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Abstract
Two stunt nematode species, Geocenamus brevidens and 
Quinisulcius capitatus, were recovered from the potato growing regions 
of southern Alberta, described and characterized based on integrative 
taxonomy. Morphometrics, distribution, and host associations 
of both species are discussed. The Canadian populations of both 
species displayed minor variations in morphometrical characteristics 
(viz., slightly longer bodies and tails) from the original descriptions. 
The populations of G. brevidens and Q. capitatus species examined 
in this study are proposed as standard and reference populations 
for each respective species until topotype specimens become 
available and molecularly characterized. Phylogenetic analyses, 
based on partial 18S, 28S, and ITS sequences, placed both species 
with related stunt nematode species. The present study updates 
the taxonomic records of G. brevidens and Q. capitatus from a 
new location, southern Alberta, Canada, and will aid in the decision 
whether these stunt nematodes should be included in nematode 
management programs.
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The soil, climate, and well-developed irrigation system 
in the southern region of the province make Alberta 
one of the most productive places in Canada to 
grow potatoes, with 20.4% of the country’s total yield 
reported in 2019 (Statistics Canada, 2020). Alberta 
also hosts the world’s leading potato processors. 
Planted areas and crop yields in this province have 
been increasing steadily to meet the growing demand 
for potato products. However, disease incidence 
remains a major limiting factor in profitable potato 
production. Among the major potato diseases, 
the potato early dying (PED) complex results in 
premature plant senescence and can decrease 
potato marketable yield by as much as 50% (Row 
and Powelson, 2002). The root-lesion nematode 
Pratylenchus penetrans is a known contributor to 

PED, along with the fungal wilt pathogen Verticillium 
dahliae and to a lesser extent V. albo-atrum. The 
possible role of other plant-parasitic nematodes in 
PED development is unknown, although several 
studies noted the co-occurrence of stunt nematodes 
and root-lesion nematodes (Smiley et al., 2004; 
Thompson et al., 2008).

Stunt nematodes are ectoparasites, polyphagous 
in nature and commonly found in vegetable fields, 
grasslands, and forest soils. The plant damage 
caused by these nematodes is difficult to detect; 
indeed, the impact is a challenge to ascertain as 
these nematodes either feed directly or potentiate the 
disease complexes formed by other plant pathogens 
(Singh et al., 2013). Previous studies detected the 
presence of 15 stunt nematode species from Canada 
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(Geraert, 2011); however, the recent records only 
indicate the genus level identification (Pereira, 2018; 
Wallace, 2016), revealing a gap in our understanding 
of stunt nematodes inhabiting Canadian soils.

In the present study, two stunt nematode species 
belonging to the genera Geocenamus and Quinisulcius 
were detected in the potato growing regions of 
southern Alberta, with the latter species being the 
first record in Canada. Both species were examined 
morphologically and identified as Geocenamus 
brevidens and Quinisulcius capitatus. Because both 
of these are considered plant-parasitic species in 
other countries (Smiley et al., 2006; Thompson et al., 
2008), the aim of the present study was to (i) provide a 
detailed molecular and morphometric characterization 
of both species, (ii) provide extensive information on 
the species distribution and host associations, and (iii) 
study the phylogenetic relationship of G. brevidens and 
Q. capitatus with other stunt nematode species. The 
results of this study will lay the foundation for assessing 
the damage potential of these species on potato 
production so as to benefit growers and researchers 
involved in nematode management programs.

Materials and methods

Nematode isolation and morphological 
studies

Nematodes were isolated from soil samples using the 
modified Cobb sieving and flotation-centrifugation 
method (Jenkins, 1964). For morphometric studies, 
nematodes were killed and fixed in hot formalin 
(4% formaldehyde), processed by ethanol-glycerin 
dehydration, as described by Seinhorst (1959) and 
modified by De Grisse (1969), and mounted on per
manent slides. Measurements of the mounted speci
mens were taken using light micrographs prepared 
on a Zeiss Axioskope 40 microscope equipped with 
a Zeiss Axiocam 208 camera (Carl Zeiss Microscopy, 
Jena, Germany).

DNA extraction, PCR amplification, and 
sequencing

DNA samples were prepared from nematodes 
according to Maria et al. (2018). Three sets of DNA 
primers (Integrated DNA Technologies, Coralville, 
IA, USA) were used in the PCR analyses to amplify 
nucleotide sequences of the partial 18S, 28S (LSU), 
and ITS of ribosomal RNA genes (rDNA). The partial 
18S region was amplified with 1813F and 2646R 
primers (Holterman et al., 2006). The LSU rDNA re
gions were amplified using 28–81for and 28–1006rev  

primers (Holterman et al., 2008), and the ITS 
was amplified with the F194 (Ferris et al., 1993) 
and AB28-R primers (Curran et al., 1994). PCR 
conditions were as described by Holterman et al. 
(2006, 2008) and Ferris et al. (1993). PCR products 
were resolved in 1% agarose gels and visualized by 
staining with GelRed (Biotium, Fremont, CA, USA). 
Amplified DNA fragments were purified following the 
manufacturer’s protocol (Omega Biotek, Norcross, 
GA, USA), ligated into the pJET1.2 vector (Thermo 
Fisher Scientific, Mississauga, ON, Canada), and 
introduced into Escherichia coli DH5α -competent 
cells (Thermo Fisher Scientific). The presence of the 
insert-containing plasmids in transformed E. coli  
cells was confirmed by PCR. Plasmid DNA was iso
lated and purified according to the manufacturer’s 
instructions (Omega Biotek). The DNA inserts were 
sequenced at Genewiz, Inc (South Plainfield, NJ, 
USA) using primers matching the flanking vector 
sequence.

Phylogenetic analyses

Sequenced genetic markers from the nematodes 
examined in the present study (after discarding primer 
sequences and ambiguously aligned regions), along 
with several stunt nematode sequences obtained 
from the GenBank database, were used in the 
phylogenetic reconstruction. Outgroup taxa for each 
dataset were selected based on previously published 
studies (Handoo et al., 2014; Maria et al., 2020; 
Nguyen et al., 2019). Multiple-sequence alignments 
of the newly obtained and published sequences 
were made using the FFT-NS-2 algorithm of MAFFT 
V.7.450 (Katoh et al., 2019). Sequence alignments 
were visualized with BioEdit (Hall, 1999) and manually 
edited by Gblocks ver. 0.91b (Castresana, 2000) in 
the Castresana Laboratory server (http://molevol.
cmima.csic.es/castresana/Gblocks_server.html) 
using options for a less stringent selection (minimum 
number of sequences for a conserved or a flanking 
position: 50% of the number of sequences +1; maxi
mum number of contiguous nonconserved posi
tions: 8; minimum length of a block: 5; allowed gap 
positions: with half).

Phylogenetic analyses of the sequence datasets 
were conducted based on Bayesian inference (BI) using 
MRBAYES 3.2.7a (Ronquist and Huelsenbeck, 2003). 
The best-fit model of DNA evolution was calculated 
with the Akaike information (AIC) of JMODELTEST 
V.2.1.7 (Darriba et al., 2012). The best-fit model, the 
base frequency, the proportion of invariable sites, 
substitution rates, and the gamma distribution shape 
parameters in the AIC were used for phylogenetic 
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analyses. BI analyses were performed under a general 
time-reversible model, with a proportion of invariable 
sites and a rate of variation across sites (GTR + I + G) 
for the partial 18S, 28S, and ITS rRNA regions. These 
BI analyses were run separately per dataset with four 
chains for 2 × 106 generations. The Markov chains were 
sampled at intervals of 100 generations. Two runs 
were conducted for each analysis. After discarding 
burn-in samples of 10% and evaluating convergence, 
the remaining samples were retained for more in-depth 
analyses. The topologies were used to generate a 50% 
majority-rule consensus tree. Posterior probabilities 
(PP) are given on appropriate clades. Trees from all 
analyses were edited using FigTree software V.1.4.4 
(http://tree.bio.ed.ac.uk/software/figtree/).

Results

Systematics

Geocenamus brevidens (Allen, 1955) Siddiqi, 1970 
(Fig. 1 and Table 1).

Description

Female

Body straight with curved tail region or open 
C-shaped. The cuticle annulated, lateral field with 
six incisures. Cephalic region continuous, broadly 
rounded with 3 to 4 indistinct annuli, basal ring of 
head framework shallow, distinctively arched. Stylet 
15 to 17 µm long with rounded basal knobs. Dorsal 
gland opening (DGO) 1.5 to 3.0 µm posterior to 
basal knobs. Median bulb spherical to oval, well-
developed, central valve plates bean-shaped slightly 
anteriorly. Isthmus slender encircled with nerve ring. 
Deirids were present (observed in few specimens). 
Excretory pore anterior to the basal esophageal bulb. 
Hemizonid 2 to 3 body annuli long situated slightly 
anterior to the excretory pore. Cardia rounded, 
intestine densely globular. Ovaries outstretched, 
vulva with small epiptygma, which mostly appear as 
protruding lips, vagina inclined anteriorly covering half 
of the corresponding body diameter. Spermatheca 
rounded, scarcely filled with sperm. Tail subcylindrical, 
gradually tapering to a smooth broadly rounded or 
truncated terminus. Hyaline region of tail prominent 
3.2–5.5 µm long. Phasmids near or slightly posterior 
to mid-tail.

Male

Not found.

Remarks

Geocenamus brevidens (=Tylenchorhynchus bre
videns, Allen, 1955 and Merlinius brevidens, Siddiqi, 
1970) was originally described in the rhizosphere 
of grass from the USA by Allen in 1955. Since then, 
this species has been reported from diverse climate 
regions and agricultural environments (Table 3). Despite 
its wide distribution, few morphometrical studies 
are available for comparison (Table 1). Geocenamus 
brevidens was also reported from potato fields in 
Ontario (Olthof et al., 1982), although no morphological 
and morphometric studies were presented. Hence, 
we consider our population of G. brevidens as a 
Canadian population. We observed that nematodes 
of the Canadian population of G. brevidens were 
slightly longer and wider than in the original and other 
reported descriptions, with the exception of those 
from India (Siddiqi, 1961). The Canadian population 
morphometrical values were in good agreement with 
the Indian population, except for the stylet length, 
which was longer in the Canadian population, 15.0 
to 17.5 vs 13.0 to 15.0 µm. The other morphological 
characteristics, i.e., lip and tail morphology, overall 
body habitus, and vulva appearance, were consistent 
with the original description. Males were described in 
the original description and by Siddiqi (1961), but in 
later reports, no males were ever detected. Geraert 
(2011) mentioned that males were uncommon in  
G. brevidens; the Canadian population was also 
found devoid of males. In the original and subsequent 
descriptions, the authors did not observe the presence 
of spermatheca in G. brevidens (Allen, 1955; Alvani 
et al., 2017; Tzortzakakis et al., 2018). On the other 
hand, round-shaped spermathecae were found in 
the Canadian and Indian populations. The other 
characteristics noted by Siddiqi (1961) in the Indian 
population were tightly closed stylet knobs, indistinct 
anus, and rather cylindrical tail. In the Canadian popu
lation, the anus was prominent, stylet knobs were 
rounded, and the tail was cylindrical with a broadly 
rounded, somewhat truncated terminus. We consi
der these small differences between G. brevidens 
populations to be due to intraspecific geographic 
variation.

Habitat and locality

Two G. brevidens populations were found in the 
present study. The first population was found in a 
potato field (latitude 50° 34′ 43″ N; longitude – 112° 
30′ 34.7″ W) of Vulcan county, whereas the second 
one was discovered in the rhizosphere of grass 
growing on the headland (uncultivated field margin) 
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Figure 1: Light photomicrographs of Geocenamus brevidens. (A) Entire female, (B) Esophageal 
region, (C) Lip region, (D) Posterior esophageal region, (E) Deirids, (F) Posterior region with 
complete reproductive system, (G) Lateral lines, (H-J) Vulval region, (K-O) Female tails. Scale 
bars: (A) 50 μ m; (B-D, E, H-O) 20 μ m, (F) 50 μ m, (G) 5 μ m. Arrows point to (a) anus, (d) deirids, 
(exp) excretory pore, (ph) phamsid, and (v) vulva.
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(latitude 49° 47′ 22.66″ N; longitude – 112° 13′ 23″ W) 
of Taber Rural Municipality, Alberta, Canada.

Quinisulcius capitatus (Allen, 1955) Siddiqi, 1971 
(Fig. 2 and Table 2).

Description

Female

Body open C-shaped, appeared concave at vulval 
level. Cuticle annulated, lateral field with five incisures. 
Cephalic region continuous with slight depression 
at the junction of lip and body, broadly rounded with 
a few indistinct lip annuli. Stylet robust, 15 to 20 µm 
long with rounded basal knobs. DGO 2.5 to 4.0 µm 
posterior to basal knobs. Median bulb rounded, well 
developed with conspicuous central valve plates. 
Isthmus slender, encircled with nerve ring. Deirids 
not seen. Excretory pore at the middle of basal 
esophageal bulb. Hemizonid inconspicuous, 2 to 3 
body annuli long, situated 3 to 4 annuli anterior to 
excretory pore. Cardia rounded, intestine densely 
globular. Ovaries outstretched, vulva with protruding 
lips, vagina straight covering more than half of the 
corresponding body diameter. Spermatheca weakly 
developed, rounded. Tail conoid, distinctly annulated, 
gradually tapering to a heart or V-shaped terminus. 
Phasmids near or slightly posterior to mid-tail.

Male

Not found.

Remarks

Quinisulcius capitatus (=Tylenchorhynchus capitatus 
(Allen, 1955) Siddiqi, 1971) was originally described 
in the rhizosphere of pear from the USA by Allen 
in 1955. Afterward, this species has been found in 
various geographic and agricultural locations (Table 3). 
In the present study, the nematodes of the Canadian 
population of Q. capitatus were slightly longer and 
wider than those described in the original and other 
reports. Because of the longer body, the Canadian 
population had a longer stylet and tail, whereas the 
other morphological characteristics, such as lip and tail 
morphology, indistinct hemizonid, weakly developed 
spermatheca and vulva appearance, corresponded 
well with the original description. Male (n = 4) was only 
described in Allen (1955); however, no males were 
detected in any other reported population (Hopper, 
1959; Knobloch and Laughlin, 1973; Maqbool, 1982; 
Mekete et al., 2008; Siddiqi, 1961). Similarly, no male 

was found in the Canadian population. Of 17 valid 
species of Quinisulcius, males were not described for 
10 species (Geraert, 2011). We speculate that males 
of Quinisulcius are either very rare or do not have a 
significant role in reproduction. Another species, Q. acti, 
was described from the rhizosphere of okra by Hopper 
in 1959; however, this species was soon synony
mized with Q. capitatus (Siddiqi, 1961). Knobloch and 
Laughlin (1973) emphasized the number of tail annuli 
and the lateral line incisures characteristics at the 
phasmid level to reinstate the species Q. acti. However, 
this action was not accepted, and the species was 
regarded as synonym of Q. capitatus (Geraert, 2011). 
Several more species, namely Q. nilgiriensis (Seshadri 
et al., 1967), Q. himalayae (Mahajan, 1974), Q. solani 
(Maqbool, 1982), Q. paracti (Ray and Das, 1983), and 
Tylenchorhynchus maqbooli (Mizukubo et al., 1993), 
were described as new members of the Quinisulcius 
genus. Close scrutiny of these descriptions indicates 
that these species do not manifest any significant 
differences from Q. capitatus. The only difference 
mentioned by the authors was the varying number 
of lip and tail annuli. In the present study, we noted 
that the number of annuli on the lip or tail region of  
Q. capitatus are variable and cannot be considered 
valid characters for species differentiation. In the 
majority of our specimens, lip annuli were not clearly 
visible and tail annuli were difficult to count. In fact, 
most of the tail annuli became faint near the terminus, 
thereby posing a challenge to accurately count their 
number. Similarly, the lateral incisures at the level of 
or past the phasmid were not a constant character. 
Therefore, we suggest using the robust morphological 
characters for species differentiation.

Habitat and locality

This population was found in the rhizosphere of grass 
growing on the headland of a planted wheat field 
that had been in a crop rotation cycle with potatoes 
(latitude 49° 52′ 37.4″ N; longitude – 111° 56′ 37.5″ 
W); Taber Rural Municipality, Alberta, Canada.

Molecular characterization and  
phylogeny

The sequences of partial 18S (GenBank accession 
numbers MW029450, MW029451 for G. brevidens; 
MW023248, MW023249 for Q. capitatus), 28S 
(MW029449 for G. brevidens, MW023387 for  
Q. capitatus), and the ITS region of the rRNA 
(MW029446, MW029447, MW029448 for G. brevidens; 
MW027537, MW027538 for Q. capitatus) of both spe
cies were obtained.



7

JOURNAL OF NEMATOLOGY

Figure 2: Light photomicrographs Quinisulcius capitatus. (A) Entire female, (B) Esophageal 
region, (C) Lip region, (D) Basal esophageal bulb, (E) Posterior region with complete reproductive 
system, (F) Posterior region with eggs, (G-J) Vulval region, (K) Lateral lines, (L-P) Female tails. 
Scale bars: (A) 100 μ m, (B, C, F-J; L-P) 20 μ m, (E) 50 μ m, (D, K) 5 μ m. Arrows point to (a) anus, 
(d) deirids, (exp) excretory pore, (ph) phasmid, and (v) vulva.
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Table 3. Worldwide distribution and host plant association of Geocenamus brevidens 
and Quinisulcius capitatus.

No. Country Host associations References

Distribution and host association of G. brevidens

Americas

1 USA Wheat 
Potato

Mayol (1981), Smiley et al. (2006)  
Olthof et al. (1982)

Wheat grass Griffin and Asay (1996)

Pasture filed, vegetable and horticultural crops Hafez et al. (2010)

Asia

2 Iran Wheat Ghaderi et al. (2014)

Jujube, saffron, barberry Alvani et al. (2017)

Africa

3 South Africa Wheat Jordaan et al. (1992)

4 Egypt Soybean Salem et al. (1994)

Europe

5 Spain Cereals, sunflower, wheat Tobar et al. (1995a, 1995b)

Chickpea Castillo et al. (1996)

Grasslands Talavera and Navas (2002)

Olives Palomares-Rius et al. (2015)

6 Slovakia Hop gardens Lišková and Renčo (2007)

7 Czech Republic Hop gardens Čermák et al. (2011)

8 Turkey Cultivated plants Kasapoğlu et al. (2014)

Cotton, barley, melons, tobacco, Watermelons, 
wheat, lentils

Kasapoğlu Uludamar et al. (2018)

9 Greece Olives Tzortzakakis et al. (2018)

10 Poland Jerusalem artichoke Zapałowska and Skwiercz (2018)

Oceania

11 Australia Cereal fields Meagher (1970)

Wheat Thompson et al. (2008, 2010)

Millet, soybean, grasses Owen et al. (2014)

Distribution and host association of Q. capitatus

Americas

1 Ecuador Avocado, barley, bean, carrot, cucumber, 
lettuce, pea, onion, tomato, soybean, sugarcane

Bridge (1976)

2 Argentina Corn, sunflower Doucet (1986)

3 USA Okra Hopper (1959)

Wild poppy, barrel cactus, cotton Knobloch and Laughlin (1973)

Tobacco Ponchillia (1975)

Red clover, Kentucky bluegrass Malek (1980)
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Sorghum Cuarezma-Teran and Trevathan (1985)

Potato Hafez et al. (2010)

Switchgrass Cassida et al. (2005)

Asia

4 Pakistan Potato Maqbool (1982)

Maqbool and Hashmi (1986)

5 India Lily Siddiqi (1961)

Potato Krishna Prasad (2008)

6 Iran Cultivated crops Kheiri et al. (2002)

Africa

7 Ethiopia Coffee Mekete et al. (2008)

8 South Africa Potato Marais et al. (2015)

Soybean Mbatyoti et al. (2020)

Europe

9 Italy Lily, maize Loof (1959), Vovlas (1983)

10 Bulgaria Apple Braasch (1978)

11 Cypress Grapes Antoniou (1981)

12 Turkey Tomato, tobacco Kasapoğlu Uludamar et al. (2018)

Oceania

13 New Zealand Tomato, tobacco, squash Knight et al. (1997)

Phylogenetic relationships among the isolates 
were determined separately for each dataset using 
Bayesian inference (BI) (Figs. 3-5). The 18S tree 
presents two distinct main clades (Fig. 3), Clade 
I is well supported (PP=0.86) and further divided 
into two subclades. The subclade (I) consists of 
subfamily Merliniinae and subclade (II) represents 
subfamily Telotylenchinae. The Canadian population 
of G. brevidens grouped with other G. brevidens 
populations from GenBank in subclade (I). However, 
it is noted that another population of G. brevidens 
(AY284597) from the Netherlands distantly arranged 
from the G. brevidens clade. Additionally, sequences 
of Nagelus obscurus (AY593904, KJ636353, and 
EU306350), from the Netherlands and Belgium do 
not cluster together. Therefore, these data suggest 
that a misidentification is probable and requires a 
detailed re-evaluation based on integrative taxonomy 
for ascertaining their species status. In subclade (II), 
the Q. capitatus grouped with Tylenchorhynchus 
microphasmis (AY593903), T. maximus, and two 
unidentified Tylenchorhynchus spp. Since the 
Quinisulcius sequences deposited in the GenBank 
were the first sequences deposited for this genus, 
we anticipate that inclusion of more Quinisulcius 
sequences will rearrange the position of Q. capitatus. 

We noted that the sequences of T. leviterminalis 
(LC540652, EU368585) arranged distantly from the  
T. leviterminalis clade. Handoo et al. (2014) suggested 
that T. leviterminalis may consist of a species 
complex; therefore, a detailed re-evaluation based 
on integrative taxonomy is required to determine the 
exact status of these populations.

The 28S tree presents two well-supported 
(PP = 1.00) main clades (I and II; Fig. 4), including 
members of the Telotylenchinae (I) subfamily, while 
clade (II) was formed of subfamily Merliniinae. Our 
phylogenetic analyses place Q. capitatus within 
the species of Tylenchorhynchus in Clade (I). 
However, due to a lack of Quinisulcius sequences, 
phylogenetically close species cannot be determined. 
Clade (II) indicates that the Canadian population 
of G. brevidens grouped with G. brevidens popu
lations from China (MT856989, unpublished), 
Iran (KP313844, Alvani et al., 2017), South Africa 
(MN262457, unpublished), Iran (KJ585416, Ghaderi 
et al., 2014), and Greece (MG770485, Tzortzakakis 
et al., 2018). However, a few additional populations 
of G. brevidens from Iran (KP313841, KP313842, 
KP313843, KP313845, KP313846, Alvani et al., 2017; 
MN947623, MN947623, unpublished) formed another 
subclade. The morphological and morphometric 



11

JOURNAL OF NEMATOLOGY

Figure 3: Phylogenetic relationships within selected genera of subfamily Telotylenchinae and 
subfamily Merliniinae as inferred from Bayesian analysis using the 18S of the rRNA gene 
sequence dataset with the GTR + I + G model (lnL = 1,910.5101; AIC = 4,017.0201; freq 
A = 0.2500; freq C = 0.2500; freq G = 0.2500; freq T = 0.2500; R(a) = 1.0000; R(b) = 3.9248; 
R(c) = 1.0000; R(d) = 1.0000; R(e) = 4.6930; R(f) = 1.0000). Posterior probability of more than 70% 
is given for appropriate clades. Newly obtained sequences are indicated in bold. *** need to be 
revised by integrative taxonomy.

information of these last populations were not 
provided by the authors, which indicates that these 
populations likely require re-evaluation based on 
detailed integrative taxonomy. Finally, the ITS tree 
presents three distinct major clades (Fig. 5). Clade 
(I) is poorly supported (PP = 0.64) and consists of 
Tylenchorhynchus species. Very few Geocenamus 
species have been molecularly characterized; the 
Canadian population of G. brevidens grouped with  
G. chengi and unidentified populations of Geocenamus 
species in clade (II). It is noted that in this tree,  
Q. capitatus does not cluster within Tylenchorhynchus 
species but independently appeared as a different, 
well-supported clade (III) (PP = 1.00).

In the present study, we observed that  
G. brevidens is a cosmopolitan species reported 
from several countries. However, all the G. brevidens 
sequences that have been submitted to GenBank 
were not supplemented with integrative taxonomic 
descriptions. Therefore, their true identity is difficult to 
ascertain. Moreover, molecular information about all 
the valid species of Quinisulcius is necessary in order 

to establish their phylogenetic relationship within the 
Telotylenchinae.

Discussion

Currently, the genus Geocenamus contains over 
70 species (Maria et al., 2020), with eight of them 
found in Canada (Geraert, 2011). Among the latter,  
G.laminatus (Wu, 1969) Brzeski, 1991 and G. longus 
(Wu, 1969) Tarjan, 1973 Wu, 1969 were described 
from Alberta, with G. brevidens being the third species 
discovered in this province. Geocenamus brevidens is a 
native American species described by Allen (1955) in the 
rhizosphere of grass; however, studies have indicated 
that it has a high rate of occurrence in European 
countries, followed by Asia and Australia (Table 3).

The pathogenic nature and soil preference of 
G. brevidens were previously examined by several 
researchers, who demonstrated that this species 
requires relatively cooler soils and low temperature 
for achieving an optimal reproduction rate. Moreover, 
the damage potential of G. brevidens increased in 
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Figure 4: Phylogenetic relationships within selected genera of subfamily Telotylenchinae and 
subfamily Merliniinae as inferred from Bayesian analysis using the 28S of the rRNA gene 
sequence dataset with the GTR + I + G model (lnL = 6,015.1425; AIC = 12,526.2851; freq 
A = 0.1987; freq C = 0.2072; freq G = 0.3206; freq T = 0.2736; R(a) = 0.4322; R(b) = 2.5823; 
R(c) = 1.2662; R(d) = 0.2497; R(e) = 5.4146; R(f) = 1.0000). Posterior probability of more than  
70% is given for appropriate clades. Newly obtained sequences are indicated in bold.

clay sand and sandy loam soils (Griffin, 1994; Griffin 
and Asay, 1996; Malek, 1980; Mayol, 1981; Smiley 
et al., 2006). In the present study, we detected 
high numbers of G. brevidens in the grass soil, but 

relatively low numbers in the farmed field. The lower 
population density in the farmed field could be 
related to the amount of disturbance in the soil: the 
field was under the agricultural practice of tillage and 
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crop rotation, whereas the grass on the headland 
remained undisturbed.

In the USA, G. brevidens causes stunting in small 
cereal crops (Langdon et al., 1961), chlorotic tillers in 
wheat (Mayol, 1981), reduced growth in wheatgrass 
(Griffin and Asay, 1996), and reduced yield in wheat 
(Smiley et al., 2006). Additionally, G. brevidens has 

been found associated with the root lesion nematodes 
in cultivated cereal fields of Australia (Owen et al., 
2010; Thompson et al., 2008). In European and 
Asian countries, the presence of G. brevidens has 
been recorded both in agricultural and horticultural 
fields (Alvani et al., 2017; Castillo et al., 1996; Čermák 
et al., 2011; Kasapoğlu-Uludamar et al., 2018;   

Figure 5: Phylogenetic relationships within selected genera of subfamily Telotylenchinae and 
subfamily Merliniinae as inferred from Bayesian analysis using the ITS of the rRNA gene 
sequence dataset with the GTR + I + G model (lnL = 10,413.7629; AIC = 21119.5049; freq 
A = 0.1932; freq C = 0.2202; freq G = 0.2725; freq T = 0.3141; R(a) = 0.8338; R(b) = 3.3701; 
R(c) = 1.6297; R(d) = 0.6490; R(e) = 3.3701; R(f) = 1.0000). Posterior probability of more than 70% 
is given for appropriate clades. Newly obtained sequences are indicated in bold. **previously 
unidentified.
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Palomares-Rius et al., 2015; Tobar et al., 1995), although 
no considerable plant damage was associated with 
this species. Considering the observed damage cau
sed by this species in the USA, we hypothesize that  
G. brevidens has a much higher impact on agricultural 
crops in its originally described geographic range.

The genus Quinisulcius contains over 17 valid 
species, but none of them was ever reported from 
Canada (Geraert, 2011). Hence, our study presents 
the first record of Q. capitatus in Canada. This species 
was originally described from the USA (Allen, 1955) 
and is widely distributed throughout the American 
continent, followed by Europe and Africa (Table 3). It 
has been demonstrated that Q. capitatus reproduce 
well in cooler soils and require low temperature 
for survival (Malek, 1980). The soil preference of  
Q. capitatus was studied by Maqbool and Hashmi 
(1986), who found that sandy clay soil is best for 
achieving a high level of infestation in greenhouse-
grown potatoes. Quinisulcius capitatus has been 
reported in association with Pratylenchus zeae to 
cause sorghum root rot and plant growth decline 
(Cuarezma-Teran and Trevathan, 1985). Moreover, 
in the presence of Helicotylenchus dihystera this 
Quinisulcius species reduced the potato tuber yield 
up to 14 to 29% (Krishna Prasad and Sharma, 1985). 
In our study, we found a Q. capitatus population in 
the headland of a farmed field that was previously 
rotated with potatoes. The discovery of Q. capitatus 
in the vicinity of a cultivated field calls for additional 
surveys that will likely uncover other populations of  
Q. capitatus.

In this work, populations of G. brevidens and 
Q. capitatus species were examined based on 
morphological, quantitative (morphometrical), and 
molecular characters. In our 28S phylogenetic trees, 
G. brevidens sequences formed two separated 
subclades. Our data of G. brevidens are coincident 
with the original descriptions as well as with other 
populations that have been described using integrative 
taxonomy (Ghaderi et al., 2014; Tzortzakakis et al., 2018). 
Consequently, it is imperative to further investigate 
the populations that formed the second subclade. 
It is likely that these species belong to other close 
species of Geocenamus rather than to G. brevidens. 
We agree with Handoo et al. (2014) who stated that 
stunt nematodes present variability in morphological 
characteristics and overlapping morphometrical values 
may lead to potential misidentification. Therefore, 
the only definitive solution for this situation will be to 
sequence topotype population of G. brevidens that 
may clarify this situation. Moreover, in our phylogenetic 
trees, Q. capitatus grouped with Tylenchorhynchus 
species; the closely related species cannot be 

determined due to the lack of Quinisulcius sequen
ces in GenBank. Based on integrative taxonomical 
characterization, we propose our G. brevidens and  
Q. capitatus as standard and reference populations 
for each species until topotype specimens become 
available and molecularly characterized.

The current knowledge of the occurrence and 
distribution of non-target nematode species in Alberta 
is very scarce. Here, we provide the descriptions of two 
stunt nematodes based on an integrative taxonomical 
approach. Data on geographical distribution and host 
plant associations of these species are also provi
ded and discussed. The present study will help to 
update the taxonomic records of G. brevidens and  
Q. capitatus from Alberta, Canada. Moreover, our light 
micrographs and sequence-based information will 
enable prompt identification of these species. Last, it 
will be important for future research to conclusively 
determine whether these stunt nematodes should be 
incorporated into nematode management programs.
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