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Biological functions of antibiotics are not limited to killing. The most likely function of
antibiotics in natural microbial ecosystems is signaling. Does this signaling function of
antibiotics also extend to the eukaryotic – in particular mammalian – cells? In this review,
the host modulating properties of three classes of antibiotics (macrolides, tetracyclines,
and β-lactams) will be briefly discussed. Antibiotics can be effective in treatment of a broad
spectrum of diseases and pathological conditions other than those of infectious etiology
and, in this capacity, may find widespread applications beyond the intended antimicrobial
use. This use, however, should not compromise the primary function antibiotics are used
for. The biological background for this inter-kingdom signaling is also discussed.
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INTRODUCTION
We are all familiar with the use of antibiotics for treatment of
infectious diseases. But antibiotics do not only kill bacteria, their
original role possibly involved signaling functions (Davies et al.,
2006; Linares et al., 2006; Yim et al., 2006, 2007; Martínez, 2008;
Aminov, 2009; Romero et al., 2011). These functions, usually per-
formed at lower concentrations, are different from those leading to
cell death, and they are realized through different sets of molecular
targets in the cell. While many aspects of this communication in
the microbial world remain elusive, there is a large body of infor-
mation regarding the signaling effects of low-dose antibiotics on
humans and animals beyond the intended antimicrobial activities.
Thus the intention of this article is to undertake an interdisci-
plinary coverage of and familiarize biologists with this aspect of
non-antimicrobial antibiotic use in clinical research and practice.
The results covered in this review have been collected in various
animal models, tissue cultures, and pre-clinical and clinical tri-
als, with little or no involvement of microbiology, and, therefore,
might have escaped the attention of microbiologists. I believe this
interdisciplinary coverage is highly important to close the gap in
non-antimicrobial use of antimicrobials for a number of reasons.
First of all, it is the specifics of this type of therapy, with the use
of low-dose antibiotics for very extended periods of time mea-
sured in weeks, months, and even years. Second, while in clinical
microbiology a great deal of attention is paid to the appearance of
antibiotic resistance as a side effect of antibiotic therapy, this aspect
has had a relatively low priority and has been largely overlooked in
the low-dose long-term antibiotic treatment trials. Another aspect
that may need more careful consideration in this type of therapy
is the role of commensal microbiota, which is also an important
player in human metabolism and physiology. Antibiotics act not
only on the targets in the human body but also on the microbiota,
which is the integral part of human metabolism and physiology.
And as we know, the role of commensal microbiota in human
health and disease is immense, affecting almost every aspect of it.
Thus the antibiotic effects have to be evaluated from both sides

of their activities, including the direct interaction of antibiotics
with the host cells as well as indirect, through the modulation of
microbiota and, correspondingly, microbial metabolites, macro-
molecules, and other biologically active components of microbiota
that affect the host. And finally, it is intriguing to recognize how
many molecular targets for antibiotics are in the human body. Is it
by chance that they have such pleiotropic properties that are affect-
ing almost every organ or system in the human body? Only three
classes of antibiotics are covered in this review because of space
restraints. These are the macrolides, tetracyclines, and β-lactams.
For the same reason, only few most important examples for each
antibiotic class and for each group of diseases are given. These are
followed by a discussion of various implications of the effects and
consequences of the non-antimicrobial antibiotic use.

MACROLIDES
There are many examples of antibiotic signaling effects on the
host beyond the intended antimicrobial activity. The use of
macrolides for treatment of non-infectious diseases has the ear-
liest history among other antibiotics. A considerable amount of
information regarding the therapeutic potential of macrolides for
non-antimicrobial use has been collected beginning from the late
1980s. Since then, a great number of animal experiments have
been performed, many representatives of this class of antibiotics
have gone through clinical trials, and a number of drugs in this
group have been approved and are currently commonly used in
clinical practice for non-antimicrobial purposes.

The use of macrolides has been especially successful in the man-
agement of various chronic respiratory diseases not only in the role
of antimicrobial agents but also due to their anti-inflammatory
and pro-kinetic properties. The positive effect of long-term low-
dose administration of erythromycin to patients with diffuse pan-
bronchiolitis was demonstrated by Japanese researchers more than
two decades ago, thus suggesting other than antimicrobial nature
of erythromycin action (Kudoh et al., 1987; Nagai et al., 1991).
From this point, the use of macrolides for non-antimicrobial
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purposes has become one of the mainstream choices for treatment
of chronic respiratory diseases.

In cystic fibrosis (CF), the main bacterium associated with
the pulmonary disease is Pseudomonas aeruginosa, which pro-
duces biofilms resistant to antibiotic treatment within the airways
(Singh et al., 2000). Although P. aeruginosa is naturally resistant
to macrolides, these antibiotics, even at subinhibitory concentra-
tions, can suppress quorum sensing necessary for biofilm forma-
tion (Tateda et al., 2007). This mechanism possibly contributes
to the heightened sensitivity of non-susceptible P. aeruginosa
toward a variety of anti-pseudomonal agents in biofilms when
exposed to macrolides at subinhibitory concentrations (Lutz et al.,
2012). In addition, low-dose macrolides display immunomod-
ulatory properties influencing cytokine production and altering
polymorphonuclear cell functions (Schultz, 2004). This prevents
excessive uncontrolled inflammation and associated tissue dam-
age. Another benefit of the macrolide use in the management of
CF is the reduced chronic airway hypersecretion (Tamaoki et al.,
1995).

Treatment of other respiratory diseases such as asthma may
benefit from the dual action of macrolides because asthma is a
result of interaction of genetic and environmental factors. The
presence of Mycoplasma pneumoniae and Chlamydophila pneu-
moniae in asthmatics best identifies the macrolide responsive
phenotype because of the antimicrobial and anti-inflammatory
properties of macrolides covering the infection and genetic
predisposition continuum (Good et al., 2012).

Chronic obstructive pulmonary disease (COPD) remains one
of the important causes of morbidity, mortality, and health-care
costs worldwide (Mannino and Buist, 2007). Although smoking
is the most important risk factor for the disease, it also has a
substantial genetic component (Wain et al., 2012). Pathogenesis in
COPD is largely driven by dysregulated responses of the innate and
adaptive immune systems to the environmental cues leading to an
exaggerated inflammatory response, which results in permanent
inflammation, tissue damage, and lung function decline (Hol-
loway and Donnelly, 2013). A well-designed, randomized, 1-year
trial of erythromycin, at a dose of 250 mg twice daily, has found
a significant reduction in COPD exacerbations compared to the
placebo group (Seemungal et al., 2008). Long-term administration
of azithromycin by outpatients with severe COPD has appeared to
be safe and effective, with reduced exacerbations, hospitalizations,
and improved quality of life (Blasi et al., 2010). Another trial with
a daily azithromycin for 1 year for prevention of exacerbations
of COPD has demonstrated decreased frequency of exacerbations
and improved quality of life but has caused hearing decrements
in a small percentage of subjects (Albert et al., 2011). A recent
review of controlled clinical studies focusing on the prevention of
COPD exacerbations with long-term azithromycin, erythromycin,
or clarithromycin treatment suggests that it is effective, safe, and
cost-efficient (Simoens et al., 2013). Other chronic respiratory dis-
eases may also be treated by macrolides, but better designed trials
are necessary to confirm their efficacy (Suresh Babu et al., 2013).

Novel effects of macrolides on cardiovascular diseases have
been discovered recently. In animal models, clarithromycin has
suppressed the development of myocarditis, cardiac rejection, and
myocardial ischemia (Nakajima et al., 2010; Suzuki et al., 2012).

The positive effect of clarithromycin in cardiovascular diseases
may be due to the alteration of inflammatory factors and matrix
metalloproteinases (MMPs). MMPs as a part of the extracellular
matrix participate in a number of normal physiological processes,
which contribute to tissue structure, function, and remodeling,
including the myocardium (Spinale et al., 2013). Both the expres-
sion and activity of MMPs are regulated by the tissue inhibitors
of matrix metalloproteinases (TIMPs), and the MMPs/TIMPs
balance is crucial for the normal maintenance of myocardial inter-
stitial homeostasis. Misbalance and the resulting involvement of
MMPs in disease, however, have been shown for a number of
pathologies spanning from cancer to cardiovascular diseases and
to neurodegeneration (Sbardella et al., 2012). The protective effect
of clarithromycin in the case of autoimmune myocarditis appears
to be implemented through the inhibition of the MMP-9 activity
(Hishikari et al., 2010). In the long run, however, a short-term clar-
ithromycin administration in patients with coronary heart disease
for clearance of suspected infections results in increased risk of
mortality (Gluud et al., 2008).

Immunosuppressive activities of macrolides have been known
for almost four decades now. The first macrolide with this activ-
ity, rapamycin (also called sirolimus), was discovered by Brazilian
researchers during a screening program for antifungal compounds
produced by soil bacteria (Vézina et al., 1975). But its use as an
antifungal antibiotic has been abandoned due to potent immuno-
suppressive and antiproliferative activities. Its antiproliferative
action is realized through the formation of an active complex with
its cytosolic receptor protein, FKBP12, and targeting of a puta-
tive lipid kinase termed target of rapamycin (TOR; Brown et al.,
1994; Sabers et al., 1995; Wiederrecht et al., 1995). The loss of
TOR function leads to the inhibition of G1- to S-phase progres-
sion in various sensitive cells. The immunosuppressive activity
of rapamycin is also realized via the same protein kinase inhibi-
tion pathway affecting cell-cycle proliferation of lymphoid cells
(Abraham, 1998).

The TOR complexes regulate cell growth and metabolism in
response to environmental and intracellular cues and are com-
prised of two distinct multiprotein complexes: TOR complex 1
(TORC1), which is sensitive to rapamycin, and TORC2, which
is not (Wullschleger et al., 2006). Dysregulation of these com-
plexes is associated with various pathologies, including cancer,
cardiovascular diseases, autoimmunity, metabolic disorders, and
neurodegenerative diseases. Thus rapamycin and its derivatives
can be used for treatment of a variety of diseases (Cruzado, 2008).
It is also potentially useful for treatment of substance abuse con-
ditions, alcohol abuse in particular, since inhibition of TORC1
by rapamycin disrupts alcohol-associated memory reconsolida-
tion, leading to a long-lasting suppression of relapse (Barak et al.,
2013). Currently it is approved for prevention of transplant rejec-
tion, and its latest derivative, everolimus, is widely used to prevent
the rejection of heart, lung, kidney, or liver allografts (Gurk-Turner
et al., 2012). Since TOR complexes are evolutionary conserved
and involved in very fundamental biological processes in the
cell, pharmacological inhibition of TOR signaling by rapamycin
increases the lifespan of yeasts and higher eukaryotes (Powers
et al., 2006). The use of rapamycin in humans as an anti-aging
agent is uncertain because of side effects; this use will require the
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development of safer derivatives, termed rapalogs (Lamming et al.,
2013).

Another macrolide compound with a potent immunosuppres-
sive activity was discovered in 1984 during the screening pro-
gram of Fujisawa Pharmaceutical Company aimed at compounds
that reduce the risk of transplant rejection (Kino et al., 1987).
This 23-membered macrolide lactone, isolated from Streptomyces
tsukubaensis and called FK-506 (later also called tacrolimus or
fujimycin), was initially approved in 1994 for the prophylaxis of
liver transplant rejection, and since then the range of its use has
expanded dramatically. In fact, it is considered as a cornerstone
of modern immunosuppressive therapy and is used to treat allo-
graft rejections that are resistant to other immunosuppressants
(Rath, 2013). The effect of this class of macrolide immunosup-
pressants is also based on targeting the evolutionary conserved
signal transduction pathways but via a mechanism other than that
of rapamycin. In particular, FK506/FKBP complex inhibits the
cytosolic phosphatase calcineurin, a key enzyme regulating the
translocation of cytosolic components of various nuclear factors
into the nucleus. Thus the blocked translocation of the cytosolic
component of the nuclear factor of activated T cells (NF-AT) leads
to its inability to activate a number of genes necessary for the pro-
liferation of T cell such as IL-2 as well as for B cell help such as
IL-4 (Ho et al., 1996).

Besides the extensive use in prophylaxis of transplant rejection,
tacrolimus has demonstrated its efficacy and safety for a number
of other inflammatory conditions. It has been successfully used
in patients with inflammatory bowel disease, in particular for the
treatment of severe cases (Baumgart et al., 2006) and for the induc-
tion of remission in refractory disease (Baumgart et al., 2008). In
dermatology, the success of this drug is due to its topical effective-
ness while cyclosporine, a drug with a similar mechanism of action,
is topically non-responsive (Mrowietz, 1992). In general, many
macrolide immunosuppressants, due to their chemical structure,
are highly efficient in the topical form and are used extensively to
treat many dermatological disorders (Mrowietz, 1999). They lack
the skin-thinning side effect of corticosteroids and, therefore, can
be used for extended periods of time and in areas with thin skin.

Macrolides are among the safest antibiotics in clinical use, with
very few severe side effects (Periti et al., 1993). The most fre-
quent manifestation is gastrointestinal disturbance occurring in
15–20% of patients on erythromycins and in 5% or fewer patients
treated with novel macrolides. Transient deafness and allergic reac-
tions are highly unusual and usually associated with the older
macrolides. Clarithromycin and erythromycin may potentiate
calcium-channel blockers by inhibiting cytochrome P450 isoen-
zyme 3A4 (Wright et al., 2011). Therefore, the concomitant use
of calcium-channel blockers and these antibiotics may result in
significant hypotension and shock (Wright et al., 2011; Henne-
man and Thornby, 2012). Although the risk is small, it can greater
among the elderly and patients with multiple comorbidities.

In a subset of patients the use of tacrolimus for the management
of hematopoietic allogeneic stem cell or solid organ transplanta-
tion is associated with a rare complication, posterior reversible
encephalopathy syndrome (PRES; Wong et al., 2003; Bartynski
et al., 2008; Hodnett et al., 2009; Wu et al., 2010; Hammerstrom
et al., 2013). The main manifestations of PRES include altered

mental status, seizures, visual abnormalities, and high blood
pressure. While it is not clear how to manage the central ner-
vous system (CNS)-related side effects, PRES associated with high
blood pressure should include adequate blood pressure control
(Hammerstrom et al., 2013).

Substantial progress has been made in identification of mam-
malian cell targets of macrolides. As discussed above, there is an
extensive variety of targets for macrolides in the human body, and
the list continues to grow. For instance, the immunomodulatory
activities of macrolides can be mediated via the inhibition of pro-
duction of many proinflammatory cytokines, the formation of
leukotriene B4 (a neutrophils attractant), the formation of adhe-
sion molecules necessary for neutrophil migration, and the release
of superoxide anion by neutrophils (Tamaoki et al., 2004). The
ketolide antibiotic telithromycin exerts powerful immunomodu-
latory and anti-inflammatory effects through NF-κB inhibition
and enhancement of inflammatory cell apoptosis (Leiva et al.,
2008a,b).

The macrolide antibiotic-binding human p8 protein has been
cloned and identified using the phage display library approach
(Morimura et al., 2008). This is a nuclear DNA-binding protein,
which is strongly activated in response to several stresses, and, on
the basis of functional similarity to HMG-I/Y-like proteins, it has
been suggested that p8 may be involved in transcription regulation
(Encinar et al., 2001; Hoffmeister et al., 2002). It plays an impor-
tant role in such a basic biological process as ontogeny and hence is
involved in a variety of developmental processes, such as pancreatic
development in rats (Mallo et al., 1997), temporal expression of the
beta subunit of luteinizing hormone (LHB) during gonadotroph
development in mice (Million Passe et al., 2008), and mediation
of gene expression in the diapause-destined crustacean Artemia
franciscana (Qiu and MacRae, 2007).

In pathologies, the p8 protein is crucial for tumor development
(Vasseur et al., 2002), and it is also involved in stress responses
imposed by inflammation, tissue damage, and remodeling. Thus
the list of pathologies includes diseases with an inflammatory
component, acute pancreatitis for instance (Mallo et al., 1997). In
cardiac pathology, p8 is broadly involved in cellular events leading
to cardiomyocyte hypertrophy and cardiac fibroblast MMPs pro-
duction, both of which take place in heart failure (Goruppi et al.,
2007). Since clarithromycin, erythromycin, and azithromycin
inhibit the binding of recombinant p8 protein to double-stranded
DNA (Morimura et al., 2008), the anti-inflammatory effect of
macrolides discussed above may be explained, at least in part,
by the down-regulation of transcription of genes involved in the
proinflammatory network. Interestingly, the same inhibitory effect
has been observed with a structurally unrelated antifungal antibi-
otic dechlorogriseofulvin (Morimura et al., 2008), suggesting a
potential overlap in recognition of structurally different antibiotic
ligands by a single human molecular target.

The important difference between the antibiotic therapy of
“classical” infectious diseases and chronic conditions such as cys-
tic CF is the duration of antibiotic treatment. With the exception
of Mycobacterium tuberculosis and few other difficult-to-eradicate
infections, the antibiotic treatment period for infectious diseases
is relatively short, while the maintenance therapy for chronic
conditions is a long-term and perhaps life-long endeavor. One
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of the consequences of the maintenance therapy might be the
selection for, and maintenance of, antibiotic resistance genes.
In recent clinical trials evaluating the efficiency of the long-
term azithromycin and erythromycin maintenance treatments
in patients with non-CF bronchiectasis, the level of macrolide
resistance significantly increased, despite the subinhibitory con-
centrations used (Altenburg et al., 2013; Serisier et al., 2013).
Due to the importance of other than antibacterial activities of
macrolides as well as to reduce the possibility of antibiotic selec-
tion for resistance, efforts have been made to design macrolide
molecules with better anti-inflammatory activities (Kobayashi
et al., 2013). Another approach to lessen the resistance burden
is the design of macrolides that have their antimicrobial activ-
ities completely abolished but have other activities retained. It
appears that the antimicrobial and anti-inflammatory activities of
macrolides are independent and can be separated, thus opening
the possibility of designing macrolide-based anti-inflammatory
drugs lacking antimicrobial activities (Bosnar et al., 2012).

Thus the recent macrolide development efforts have bifurcated
into two directions that are focused on designing and modifi-
cation of macrolides better suited either for the antimicrobial
or non-antimicrobial use. Historically, antibiotics (macrolides
included), as their name implies, have been selected primarily
for their antimicrobial activities, while other activities such as
anti-inflammatory went unnoticed for a long time. In a recent
non-antimicrobial antibiotic development, a novel macrolide,
solithromycin, has displayed the capability to inhibit NF-κB and
demonstrated better anti-inflammatory activities in vitro com-
pared to more conventional macrolides used in the clinic such as
erythromycin, clarithromycin, azithromycin, and telithromycin
(Kobayashi et al., 2013). A better anti-inflammatory profile of
this macrolide makes it a good candidate for the manage-
ment of chronic respiratory diseases. Another macrolide with
a significantly diminished antibiotic activity, 2′-desoxy-9-(S)-
erythromycylamine, prevents neutrophil elastase-induced mucus
stasis and dehydration and, therefore, may be used for the
management of CF and COPD theoretically without affect-
ing antibiotic resistance profile (Tarran et al., 2013). Synthetic
mimetics of actin-binding macrolides may provide a range of
designer compounds to treat actin-associated diseases (Perrins
et al., 2008). On the other hand, there are continuous efforts
to modify the existing macrolides to contain pathogens that
are becoming resistant to older macrolides. Recent develop-
ments, for example, have been based on the use of azalide
scaffold (Ištuk et al., 2011; Sugimoto et al., 2012), which was
originally implemented in 9-dihydro-9-deoxo-9a-methyl-9a-aza-
9a-homoerythromycin A (azithromycin), the antibiotic with
outstanding pharmacokinetic properties (Amsden, 2001; Mutak,
2007).

TETRACYCLINES
Tetracycline family of antibiotics is one of the best-studied exam-
ples of non-antimicrobial effects of antibiotics on the host.
Tetracyclines possess multiple and potent biological activities, and
minocycline, the best exemplary compound of this class, displays
anti-inflammatory, neuroprotective, anti-proteolytic, and anti-
apoptotic properties as well as inhibits angiogenesis and metastatic

growth (Garrido-Mesa et al., 2013). In addition, it displays antiox-
idant activity, inhibits several enzyme activities, and regulates
immune cell activation and proliferation.

Similar to the macrolides discussed above, tetracyclines are
able to inhibit MMPs; this discovery was actually made in 1983,
i.e., before the discovery of the corresponding activity among
macrolides (Golub et al., 1983). As mentioned before, MMPs
are involved in a number of pathologies, including metastatic
growth, cardiovascular diseases, neurodegeneration, and a variety
of inflammatory conditions (Sbardella et al., 2012). Thus the inhi-
bition of MMPs may be a valuable option in treatment of a broad
spectrum of diseases. Interestingly, the inhibitory effect on MMPs
is realized through several targets/mechanisms ranging from indi-
rect effects of regulatory network to down-regulation of expression
and to direct interference with enzymatic activity. These activi-
ties can include binding divalent cations such as Ca2+ and Zn2+,
inhibition of neutrophil migration and degranulation, and sup-
pression of synthesis of oxygen radicals (Gabler and Creamer,
1991). Administration of minocycline to diabetic rats, for exam-
ple, normalized the activity of four MMPs, while in in vitro assays
minocycline inhibited only collagenase and gelatinase activities,
with no inhibition of elastase and β-glucuronidase (Chang et al.,
1996). The inhibitory effect of tetracycline on stromelysin is medi-
ated via transcriptional inhibition involving sequences upstream
of the activating protein complex 1 binding site (Jonat et al., 1996).
But doxycycline, for example, down-regulates MMP-8 induc-
tion at both the mRNA and protein levels (Hanemaaijer et al.,
1997). It also disrupts the conformation of the hemopexin-like
domain of MMP-13 and the catalytic domain of MMP-8 (Smith
et al., 1999).

Presently the only MMPs-targeting tetracycline that has been
approved by the US Food and Drug Administration (FDA) and
other national regulatory agencies in Canada and Europe is the
low-dose formulation of doxycycline for the adjunctive treatment
of chronic periodontal disease (Gu et al., 2012). Other condi-
tions for potential application of low-dose tetracyclines to inhibit
the pathological effects of MMPs are: (i) cardiovascular diseases
such as coronary artery disease (Payne et al., 2011), hypertension
(Castro et al., 2011), atherosclerosis (Gu et al., 2011), and abdom-
inal aortic aneurysm (Abdul-Hussien et al., 2009); (ii) pulmonary
diseases such as acute respiratory distress syndrome (ARDS) for
which there is no approved medication (Roy et al., 2011), and
COPD (Dalvi et al., 2011); (iii)metastatic cancers (Lokeshwar,
2011; Richards et al., 2011); and (iv) systemic bone loss conditions
(Payne and Golub, 2011).

In many studies tetracyclines have demonstrated excellent
anti-inflammatory activities achieved through the inhibition of
chemotaxis, granuloma formation, nitric oxide production, and
protease activities (Weinberg, 2005; Webster and Del Rosso, 2007).
Positive effects of minocycline have been observed in animal mod-
els of rheumatoid arthritis (RA; Sewell et al., 1996), and this effect
has been confirmed in several clinical trials as well (Greenwald,
2011). Tetracycline treatment of RA, however, is not widespread
because of the almost universal use of methotrexate. Based on
the results of successful clinical trials, subinhibitory concentra-
tions of doxycycline and minocycline were approved by the FDA
for the treatment of skin conditions and infections that have a
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substantial inflammatory component (Del Rosso, 2007). Another
FDA approval, after successful clinical trials, has been obtained
for the long-term management of chronic periodontitis by suban-
timicrobial doses of doxycycline (SDD) (Caton and Ryan, 2011).
This host modulatory therapy is directed against excessive MMPs
activities that are implicated in degradation of connective tissue
collagen surrounding and supporting the teeth. This effect may
have broader implications for other bone loss conditions (Payne
and Golub, 2011).

Following the first reports on the neuroprotective effects of
minocycline in animal models of cerebral ischemic injury (Yrjan-
heikki et al., 1998, 1999), doxycycline was proposed as a candidate
for clinical trials of acute neurologic injury (Elewa et al., 2006).
Among other tetracyclines, the neuroprotective potential of the
second-generation antibiotic, minocycline, is remarkable. Its
effect has been confirmed in experimental models of ischaemia,
traumatic brain injury and neuropathic pain, and of several neu-
rodegenerative conditions including Parkinson’s disease (Wu et al.,
2002), Huntington’s disease (Chen et al., 2000; Wang et al., 2003),
Alzheimer’s disease (Choi et al., 2007), amyotrophic lateral scle-
rosis (ALS; Tikka et al., 2002; Zhu et al., 2002), multiple sclerosis
(MS; Metz et al., 2004; Zabad et al., 2007), and spinal cord injury
(Marchand et al., 2009).

Presently, the results of several clinical trials aimed at the esti-
mation of neuroprotective effects of minocycline are available,
although with rather discouraging outcomes compared to ani-
mal studies. A phase III randomized trial of minocycline in ALS
patients actually demonstrated a harmful effect of minocycline
(Gordon et al., 2007). A futility study of minocycline in Hunt-
ington’s disease precluded proceeding with a phase III clinical
trial (Schwarz et al., 2010). A prospective study with a cohort of
multiple-system-atrophy Parkinson-type patients failed to show
a clinical effect of minocycline on severity of symptoms (Dodel
et al., 2010). Although the results of a phase II placebo-controlled
randomized trial of minocycline in acute spinal cord injury did
not establish efficacy, several outcome measures had a tendency
toward improvement (Casha et al., 2012).

Treatment of a psychiatric illness relies on a combination of
psychological and biological approaches. The latter have been for
a long time focused on pharmacological interventions targeting
mainly the neurotransmitter systems, but there is a growing body
of evidence that these conditions are system-wide and include
oxidative stress, inflammation, changes in glutamatergic path-
ways and neurotrophins as well (Dean et al., 2012). Minocycline is
known as a modulator of glutamate-induced excitotoxicity and,
in addition, it possesses antioxidative, anti-inflammatory, and
neuroprotective properties. Pleiotropic properties of minocycline
targeting multiple proteins and cellular processes implicated in the
pathoetiology of mood disorders make it a suitable candidate for
treatment of depression (Soczynska et al., 2012). It may be a valu-
able adjunctive therapeutic agent to antipsychotic medication in
patients with schizophrenia as well (Miyaoka, 2008). In a clinical
ad-on trial, minocycline treatment of early-phase schizophrenia
patients improved negative symptoms and cognitive functions
(Levkovitz et al., 2010). A recent preliminary open-label study
has suggested that minocycline, in combination with antidepres-
sants, is effective and well-tolerated in the treatment of unipolar

psychotic depression (Miyaoka et al., 2012). In a mouse model of
Fragile X syndrome (FXS), an inherited disorder with intellectual
disability and behavior at the extreme of the autistic spectrum,
minocycline showed potential to treat mental retardation and
associated behavior (Bilousova et al., 2009; Rotschafer et al., 2012).
Recent FXS clinical trials have indicated that minocycline may be
effective in treating human patients as well (Siller and Broadie,
2012). In a number of cognitive impairment models minocycline
treatment demonstrated promising results (Jin et al., 2013; Kong
et al., 2013; Li et al., 2013). In a recent clinical trial evaluating the
effect of minocycline on HIV-associated cognitive impairment,
however, no significant improvement in cognitive functions has
been found (Nakasujja et al., 2013).

Microglia are glial cells, the only resident immune cells in the
CNS that respond to infections and brain injury and are actively
involved in brain development and function as well as in neurode-
generative disease (Miyamoto et al., 2013). In the normal brain,
these cells contribute to neuronal proliferation and differentiation,
pruning of dying neurons, synaptic remodeling, and clearance
of debris and aberrant proteins (Harry, 2013). Analogous to the
activities of immune cells, activated microglia release cytokines,
chemokines, nitric oxide, and reactive oxygen species (Harry,
2013). Dysfunctions in the homeostatic role of microglia, how-
ever, can affect neuronal functions such as cognition, personality,
and information processing (Miyamoto et al., 2013).

Minocycline is known as the only drug capable of inhibit-
ing the activation and proliferation of microglia (Tikka et al.,
2001). In pathologies such as global brain ischemia, suppres-
sion of microglial activation by tetracyclines has a neuroprotective
effect with a much better survival rate of CA1 pyramidal neu-
rons (Yrjanheikki et al., 1998). The neuroprotective effects of
tetracyclines in brain hypoxia are mainly due to the selective
down-regulation of proinflammatory cytokines and compounds
in the microglia (Lai and Todd, 2006). Overly rapid correction
of chronic hyponatremia can lead to a severe demyelination dis-
ease, and the inhibition of microglial activation by minocycline
prevents neurologic impairment and improves the survival rate
(Suzuki et al., 2010). Minocycline also protects against microglial
activation, neuronal death, and cognitive impairment caused by
severe hypoglycemia in diabetic patients (Won et al., 2012). In the
normal brain, the corresponding activity of minocycline modu-
lates human social behavior leading to a more situation-oriented
decision-making, possibly by suppressing the effects of personal-
ity traits (Kato et al., 2012). Minocycline also significantly reduces
the risky trusting behavior in human economic exchange (Watabe
et al., 2013).

This, not exhaustive but still impressive, list of conditions
and diseases that can be treated with tetracyclines suggests the
pleiotropic effects and the presence of multiple targets and
receptors for which tetracyclines are ligands. In addition to
the discussed above, the known anti-inflammatory activities of
minocycline are achieved through the inhibition of expression of
nitric oxide synthases (Amin et al., 1996), suppression of B and T
cell function (Sewell et al., 1996), reduction of cyclooxygenase-2
expression and prostaglandin E(2) production (Yrjanheikki et al.,
1999), and up-regulation of IL-10 (Ledeboer et al., 2005). Anti-
apoptotic effects are believed to be due to inhibition of activity
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of caspase-1 and caspase-3 (Chen et al., 2000), inhibition of the
phosphorylation of p38 mitogen-activated protein kinase (MAPK)
(Du et al., 2001; Joks and Durkin, 2011), and inhibition of mito-
chondrial permeability-transition-mediated cytochrome c release
(Zhu et al., 2002). By virtue of its molecular structure, minocycline
is also an effective antioxidant with a radical scavenging potency
similar to vitamin E thus providing excellent protection against
oxidative stress (Kraus et al., 2005).

Tetracyclines are generally well-tolerated but under particu-
lar environmental conditions and in a subset of certain age and
disease cohorts may provoke adverse reactions. One of the most
known and well-studied side effects of tetracycline administration
are cutaneous adverse events due to the increased photosensitivity
of the skin, typically to the UVA spectrum of light (Drucker and
Rosen, 2011; Glatz and Hofbauer, 2012). Clinically these effects
can be divided into two groups, phototoxic and photoallergic
reactions. The former is due to the formation of reactive oxygen
species, with the impairment of many cellular macromolecules,
thus leading to inflammation and apoptosis, while the latter is
a type IV hypersensitivity reaction resembling eczema. The pre-
ventive measures include avoiding direct sunlight and the use of
sunscreens. The culprit drug can be withdrawn if the reactions
persist (Glatz and Hofbauer, 2012).

Tetracyclines are generally not recommended for pediatric
patients because these compounds chelate calcium ions, which are
incorporated into teeth, resulting in discoloration of both the pri-
mary and permanent dentitions (Sánchez et al., 2004). There are
many case reports on the association of tooth, bone, nail, and scle-
ral pigmentation following minocycline administration in adults
as well but no systematic studies have been done in this area.

Many inflammatory diseases such as Alzheimer’s, Parkinson’s,
Huntington’s, familial Mediterranean fever, and others tend to
display a substantial protein deposition bias, where a normally
soluble protein is deposited in an insoluble amyloid form (Carrell
and Lomas, 1997). The deposits interfere with cellular functions,
eventually leading to the cell death (Thomas et al., 1995). Tetracy-
clines are known to inhibit the deposition process (Sirangelo and
Irace, 2010) but at the cost, by keeping the amyloid protein in a
pre-fibrillar, highly cytotoxic state (Malmo et al., 2006). So care
should be exercised to avoid the toxic effects of oligomeric species
during tetracycline therapy.

In a development analogous to the search for non-antimicrobial
macrolides there have been a series of works aimed at designing
tetracycline derivatives with diminished antimicrobial activities
while retaining or enhancing other activities important for their
non-antimicrobial use. It needs to be noted here that the works
with non-antimicrobial tetracycline derivatives have been actually
initiated earlier than those with macrolides, i.e., shortly after the
discovery of the host modulating properties of low-dose tetracy-
clines 30 years ago (Golub et al., 1983). However, a closer look
into literature shows that the host modulating effects of antibiotic
derivatives were detected even earlier, in 1950 (Stokstad and Jukes,
1950). In one of their experiments, the discoverers of growth-
promoting antibiotics found that the cultural supernatant of S.
aureofaciens, in which the antibiotic activity of aureomycin is
destroyed by alkaline hydrolysis, still enhanced the growth and
improved survival of chicks when added to feed (Stokstad and

Jukes, 1950). Thus, the loss of antimicrobial activity of aureomycin
has not compromised its other biological activities such as growth
promotion. It is unfortunate that this interesting observation has
been left without attention it deserves for so many years.

Chemically modified tetracyclines with no antimicrobial activ-
ity may have numerous applications without the associated
risk of selecting for antibiotic resistance. For example, chemi-
cal conversion of tetracycline hydrochloride to the analog with
no antimicrobial activity, de-dimethylaminotetracycline, has not
compromised the collagenase inhibitory activity of the original
molecule (Golub et al., 1987), while not affecting the tetracy-
cline resistance profiles of gut and oral microbiota (Golub et al.,
1991). COL-3, a chemically modified tetracycline with a MMP
inhibitor activity, has showed promising results in the treatment
of AIDS-related Kaposi’s sarcoma (Dezube et al., 2006). More-
over, the use of modified tetracyclines has showed promising
results in many fields, including ophthalmologic diseases (Federici,
2011), dentistry (Grenier et al., 2002; Gu et al., 2012), cardio-
vascular pathologies (Salo et al., 2006; Gu et al., 2011), various
types of cancer (Lokeshwar, 1999, 2011; Syed et al., 2004; Zhao
et al., 2013a), and other conditions with excessive MMPs activities
(Golub, 2011).

Another direction in the development of tetracyclines is under-
standably focused on the design of drugs with better antimicrobial
activities and pharmacokinetic properties. Despite being highly
efficient upon introduction in the clinical practice in the 1950s, the
widespread resistance to the first- and second-generation tetra-
cyclines made them essentially useless for treatment of many
serious infectious diseases. One of the successful drug discov-
ery programs resulted in a third-generation tetracycline called
tigecycline (the minocycline derivative 9-tert-butyl-glycylamido-
minocycline). The antibiotic is highly efficient against a broad
range of pathogenic bacteria, including those resistant to the
first- and second-generation tetracyclines (Bertrand and Dowz-
icky, 2012). Although it is on the list of reserve drugs, its use is
steadily increasing (Huttner et al., 2012). Regrettably, similar to
the fate of other antibiotics, the efficiency of tigecycline may start
to deteriorate due to the penetration of tigecycline resistance into
pathogenic microbiota (Aminov, 2013).

β-LACTAMS
One of the most remarkable breakthroughs in the search for the
therapy of neurodegenerative diseases has identified β-lactams
as a very promising group of drugs. In a large screening effort
involving 1,040 FDA-approved drugs and nutritionals, it has been
discovered that the only drugs capable of regulating the expression
and modulating the activity of the glutamate transporter subtype
1 (GLT-1) are β-lactams (Rothstein et al., 2005). Glutamate is a
principal excitatory neurotransmitter in the CNS and contributes
to learning and memory (Shigeri et al., 2004). The concentration
of glutamate is mainly handled by GLT-1 (excitatory amino-acid
transporter 2, EAAT2, responsible for 90% of glutamate uptake;
Danbolt, 2001). Impairment of EAAT2 function leads to excess
of glutamate and associated glutamate excitotoxicity destroying
neurons and leading to neurodegenerative diseases such as ALS,
epilepsy, and others (Maragakis and Rothstein, 2001). No prac-
tical pharmaceuticals modulating EAAT2 expression and activity

Frontiers in Microbiology | Antimicrobials, Resistance and Chemotherapy August 2013 | Volume 4 | Article 241 | 6

http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive


“fmicb-04-00241” — 2013/8/16 — 21:17 — page 7 — #7

Aminov Biotic acts of antibiotics

were known until the discovery of such activity among β-lactams
(Rothstein et al., 2005). A multi-phase randomized trial of ceftri-
axone for treatment of ALS has been recently finalized (Berry et al.,
2013).

Similar to other antibiotics, β-lactams can target many com-
ponents of the eukaryotic cellular machinery, and the effects of
β-lactams are not limited solely to the modulation of expression
and activity of EAAT2. In a recent investigation of ceftriaxone as a
potential therapy using a murine model of spinal muscular atro-
phy, the effects, in addition to the increase of EAAT2, also included
the increase of the nuclear factor (erythroid-derived 2)-like 2,
Nrf2, and the spinal muscular atrophy protein SMN (Nizzardo
et al., 2011). The treatment resulted in significant amelioration of
the neuromuscular phenotype and increased survival consistent
with the protection of neuromuscular units through the activa-
tion of antioxidant response pathway governed by Nrf2. Another
work has pointed to this target of ceftriaxone as well: together
with the induction of the cystine/glutamate transporter SLC7A11
(formerly xCT), the neuroprotective effect of ceftriaxone in vitro
is combined with the induction of Nrf2 consistent with the activa-
tion of the antioxidant defense system of the cell (Lewerenz et al.,
2009).

In various models of brain injury ceftriaxone demonstrates
strong neuroprotective effects, mainly via the up-regulation of
GLT-1. In an experimental model of focal cerebral ischemia, the
administration of ceftriaxone induces ischemic tolerance result-
ing in a better functional recovery of animals (Chu et al., 2007).
A dramatic survival improvement can be seen in a rat model of
stroke, if the animals are treated by a single injection of ceftriaxone
90 min after the middle cerebral artery occlusion (Thöne-Reineke
et al., 2008). Pre-treatment with ceftriaxone also confers a signif-
icant neuroprotection in a cerebral ischemia/reperfusion injury
(Verma et al., 2010). In a neonatal rat model of hypoxic–ischemic
encephalopathy, pre-treatment with the antibiotic significantly
reduces the brain injury scores and apoptotic cells in the hip-
pocampus, restores myelination in the external capsule, and
improves the posttraumatic learning and memory deficits (Lai
et al., 2011). The neuroprotective effects of ceftriaxone are real-
ized not only through the regulation of expression and activity
of GLT-1, SLC7A11, and Nrf2. In a rat model of traumatic brain
injury the antibiotic also significantly reduces the level of proin-
flammatory cytokines (Wei et al., 2012). Thus the improvement
of cognitive functions and mitigation of brain edema after a
brain injury, which is treated by posttraumatic administration
of ceftriaxone, is a combined effect of reduced excitotoxicity and
suppressed inflammation.

The potent immunomodulatory properties of β-lactam antibi-
otics, including inflammation control, are not limited to the sole
example given above (Wei et al., 2012). In a mouse model of MS,
ceftriaxone treatment indirectly hampered T cell proliferation and
secretion of proinflammatory cytokines thus attenuating the dis-
ease course and its severity in this model of autoimmune CNS
inflammation (Melzer et al., 2008). Interestingly, ceftriaxone has
had no impact on the EAAT2 protein expression levels in sev-
eral brain areas as well as on the glutamate uptake rate suggesting
that in this model the positive effects of the antibiotic are not
mediated through the modulation of glutamate concentration.

Moreover, it seems that even the individual antibiotics within
the β-lactam group may display differential immunomodulatory
properties (Mor and Cohen, 2013). This mechanism operates via
covalent binding of various β-lactams to cellular albumin and
subsequent modulation of T cell function and gene expression.

β-lactams may be considered as valuable candidates for treat-
ment of alcohol and other drug dependencies due to the capability
of normalizing glutamate transmission, which is affected in addic-
tion (Kalivas et al., 2009). To start with the simplest model:
in planarians, ceftriaxone attenuates both the development of
physical dependence and abstinence-induced withdrawal from
cocaine, amphetamine, methamphetamine, and benzodiazepine
(Rawls et al., 2008). In rats, the administration of ceftriaxone may
suppress cue- and cocaine-induced relapses to cocaine-seeking
behavior via up-regulation of GLT-1 and SLC7A11 (Sari et al.,
2009; Knackstedt et al., 2010). Ceftriaxone also precludes cocaine
sensitization and provides a long-term attenuation of cue- and
cocaine-primed reinstatement of cocaine-seeking behavior, even
after the cessation of antibiotic administration (Sondheimer and
Knackstedt, 2011). In general, the antibiotic normalizes many
aspects of glutamate homeostasis disrupted by the use of cocaine
and, therefore, has the potential to lessen relapse episodes in
human cocaine addicts (Trantham-Davidson et al., 2012). Cur-
rently there is no approved medication for the treatment of cocaine
addiction, and the promising results obtained in the animal model
experiments described above suggest that ceftriaxone (and possi-
bly other β-lactams) can be considered as good candidates for
clinical trials.

The biggest substance abuse problem is associated with exces-
sive ethanol consumption, and β-lactams hold the potential to
contribute to this problem as well. The biochemistry of ethanol
addiction is more complicated compared to other drug depen-
dencies, but one of its components discussed above, i.e., changes
in glutamate transmission, is affected analogous to other drug
addictions (Rao and Sari, 2012). Possibly the same mechanism
of normalization, through the activation of GLT-1 by ceftriax-
one, contributes to reduced ethanol consumption as well as to
attenuation of relapse-like ethanol-drinking behavior in male
alcohol-preferring rats (Sari et al., 2011; Qrunfleh et al., 2013).
Reduction in the acquisition and maintenance of ethanol-drinking
habit by ceftriaxone has also been verified for adolescent and adult
female alcohol-preferring rats (Sari et al., 2013).

Enhanced glutamatergic transmission is a primary mediator
of opiate dependence, and the counteractive effect of ceftriax-
one prevents the development of morphine physical dependence
in rats (Rawls et al., 2010a). Through the same remedial mecha-
nism, the antibiotic reduces morphine analgesic tolerance (Rawls
et al., 2010b) and suppresses opioid-induced hyperalgesia (Chen
et al., 2012). The efficacy of ceftriaxone against drug dependence-
related behavior extends to amphetamine (Rasmussen et al., 2011)
and nicotine (Alajaji et al., 2013), as well as to the prevention of
cannabinoid tolerance (Gunduz et al., 2011).

In general even the higher doses of ceftriaxone are tolerated
well but care should be taken in neonates, especially those with
hyperbilirubinemia and those receiving intravenous calcium solu-
tions (Monte et al., 2008). There is no support for such restrictions
in patients >28 days old (Steadman et al., 2010). The adverse
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reactions to ceftriaxone are caused by rapid intravenous injec-
tion, unlabeled use, and past history of allergic reactions to
cephalosporins or penicillins (Shalviri et al., 2012). These risk
factors can be easily managed under the normal clinical settings.

The host modulating properties of β-lactams have been discov-
ered recently, and there is yet no data regarding the development
of β-lactams with abolished antimicrobial activity. Unlike the
macrolides and tetracyclines, the non-antimicrobial effects of
β-lactams have been studied mostly with a single representative,
ceftriaxone, and it is not clear if other representatives of this
class of drugs possess similar properties. Another problematic
area in ceftriaxone application for non-antimicrobial purposes is
the concentrations used. The concentrations may be even higher
than those for infectious disease treatment thus exerting potent
selective pressure on commensal and pathogenic microbiota. This
third-generation cephalosporin still remains a valuable therapeu-
tic option for treatment of pneumonia, bacterial meningitis, Lyme
disease, typhoid fever, and gonorrhea. Although the drug is los-
ing its position as the last remaining option for first-line empiric
treatment of, for example, Neisseria gonorrhoeae (Unemo and
Nicholas, 2012), there are still some pathogens that have not
acquired the corresponding resistance as yet. In this situation,
exerting additional selective pressure by the non-antimicrobial use
of ceftriaxone may complicate the management of a number of
infectious diseases.

DISCUSSION
Based on many promising results of the non-antimicrobial use of
antimicrobials, the use of antibiotics for this purpose is expected
to rise dramatically. Although being considered in the most
recent clinical trials, a possible side effect of this therapy, such as
the emergence and dissemination of antibiotic resistance among
commensals and pathogens, has not received any considerable
attention, and, in fact, the majority of clinical trials cited here have
not monitored the occurrence of antibiotic resistance. There are
some indications, however, that even low, non-selective concen-
trations of antibiotics used for a long time may affect the antibiotic
resistance profile of human microbiota. For example, in a recent
clinical trial of long-term, low-dose erythromycin on pulmonary
exacerbations among patients with non-CF bronchiectasis, the
proportion of macrolide-resistant oropharyngeal streptococci at
the end of therapy has been substantially higher in the treatment
group compared to the placebo group, 27.7 vs. 0.04%, respec-
tively (Serisier et al., 2013). The use of azithromycin for the same
purpose has resulted in the macrolide resistance rate of 88% com-
pared to 26% in the placebo group (Altenburg et al., 2013). In
this regard, the use of modified antibiotics with abolished antimi-
crobial activities may be helpful to circumvent such undesirable
side effects of this type of therapy (Golub et al., 1991). Efforts to
design newer antibiotic derivatives, which have no antimicrobial
properties must be continued, especially for β-lactams that are
used at the concentration range far exceeding those employed in
infection control. For example, the recommended dose of ceftri-
axone for treatment of gonorrhea has been increased from 125 to
250 mg due to the increasing resistance of N. gonorrhoeae, where
for the majority of other infections the range rarely exceeds 1–
2 g per day. But the most efficient management of, for example,

ALS may require dosages up to 4 g/day (Berry et al., 2013). In
combination with a generally long-term treatment required for
this type of therapy (i.e., 20 weeks used in Berry et al., 2013),
the total quantity of ceftriaxone consumed during a single course
(560 g) might easily exceed the corresponding values used in a typ-
ical infection treatment by approximately 30–60 times. This may
contribute to a significantly broader spread of resistance against
third-generation cephalosporins among human commensals and,
possibly, pathogens.

This clearly powerful selective pressure of ceftriaxone to be
used for non-antimicrobial purposes brings forward another con-
sideration for a more careful assessment of the biotic effects
of antibiotics: that is, whether the effects of antibiotics are
exerted solely via the human receptor-antibiotic ligand mecha-
nisms. While the in vitro models largely have no issues with the
influence of an indirect factor such as commensal microbiota, the
corresponding experiments with animal models or human volun-
teers may need more careful interpretation because of a possible
interfering effect of this often neglected variable. Our views on the
role of commensal microbiota in human health and disease have
undergone cardinal changes during the last decade from view-
ing it as a fairly passive bystander with a limited contribution to
the host nutrition to an active organ of our body involved in many
aspects of our metabolism, physiology, immunity, and disease. The
field of host–microbiota research is overloaded with many works
revealing the role of commensal microbiota in various pathologies
ranging from inflammatory disorders to metabolic syndrome and
to autism. It is, however, not possible to extend the frames of this
review to include this fascinating area as well.

It is interesting to note, though, that there is an overlap between
the range of diseases that can be treated by the biotic action of
antibiotics and the diseases that have a substantial commensal
microbial component. In Parkinson’s disease subjects, for exam-
ple, the integrity of the intestinal lining is compromised thus
allowing translocation of proinflammatory bacteria and bacterial
products leading to the formation of the pathological hallmark of
the disease, i.e., Lewy bodies with alpha-synuclein protein (Forsyth
et al., 2011). As discussed above, the neuroprotective effects of
minocycline may include reduced mitochondrial calcium uptake,
stabilized mitochondrial membranes, reduced release of apop-
totic factors, up-regulation of the anti-apoptotic protein Bcl-2,
direct scavenging for reactive oxygen species, and inhibition of
MAPKs (Orsucci et al., 2009). On the other side, minocycline may
affect and modulate the microbiota, both commensal and translo-
cated, thus reducing the load of proinflammatory bacteria and
bacterial products. The effect on microbiota may be particularly
profound for ceftriaxone, the biotic use concentration of which
is much higher than typical antimicrobial concentrations used for
infectious diseases. At concentrations used for typical antibacterial
therapy, the ceftriaxone-induced dysbacteriosis may significantly
change the fecal metabolome and affect the populations of T lym-
phocytes, their subpopulations in Peyer’s patches, and expression
of various cytokines (Gao et al., 2012; Zhao et al., 2013b). Thus
ceftriaxone considerably modifies the gut microbiome with the
subsequent alteration of the host metabolome and immunity. It is
currently unknown to what extent these secondary alterations con-
tribute to the observed therapeutic effects of the non-antimicrobial
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ceftriaxone use in various diseases and pathologies. Because of
the dual role of antibiotics, further research on biotic effects
of antibiotics should incorporate both of these aspects in study
designs.

Similarly, in the use of antibiotics as antimicrobial agents,
their biotic effects are rarely considered as significant. Almost
all infectious diseases, however, have a substantial inflammatory
component, and, if left unchecked, the host’s proinflammatory
responses may cause more harm than a pathogen would. In
this regard, the anti-inflammatory activities of tetracyclines and
macrolides discussed above may help to alleviate the overly aggres-
sive inflammatory responses and prevent the resulting excessive
tissue damage. In general, the number of diseases with a sig-
nificant proinflammatory component, as exemplified above in
this review, is on the rise, and one of the possible explana-
tions for this phenomenon is offered by the hygiene hypothesis
(Strachan, 1989). There used to be substantial exposure of humans
to environmental bacteria before the advent of industrial food
production resulting in essentially sterile food protected by preser-
vatives, conservatives and freezing and generally higher hygienic
standards of living. This exposure seems to have been an essen-
tial component of the immune system education and the lack of
it results in an unbalanced immune system development, with a
prominent proinflammatory bias. Thus antibiotics like tetracy-
clines and macrolides not only help to clear infections but also
prevent generally excessive immune responses to infections char-
acteristic for modern humans. Other antibiotics, however, may
display the opposite biotic effects. For example, rifampin, a major
drug used in tuberculosis treatment, increases inducible nitric
oxide synthase expression and NF-κB activation and decreases
PPARgamma expression (Yuhas et al., 2009), thus displaying
strong proinflammatory properties.

The ligand and signaling activities of antibiotics that are beyond
their intended antimicrobial use may explain the phenomena out-
side the human disease domain. Many are probably familiar with
the growth-promoting effect of antibiotics on food animals. The
growth-promoting antibiotics were completely phased out in the
EU countries in 2006 because of their alleged contribution to
the spread of antibiotic resistance, but it is still a legal practice
in many countries. Despite the fact that the growth-promoting
phenomenon was discovered more than 60 years ago, its mecha-
nisms are still poorly understood. One of the possible explanations
proposed has been the suppression of subclinical infections. But
the concentrations of antibiotics used for growth promotion are
well below the minimal inhibitory concentration (MICs) for the
majority of pathogens. The irony of the situation is that it has
been clear from the beginning that the growth-promoting effects
of antibiotics are not due to antimicrobial activities. Since the
very early days of the field it has been shown that even if the
antibiotic activity of aureomycin in the culture supernatant of
S. aureofaciens is destroyed by alkaline hydrolysis, it still retains
the complete growth-promoting potential (Stokstad and Jukes,
1950). Thus Robert Stokstad and Thomas Jukes were the first to
witness the biotic activity of the modified antibiotic but without
realizing this. In the context of results discussed in this review,
it is probable that the growth-promoting effect of antibiotics is
largely due to the biotic signaling. This may affect the host and

microbial components and can be realized through the modula-
tion and pleiotropic regulation of the physiology and metabolic
state of an entire microbiota as well as the regulatory mechanisms
operating in the host animal. The regulatory effect of antibi-
otics on the microbial component has been discussed elsewhere
(Davies et al., 2006; Linares et al., 2006; Yim et al., 2006, 2007;
Martínez, 2008; Aminov, 2009; Romero et al., 2011). Other regu-
latory effects can be instigated through signaling to the host cells
as has been demonstrated in this review. This could be modulation
of immunity by suppressing subclinical inflammatory processes,
which drain the host resources. It is probably not a coincidence
that the vast majority of growth-promoting antibiotics belong to
macrolides and tetracyclines that exert potent anti-inflammatory
activities.

And finally, moving from the applications to the fundamentals,
it remains to be discussed whether this multiplicity of antibiotic
targets in the human/animal body we have just seen is merely acci-
dental. Our perception of antibiotics as instruments of warfare
in microbial communities is mainly influenced by the extrapo-
lation of antibiotic use in clinical and veterinary microbiology,
where high concentrations of antibiotics are used to eradicate bac-
terial infections in humans and animals. Several lines of evidence
gathered in recent years suggest that antibiotic concentrations
occurring in natural ecosystems are too low to kill the neighbors
and, instead, they may play signaling and regulatory roles in micro-
bial communities (Davies et al., 2006; Linares et al., 2006; Yim
et al., 2006, 2007; Martínez, 2008; Aminov, 2009; Romero et al.,
2011). The concept of antibiotics serving as signaling molecules in
microbial ecosystems has gained considerable attention also in the
context that it may explain the effect of low-dose antibiotics on
the expression of genes regulating virulence, colonization, motil-
ity, stress response, biofilm formation, gene transfer, secondary
metabolite production, and many other functions. If the sole role
of antibiotics were limited to killing, then no effect of antibi-
otics would be seen below the MIC levels, and the effect would be
neutral. However, it is not the case.

Are eukaryotes involved in this microbial signaling network?
Before the advent of the multicellular organization about 0.5 bil-
lion years ago, the single-celled eukaryotes were probably well-
incorporated into the then-existing microbial ecosystems, with
the corresponding ancient signaling systems, and were also pro-
ducing signaling substances themselves. They probably retained
this capability even after the shift to multicellular organization,
as may be exemplified by some of the ancient eukaryotic organ-
isms having survived until the present days such as sponges which
produce plethora of biologically active compounds, including
antibiotics (Burkholder and Ruetzler, 1969; Laport et al., 2009).
Further developments in multicellular organization in the eukary-
otic world have led to a certain degree of isolation from the
environment and the invention of intra-organismal signaling by
hormones, but interaction and cross-talk with microbiota has
remained an integral part of the lifestyle of eukaryotes. As dis-
cussed above, the microbiota is involved in many aspects of our
metabolism, physiology, immunity, and disease through signaling
to the host, but this is indeed a cross-talk with the microbiota also
listening to the host signals (Burton et al., 2002; Sperandio et al.,
2003; Clarke et al., 2006; Karavolos et al., 2008, 2013).
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The importance of this host–microbe communication has been
exemplified above by the hygiene hypothesis that explains a dra-
matic increase in the number of allergies and asthma in more
developed countries due to limited exposure to environmen-
tal microbiota in the modern world. Another good example of
the malfunctioning host–microbiota communication is the peri-
odontal disease that affects 10–15% of adult population globally
(Petersen and Ogawa, 2012). Although many suspected pathogens
have been implicated in this disease, the underlying cause is more
fundamental and mainly owes to the disrupted host–microbe
interaction (Armitage, 2013; Bartold and Van Dyke, 2013). This
disruption is the result of drastic changes in the lifestyle and
diet imposed by the conversion to farming ca. 10,000 years ago
and especially by the industrial revolution beginning from the
18th century. These changes shifted the oral microbial commu-
nity to a disease-associated configuration (Adler et al., 2013), thus
provoking the host to overly aggressive immune responses that
result in tissue damage and disease progression. As discussed
above, the situation can be somewhat corrected by the use of
low-dose tetracyclines and tetracycline derivatives that suppress
these responses, but this is a temporal solution which does not
tackle the fundamental issue of the disease. The way of solving
this is through reinstatement of oral microbiota from a less sta-
ble and diverse state, which would allow restituting the proper
host–microbiota communication that has been selected and fine-
tuned during prior long-term co-evolution of the host and
microbiota.

Antibiotic signaling network is possibly one of the most ancient
forms of inter-domain communication. It is not a coincidence
that there are so many distinct molecular targets and recep-
tors in eukaryotic cells for which antibiotics serve as ligands.
Although therapeutic potential of this molecular cross-talk is

well-understood and proven in certain pathologies and diseases,
the effect on healthy individuals needs further elaboration. This
is particularly important because the current exposure of humans
to antibiotics, even in generally healthy populations, could be sub-
stantial but the consequences of this are poorly understood. For
example, the phenomenon of the accelerated physiological devel-
opment and tendency to be overweight in modern humans: is it
the same effect of antibiotics similar to the growth promotion in
food animals? The existing regulations require that the level of
antibiotics for instance in meat products entering the human food
chain should be below a certain tolerance level. But how the toler-
ance levels are defined? For example, detection of antibiotics and
sulfonamides in bob veal calf carcasses are performed with the
calf antibiotic and sulfonamide test (CAST) where Bacillus mega-
terium ATCC 9885 is used as the indicator organism (Dey et al.,
2005). In order for a tissue sample to be considered safe, a zone of
inhibition around a swab should be less than 18 mm. Under the
identical incubation conditions antibiotic disks with 8.0 μg of sul-
famethazine produce slightly smaller zones of inhibition, 17 mm
in diameter (Dey et al., 2005). Moreover, the samples may contain
the metabolized antibiotic residues that lost their antimicrobial
activity but may still retain other biotic signaling properties as
discussed in this review.

The use of antibiotics has been predominantly studied from the
antimicrobial activity perspective and focused mostly on infection
control and prevention of antibiotic resistance among pathogens.
The advent and rapid expansion of non-antimicrobial application
of antibiotics may enhance the already existing selective pressure
of antibiotics and contribute to the present antibiotic resistance
problem. Better understanding of biotic functions of antibiotics
may help to design newer antibiotic derivatives with abolished
antimicrobial activities and improved biotic functions.
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