12534 F2[1, 4] 1 4 0

att 16 12534 E2[1, 4] 1 2 0

att 17 12534 E2[4] 1 1 0

att 18 12534 D2[*3,4,�] 2 2 1

att 19 15234 D1[4] 1 1 0

att 20 15234 S1[4] 1 1 0

att 21 1(25)34 S1[*2,3,�] 2 2 1

att 22 15234 S1[2,�] 4 4 0

att 23 152354 S[1, 3][2, 4] 1 1 0

att 24 23(154) E[1, 3][4,�] 2 2 0

att 25 12534 E[1, 2][3, 4] 1 1 0

https://doi.org/10.1371/journal.pone.0264456.t003
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fixed points, but still exhibit a limit cycle attractor. These are all, by definition, spurious attrac-

tors. Note that each graph contains at least one bidirectional edge, 2$ 3, and so these graphs

are all outside our oriented graphs family. In each case, FP(G) = {1235}, and this corresponds

to an F graph. It is not a core motif because the F graph has three fixed points (the two minimal

ones do not survive the embedding).

Finally, Fig 9 shows that symmetry can also lead to spurious attractors. This time the prob-

lem is not that there is no core fixed point, but that the same core fixed point corresponds to

more than one attractor. Fig 9A shows that this can happen even with one of our oriented

n = 5 graphs, the 5-star. Specifically, if we go to a different parameter regime (in this case ε =

0.1, δ = 0.12), we find that some perturbations of the core fixed point lead to the expected

attractor with sequence 12345, while other initial conditions obtained by perturbing from the

same fixed point lead to a very different and unusual attractor (bottom). Fig 9B shows that a

similar phenomenon occurs on the cyclically symmetric tournament on n = 7 nodes. Here, we

see two very distinct solutions corresponding to the same (and only) core fixed point. The top

solution is a limit cycle, and the bottom one is quasiperiodic. The projection of the trajectories

(bottom left) shows the fixed point and limit cycle in red, and the quasiperiodic trajectory with

toroidal structure in black. In both networks, the graph is highly symmetric and this symmetry

seems to give rise to the additional “spurious” attractors.

Discussion

Predicting dynamic attractors from network structure is notoriously difficult. In this work, we

have shown that in the case of CTLNs, the problem is surprisingly tractable. Specifically, we

Fig 8. Failures of attractor prediction from core fixed points. (A) The graph D2[4] has two core fixed points, but only one attractor (att 21, top right).

Initializing near the core fixed point with support 123 leads to activity that eventually falls into the 1245 attractor (bottom right). (B) The graph F1[3]

has three core fixed points, but only the first two have corresponding attractors. Initializing near the fixed point for 135 initially appears to fall into an

attractor supported on 135 (bottom right). However, after time these solutions converge to the attractor supported on 123. The missing attractors in

A-B are called “ghost attractors.” In a higher δ parameter regime, however, the core fixed points do yield their own attractors (see Supporting

information). (C) Three graphs that are not oriented: each one has the bidirectional edge 2$ 3. These graphs each have a unique fixed point, supported

on 1235, but it is not a core fixed point. Nevertheless, the corresponding networks all have dynamic attractors.

https://doi.org/10.1371/journal.pone.0264456.g008
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have observed a correspondence between the core fixed points of a network and its attractors.

Moreover, these core fixed points have minimal supports in FP(G) and correspond to special

graphs called core motifs. Using graph rules, it is straightforward to identify core fixed points

in small CTLNs via structural properties of the network.

We hypothesized that core fixed points can be used to predict attractors in CTLNs. The pre-

diction is that for each core fixed point, there is an attractor whose high-firing neurons corre-

spond to the support of the fixed point, and the attractor can be accessed by initial conditions

that are small perturbations of the fixed point. In the case of stable fixed points, which arise for

core motifs that are cliques, this prediction trivially holds. So we set out to test the hypothesis

for unstable core fixed points, which give rise to dynamic attractors. We focused on oriented

graphs with no sinks, as these networks are guaranteed to have only unstable fixed points.

Out of 152 oriented graphs with no sinks on n = 5 nodes, we observed 185 attractors. All of

them were predicted by core fixed points. Moreover, we found that the attractors clustered

into only 25 attractor classes, with attractors in the same class being nearly identical. We were

also able to organize the graphs having the same attractor into simple structural graph families.

These graph families highlight the close connection between structural properties of embedded

core motifs and the resulting dynamic attractors. In particular, the same attractor can be

embedded in different networks whose dynamics are completely different outside the common

attractor.

Our attractor prediction was not perfect, however. In the standard parameter regime, we

also had 6 failures in the form of ghost attractors, which were predicted but not realized by the

network. We also saw examples of networks with no core fixed points, that nevertheless had

dynamic attractors. Finally, we observed that highly symmetric networks can have core fixed

points that give rise to multiple attractors. Despite these caveats, we conclude that core motifs

and core fixed points are important tools for connecting network structure to dynamics. And

in small networks, the attractor predictions from core fixed points are surprisingly accurate.

Supporting information

S1 Fig. Base graphs and graph counts. (A) Base graphs used to construct n = 5 graphs, and

their corresponding attractors. Each attractor has a sequence, indicating the (periodic) order

Fig 9. Symmetry can lead to spurious attractors. (A) Although the 5-star graph has only a single attractor in the standard CTLN parameters, for ε =

0.1, δ = 0.12 a second attractor emerges (bottom). Both can be accessed via small perturbations of the unique fixed point. (B) The 7-star graph also has

two attractors that can be accessed from a single core fixed point, even in the standard parameters. The projection (bottom left) depicts a random

projection ofR7 onto the plane, with trajectories for the limit cycle (red circle) and an additional quasiperiodic attractor (black torus). The fixed point is

also shown (red dot).

https://doi.org/10.1371/journal.pone.0264456.g009
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in which the neurons achieve their peak firing rates. (B) The oriented graphs with sources can

be constructed by adding proper sources to each of the base graphs. This yields 30 graphs from

the 3-cycle base (left), 15 graphs from the D graph base (right), and an additional 15, 11, and 5

graphs from the E, F and S graph bases. (C) All oriented graphs with no sources or sinks can

be constructed from one of the D, E, F, T, and S base graphs. (Left) For example, D1[2, 3] is

the graph constructed from the D graph with added edges 1! 5 and 5! 2, 3. (Right) The

only oriented n = 5 graph with no sources or sinks that cannot be constructed in this way is

the 5-cycle. (Same as Fig 6 in the main text).

(TIF)

S2 Fig. Construction of oriented graphs from base graphs. (Top) Starting with a D base, the

graph D1[2, 3] is constructed by adding a node 5 together with incoming edge 1! 5 (red) and

outgoing edges 5! 2 and 5! 3 (blue). An isomorphic graph, E2[3], can be constructed from

an E base. (Bottom) The graph S[1,3][2,4] has two incoming edges to node 5, given in the first

set of brackets. This graph cannot be constructed from any base with only one edge into node 5.

(TIF)

S3 Fig. Finding the name for a given oriented graph with no sinks. The nodes with lowest

in-degree are k, ℓ, and m. However, removing k results in a graph with no cycles that cannot

match one of our base graphs. Removing ℓ (top) uncovers a D graph base, while removing m
(bottom) results in an E base. The original graph can thus be labeled as D3[1, 2] or E3[1].

(TIF)

S4 Fig. D graphs: D1[�] & D2[�].

(TIF)

S5 Fig. D graphs: D3[�] & D4[�].

(TIF)

S6 Fig. E graphs: E1[�] & E2[�].

(TIF)

S7 Fig. E graphs: E3[�] & E4[�].

(TIF)

S8 Fig. F graphs: F1[�] & F2[�].

(TIF)

S9 Fig. F graphs: F3[�].

(TIF)

S10 Fig. T and S graphs: T4[�] & S1[�].

(TIF)

S11 Fig. Constructed core motifs.

(TIF)

S12 Fig. Graphs with parameter-dependent attractors.

(TIF)

S13 Fig. Fig 4: Master graphs and their corresponding graph families.

(TIF)

S14 Fig. Attractor classes att 1–10.

(TIF)
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S15 Fig. Attractor classes att 11–19.

(TIF)

S16 Fig. Attractor classes att 20–25.

(TIF)

S1 File. Taxonomy of attractors for oriented graphs on n = 5 nodes. This supplementary

text describes a classification scheme for oriented graphs with no sinks on n = 5 nodes. We

also give a classification for all attractors of these graphs with standard parameters, and provide

a dictionary of the attractor classes.

(PDF)

Acknowledgments

We thank Carolyn Shaw for earlier contributions to the analysis of fixed points of CTLNs,

which helped motivate the concept of core fixed points.

Author Contributions

Conceptualization: Caitlyn Parmelee, Katherine Morrison, Carina Curto.

Formal analysis: Caitlyn Parmelee, Samantha Moore, Katherine Morrison, Carina Curto.

Funding acquisition: Katherine Morrison, Carina Curto.

Investigation: Caitlyn Parmelee, Samantha Moore, Katherine Morrison, Carina Curto.

Methodology: Caitlyn Parmelee, Katherine Morrison, Carina Curto.

Software: Katherine Morrison.

Supervision: Katherine Morrison, Carina Curto.

Writing – original draft: Carina Curto.

Writing – review & editing: Caitlyn Parmelee, Katherine Morrison.

References

1. Seung H.S. and Yuste R. Principles of Neural Science, chapter Appendix E: Neural networks, pages

1581–1600. McGraw-Hill Education/Medical, 5th edition, 2012.

2. Hahnloser R. H., Sarpeshkar R., Mahowald M.A., Douglas R.J., and Seung H.S. Digital selection and

analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405:947–951, 2000. https://

doi.org/10.1038/35016072 PMID: 10879535

3. Hahnloser R. H., Seung H.S., and Slotine J.J. Permitted and forbidden sets in symmetric threshold-lin-

ear networks. Neural Comput., 15(3):621–638, 2003. https://doi.org/10.1162/089976603321192103

PMID: 12620160

4. Xie X., Hahnloser R. H., and Seung H.S. Selectively grouping neurons in recurrent networks of lateral

inhibition. Neural Comput., 14:2627–2646, 2002. https://doi.org/10.1162/089976602760408008 PMID:

12433293

5. Curto C., Degeratu A., and Itskov V. Flexible memory networks. Bull. Math. Biol., 74(3):590–614, 2012.

https://doi.org/10.1007/s11538-011-9678-9 PMID: 21826564

6. Curto C., Degeratu A., and Itskov V. Encoding binary neural codes in networks of threshold-linear neu-

rons. Neural Comput., 25:2858–2903, 2013. https://doi.org/10.1162/NECO_a_00504 PMID: 23895048

7. Curto C. and Morrison K. Pattern completion in symmetric threshold-linear networks. Neural Computa-

tion, 28:2825–2852, 2016. https://doi.org/10.1162/NECO_a_00869 PMID: 27391688

8. Biswas T. and Fitzgerald J. E. A geometric framework to predict structure from function in neural net-

works. Available at https://arxiv.org/abs/2010.09660

PLOS ONE Core motifs predict attractors

PLOS ONE | https://doi.org/10.1371/journal.pone.0264456 March 4, 2022 20 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264456.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264456.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264456.s017
https://doi.org/10.1038/35016072
https://doi.org/10.1038/35016072
http://www.ncbi.nlm.nih.gov/pubmed/10879535
https://doi.org/10.1162/089976603321192103
http://www.ncbi.nlm.nih.gov/pubmed/12620160
https://doi.org/10.1162/089976602760408008
http://www.ncbi.nlm.nih.gov/pubmed/12433293
https://doi.org/10.1007/s11538-011-9678-9
http://www.ncbi.nlm.nih.gov/pubmed/21826564
https://doi.org/10.1162/NECO_a_00504
http://www.ncbi.nlm.nih.gov/pubmed/23895048
https://doi.org/10.1162/NECO_a_00869
http://www.ncbi.nlm.nih.gov/pubmed/27391688
https://arxiv.org/abs/2010.09660
https://doi.org/10.1371/journal.pone.0264456


9. Morrison K., Degeratu A., Itskov V., and Curto C. Diversity of emergent dynamics in competitive thresh-

old-linear networks: a preliminary report. Available at https://arxiv.org/abs/1605.04463, 2016.

10. Morrison K. and Curto C. Predicting neural network dynamics via graphical analysis. Book chapter in

Algebraic and Combinatorial Computational Biology, edited by Robeva R. and Macaulay M. Elsevier,

2018.

11. Curto C., Geneson J., and Morrison K. Fixed points of competitive threshold-linear networks. Neural

Comput., 31(1):94–155, 2019. https://doi.org/10.1162/neco_a_01151 PMID: 30462583

12. Curto C., Geneson J., and Morrison K. Stable fixed points of combinatorial threshold-linear networks.

Available at https://arxiv.org/abs/1909.02947.

13. Parmelee C., Londono J. Alvarez, Curto C., and Morrison K. Sequential attractors in combinatorial

threshold-linear networks. Available at https://arxiv.org/abs/2107.10244. To appear in SIADS, 2022.

PLOS ONE Core motifs predict attractors

PLOS ONE | https://doi.org/10.1371/journal.pone.0264456 March 4, 2022 21 / 21

https://arxiv.org/abs/1605.04463
https://doi.org/10.1162/neco_a_01151
http://www.ncbi.nlm.nih.gov/pubmed/30462583
https://arxiv.org/abs/1909.02947
https://arxiv.org/abs/2107.10244
https://doi.org/10.1371/journal.pone.0264456

