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Abstract: Objectives: This study aimed to investigate the relationship between osteoporosis
and cerebral small vessel disease (CSVD) burden in stroke-free individuals, as well as its
specific imaging markers, including lacunes, enlarged perivascular spaces (EPVSs), white
matter hyperintensities (WMHs), and brain atrophy (BA). Methods: A total of 684 stroke-
free patients who underwent both bone mineral density (BMD) assessments and brain MRI
were included. Clinical data, CSVD burden scores, imaging markers of CSVD, and bone
density parameters were collected. Logistic regression models were used to evaluate the
relationship between BMD and CSVD burden and imaging markers. Results: Osteoporosis,
including hip and vertebral osteoporosis, was independently associated with CSVD burden
(OR = 2.332, 95%CI: [1.345, 4.039], p = 0.003; OR = 2.598, 95%CI: [1.540, 4.384], p < 0.001;
OR = 1.515, 95%CI: [1.010, 2.272], p = 0.044). Increased BMD in the hip and spine correlated
with reduced CSVD burden (OR = 0.929, 95%CI: [0.887, 0.972], p = 0.001; OR = 0.952,
95%CI: [0.917, 0.989], p = 0.012). Hip osteoporosis was a risk factor for lacunes (OR = 2.215,
95%CI: [1.197, 4.1], p = 0.011), multiple lacunes (OR = 2.274, 95%CI: [1.039, 4.980], p = 0.04),
severe WMH (OR = 2.611, 95%CI: [1.171, 5.823], p = 0.019), and EPVS ≥ 2 (OR = 1.99,
95%CI: [1.133, 3.495], p = 0.017). No significant association was found between osteoporosis
and BA (p = 0.928). In sex-stratified analyses, both hip and vertebral osteoporosis were
independently associated with a higher CSVD burden in female patients (hip: OR = 2.529,
95%CI: [1.122, 5.703], p = 0.025; vertebral: OR = 3.129, 95%CI: [1.517, 6.455], p = 0.002;
general osteoporosis: OR = 1.755, 95%CI: [1.057, 2.912], p = 0.03), whereas no significant
association was observed in male patients (all p > 0.05). Conclusions: Osteoporosis was
independently associated with an increased burden of CSVD, particularly evident in female
patients. These findings suggest that bone health may be important in CSVD management,
particularly for women.

Keywords: cerebral small vessel disease; neuroimaging markers; bone mineral density;
osteoporosis; osteopenia

1. Introduction
Cerebral small vessel disease (CSVD) is a group of disorders marked by abnormalities

in the cerebral small vessels. Characteristic magnetic resonance imaging (MRI) features are
used to define CSVD, including lacunes, enlarged perivascular spaces (EPVSs), cerebral
microbleeds (CMBs), white matter hyperintensities (WMHs), and brain atrophy (BA). CSVD
causes about 25% of ischemic strokes, most vascular dementia, and most intracerebral
hemorrhages in the elderly over 65, and is associated with motor impairment, gait apraxia,
neurobehavioral abnormalities, and mood disorders [1]. Previous research has identified
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a range of conventional vascular risk factors for CSVD [2]. However, despite extensive
studies in this area, the biological mechanisms underlying CSVD remain insufficiently
understood [3–5]. Thus, identifying new biomarkers could significantly enhance our
understanding of CSVD, laying the groundwork for advances in clinical management.

Osteoporosis, a systemic bone disease characterized by low bone mass and deteriora-
tion of bone tissue microarchitecture, leading to increased bone fragility and a higher risk of
fractures [6], is linked to cardiovascular diseases [7–10], including coronary artery disease
and carotid atherosclerosis. Moreover, evidence suggests that osteoporosis is related to
neurological disorders [11–15], such as Alzheimer’s and Parkinson’s disease. Therefore, we
hypothesized that osteoporosis might be associated with CSVD. Only a few studies have
explored the relationship between osteoporosis and CSVD. Existing studies have primarily
focused on stroke populations [16] or examined only specific CSVD features in healthy
individuals. Research in non-stroke populations has linked low bone mineral density
to various brain structural changes, including gray matter atrophy [17], brain parenchy-
mal atrophy [18], ventricular enlargement [19], and white matter hyperintensities [20].
However, there is currently a lack of comprehensive studies investigating the overall as-
sociation between osteoporosis and CSVD burden in stroke-free individuals. Given the
importance of early prevention, our study aims to fill this gap by systematically assessing
the relationship between osteoporosis and both total CSVD burden and its specific imaging
markers. We aim to provide new evidence on the connection between osteoporosis and
CSVD. Understanding this link will help us gain a more comprehensive understanding of
the pathophysiology of these diseases, ultimately leading to more effective prevention and
treatment approaches.

2. Materials and Methods
2.1. Study Participants and Data Collection

We retrospectively included patients aged 50 years and older who underwent both
brain MRI and BMD assessments at Zhongshan Hospital Affiliated to Xiamen University
between 2015 and 2024. Exclusion criteria were as follows: (1) neurological disorders or
structural brain abnormalities (e.g., acute or prior cerebral infarction, cerebral hemorrhage,
traumatic brain injury, intracranial mass lesions, history of brain surgery, encephalitis,
cerebral vasculitis, cerebral vascular malformations, or multiple sclerosis); (2) connective
tissue diseases or conditions associated with secondary osteoporosis (e.g., systemic lupus
erythematosus, rheumatoid arthritis, multiple myeloma, primary hyperparathyroidism, or
long-term corticosteroid use); (3) malignancies (e.g., breast, lung, or colorectal cancer, or
other active cancers); (4) severe comorbidities or systemic conditions (e.g., severe hepatic
or renal insufficiency, recent infections, or other serious illnesses); (5) poor imaging quality;
and (6) incomplete data. In total, 684 patients were ultimately included, as illustrated
in the patient selection flowchart (Figure 1). The study population primarily consisted
of (1) individuals undergoing routine health check-ups, who opted for both tests as part of a
comprehensive evaluation of bone and cerebrovascular health; (2) patients with symptoms
such as lower back pain, dizziness, or balance issues, prompting DXA or brain MRI for
further assessment; and (3) hospitalized or outpatient individuals for whom physicians
recommended both examinations due to risk factors like advanced age, hypertension,
or diabetes.

We collected baseline data from the Hospital Information System, including de-
mographic characteristics, medical history (diabetes, hypertension, dyslipidemia, coro-
nary heart disease (CHD), atrial fibrillation (AF), peripheral artery disease (PAD), hype-
ruricemia), blood laboratory parameters (white blood cell count (WBC), red blood cell
count (RBC), hemoglobin (Hb), low-density lipoprotein cholesterol (LDL-C), triglycerides
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(TGs), total cholesterol (TC), fasting plasma glucose (FPG), alanine aminotransferase (ALT),
estimated glomerular filtration rate (eGFR), C-reactive protein (CRP), D dimer (DD), total
protein (TP), albumin (Alb), fibrinogen (Fbg), etc.), current smoking and alcohol con-
sumption status, body mass index (BMI), and systolic and diastolic blood pressures (SBP
and DBP).
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Figure 1. Flowchart of participant selection for this study.

2.2. Measurement of CSVD

Brain MRI sequences included T1-weighted images (T1WI), T2-weighted images
(T2WI), fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI),
and susceptibility-weighted imaging (SWI). The field of view (FOV) was 240 mm × 240 mm,
with a matrix size of 320 × 256. Coronal and transaxial views of T1WI and T2WI and
transaxial views of T2-FLAIR, DWI, and SWI were collected. All MRI data were obtained
from the Picture Archiving and Communication Systems and independently reviewed
by an experienced chief radiologist and a senior neurologist with extensive experience
in cerebrovascular diseases. Both evaluators were blinded to the clinical information
of the subjects. Any discrepancies in interpretation were resolved through discussion
and consensus.

All neuroimaging markers of CSVD, including lacunes, WMH, EPVS, CMBs, and BA,
were strictly diagnosed according to the Standards for Reporting Vascular Changes on
Neuroimaging (STRIVE) guidelines [21,22]. Lacunes were defined as round or oval lesions
of cerebrospinal fluid signal on T1WI and T2WI measuring 3 to 20 mm in diameter, always
with a hyperintense ring on FLAIR. WMH was defined as abnormal signals of varying sizes
in periventricular and deep white matter regions, which were hyperintense on T2WI and
FLAIR and isointense or hypointense on T1WI. The severity of periventricular (PVWMH)
and deep WMH (DWMH) were assessed according to the Fazekas scale from 0 to 3 [23].
EPVS appeared as small (<3 mm) punctate or linear structures with CSF signal intensity on
T1WI, T2WI, and FLAIR in the centrum semiovale (CS-EPVS) and basal ganglia (BG-EPVS).
The severity of EPVS in both regions was assessed separately by a previously validated
grading system (0–4) [24], and the final grade was determined by the worse of the two.
CMBs were defined as round lesions less than 10 mm in diameter with hypointensity on
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SWI. A visual cortical atrophy rating scale (0–3) was used to assess whole-brain cortical
atrophy. Due to the low number of participants rated as Grade 3 (only 4 cases) in this study,
these were combined with Grade 2 for analysis.

Finally, the total burden score of CSVD was assessed according to the STRIVE-1 criteria:
1 point was assigned for a DWMH score of 2 or a PVWMH score of 3; 1 point for a CS-EPVS
or BG-EPVS score of 2 or higher; 1 point for the presence of CMB; and 1 point for the
presence of a lacune. The sum of these four items yielded the total CSVD burden score,
ranging from 0 to 4 points, with higher scores indicating a more severe burden of CSVD.
For research purposes, we further categorized the CSVD burden into three grades: Grade 0
(0 points), Grade 1 (1 point), and Grade 2 (2–4 points).

2.3. BMD Measurement

Dual-energy X-ray Absorptiometry (DXA) is the gold standard for diagnosing os-
teoporosis. We used a DXA bone densitometer (Lunar Prodigy, GE Healthcare, Madison,
WI, USA) to measure BMD at the lumbar spine (L1–L4) and the hip. The diagnosis was
based on the corresponding T-scores: normal bone mass was defined as a T-score of −1.0
or higher; osteopenia was defined as a T-score between −1.0 and −2.5; and osteoporosis
was defined as a T-score of −2.5 or lower. A patient was diagnosed with osteoporosis if the
BMD at either the lumbar spine or the hip met the criteria for osteoporosis. If both sites
showed normal BMD, the patient was classified in the normal group. Patients who did not
meet the criteria for normal BMD or osteoporosis were classified in the osteopenia group.

2.4. Statistical Analysis

SPSS 21.0 statistical software was used for data analysis. Continuous variables follow-
ing a normal distribution were expressed as mean ± standard deviation (SD) and compared
among groups using independent-sample t-tests or analysis of variance (ANOVA). Non-
normally distributed continuous variables were expressed as the median and interquartile
range (IQR), with group comparisons made using non-parametric tests. Categorical vari-
ables were expressed as frequencies and percentages, and comparisons among groups were
conducted using the chi-square test.

The inter-rater reliability of CSVD imaging marker assessments was evaluated using
Cohen’s kappa statistic, with values greater than 0.8 indicating a high level of agreement.
Ordered and binary logistic regression models were utilized to assess the relationship
between BMD, osteoporosis, and both the overall CSVD burden and individual CSVD
imaging features. In the ordered logistic regression model, common odds ratios (ORs) and
95% confidence intervals (CIs) were estimated using two models. Model 1 was unadjusted
for covariates. In Model 2, adjustments were made for variables showing intergroup
differences in univariate analyses, including age, SBP, TP, LDL-C, TG, FPG, ALT, eGFR, WBC
count, RBC count, CRP, Fbg, gender, hypertension, PAD, AF, and CHD. Despite the absence
of significant intergroup differences in diabetes, it was included due to its well-known
impact on vascular health. Binary variables (PAD, AF, CHD, and diabetes) were coded as
1 = yes, and 0 = no. Osteoporosis status was reverse-coded (0 = osteoporosis, 1 = osteopenia,
and 2 = normal) to allow for a more intuitive interpretation of the associations. To ensure
the validity of the multivariable models, multicollinearity was assessed using variance
inflation factors (VIFs). All included variables had VIF values less than 5, indicating no
significant collinearity. For other CSVD imaging features, binary or multinomial logistic
regression analyses were performed, with the OR and 95%CI reported. Similarly, Model 1
remained unadjusted for covariates, while Model 2 was adjusted for variables that exhibited
intergroup differences in univariate analyses.
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3. Results
This study included a total of 684 participants. The inter-rater reliability for CSVD

imaging markers was high, with Cohen’s kappa values for brain atrophy, estimated lacunes,
periventricular WMH, deep WMH, EPVS, and CMBs being 0.931, 0.914, 0.949, 0.940,
0.959, and 0.832, respectively, indicating strong agreement. The CSVD burden scores were
distributed as follows: 257 participants with a score of 0 (CSVD = 0 group), 230 with a
score of 1 (CSVD = 1 group), and 197 with scores of 2 or 3 (CSVD = 2 group). Among these
participants, 90 had normal bone density, 288 had osteopenia, and 306 were diagnosed with
osteoporosis. The number of hip osteoporosis cases was 239, and vertebral osteoporosis
cases totaled 216. The participants had an average age of 68.4 years (SD = 10.3), with
222 males (32.5%) and 462 females (67.5%).

Table 1 compared the clinical characteristics and laboratory indicators across groups
based on total CSVD burden scores. An increase in the total CSVD burden score was
significantly associated with higher levels of age, SBP, FPG, WBC count, CRP, Fbg, and DD
(p < 0.05). Conversely, TP, Alb, ALT, TC, HDL-C, LDL-C, eGFR, and RBC count decreased
significantly (p < 0.05). As the total CSVD burden score increased, the proportions of
osteoporosis, hip osteoporosis, and vertebral osteoporosis rose, while the proportions of
normal bone mass and osteopenia in the hip and vertebrae decreased. Additionally, a
heavier CSVD burden was associated with lower BMD values in both the hip and vertebrae
(p < 0.05). TG levels also varied significantly across the three groups. Moreover, the
proportions of patients with hypertension, PAD, AF, and CHD were higher in the groups
with a greater CSVD burden score (p < 0.05).

Table 1. Demographic and clinical characteristics according to the CSVD burden.

CSVD = 0 (257) CSVD = 1 (230) CSVD = 2 a (197) p F/H/χ2 e

Age (year, median (IQR)) 61 (56, 69) 69 (61, 75) 76 (69, 82) <0.001 158.9
SBP (mmHg, median (IQR)) 127 (115, 142) 133 (121, 145) 138 (125, 152) <0.001 29.3
BMI (kg/m2, median (IQR)) 23.61 (21.91, 24.83) 23.44 (21.64, 25.64) 23.56 (21.57, 24.95) 0.713 0.7
TP (g/L, median (IQR)) 70.8 (67.4, 74.7) 70.55 (66.8, 74.5) 68.6 (64.8, 72.5) <0.001 20.5
Alb (g/L, median (IQR)) 41.6 (39.2, 43.7) 40.56 (38, 42.9) 38.6 (36.1, 41.1) <0.001 55.9
ALT (U/L, median (IQR)) 18.3 (13, 26.3) 15.9 (12, 22.6) 15.8 (12, 20.8) <0.001 16.4
AST (U/L, median (IQR)) 20 (17.3, 26.7) 19.4 (16.6, 23.5) 20.2 (17, 24.8) 0.194 3.3
ALP (U/L, median (IQR)) 77.2 (63, 92.2) 77.95 (62.1, 94.5) 79.7 (63.7, 93) 0.870 0.3
TC (mmol/L, median (IQR)) 5.04 (4.23, 5.91) 4.89 (4.2, 5.66) 4.56 (3.88, 5.18) <0.001 24.3
HDL-C (mmol/L, median (IQR)) 1.34 (1.12, 1.51) 1.27 (1.08, 1.5) 1.21 (1.01, 1.45) 0.005 10.8
LDL-C (mmol/L, median (IQR)) 3.34 (2.69, 3.99) 3.23 (2.67, 3.79) 2.9 (2.39, 3.52) <0.001 21.2
TG (mmol/L, median (IQR)) 1.28 (0.97, 1.81) 1.47 (1.06, 1.97) 1.23 (0.9, 1.76) 0.008 9.7
FPG (mmol/L, median (IQR)) 5.47 (4.97, 6.55) 5.74 (5.09, 6.9) 5.75 (5.02, 6.89) 0.090 4.8
eGFR(mL/min/1.73 × m2,
median (IQR)) 94.7 (86.3, 102.3) 89.6 (74.8, 96.5) 84.2 (72.3, 91.9) <0.001 72.3

UA (umol/L, median (IQR)) 334 (272.2, 394) 347.9 (276.5, 404.9) 328.1 (275, 403) 0.492 1.4
WBC (×109/L, median (IQR)) 5.94 (5.09, 6.05) 6.10 (5.14, 7.33) 6.57 (5.61, 7.91) <0.001 16.7
PLT (×109/L, median (IQR)) 229 (192, 262) 222 (189, 265) 228 (189, 264) 0.732 0.6
RBC (×1012/L, median (IQR)) 4.38 (4.09, 4.73) 4.31 (3.94, 4.66) 4.17 (3.77, 4.52) <0.001 18.7
CRP (mg/L, median (IQR)) 2 (0.88, 4.36) 2.39 (0.97, 7) 3 (1.22, 7.9) 0.007 9.8
DD (ug/mL, median (IQR)) 0.36 (0.23, 0.87) 0.51 (0.26, 1.14) 0.76 (0.37, 1.35) <0.001 9.2
Fbg (g/L, median (IQR)) 3.06 (2.64, 3.49) 3.15 (2.72, 3.6) 3.26 (2.78, 3.82) 0.010 39.0
Female, n (%) 184 (71.6) 156 (67.8) 122 (61.9) 0.092 4.8
Diabetes, n (%) 92 (35.8) 91 (39.6) 90 (45.7) 0.102 4.6
Hypertension, n (%) 104 (40.5) 125 (54.3) 148 (75.1) <0.001 54.2
Dyslipidemia, n (%) 108 (42.4) 98 (42.6) 67 (34.0) 0.121 4.2
PAD, n (%) 92 (35.8) 110 (47.8) 120 (60.9) <0.001 28.3
Hyperuricemia, n (%) 42 (16.7) 45 (19.6) 38 (19.3) 0.787 0.7
AF, n (%) 1 (0.40) 6 (2.60) 7 (3.60) 0.033 6.8
CHD, n (%) 13 (5.10) 19 (8.30) 31 (15.7) <0.001 15.6
Current smoking, n (%) 21 (8.20) 17 (7.40) 15 (7.60) 0.946 0.1
Current dinking, n (%) 16 (6.60) 13 (5.70) 10 (5.10) 0.777 0.5
Spine BMD (g/cm2,
median (IQR))

1.007 (0.868, 1.126) 0.937 (0.826, 1.807) 0.926 (0.778, 1.098) 0.002 12.4

Hip BMD (g/cm2, mean ± SD) 0.856 ± 0.143 0.799 ± 0.163 0.758 ± 0.174 <0.001 21.5
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Table 1. Cont.

CSVD = 0 (257) CSVD = 1 (230) CSVD = 2 a (197) p F/H/χ2 e

Normal b, n (%) 49 (19.1) 27 (11.7) 14 (7.10) <0.001 40.1
Osteopenia c, n (%) 126 (49.4) 96 (41.7) 65 (33.0)
Osteoporosis d, n (%) 80 (31.5) 107 (46.5) 118 (59.9)
Normal (hip), n (%) 65 (25.3) 33 (14.3) 16 (8.10) <0.001 55.5
Osteopenia (hip), n (%) 138 (53.7) 114 (49.6) 79 (40.1)
Osteoporosis (hip), n (%) 53 (21.0) 83 (36.1) 102 (51.8)
Normal (spine), n (%) 101 (39.3) 76 (33.0) 64 (32.5) 0.007 14.0
Osteopenia (spine), n (%) 92 (35.8) 82 (35.7) 53 (26.9)
Osteoporosis (spine), n (%) 63 (24.9) 72 (31.3) 80 (40.6)

SBP systolic blood pressure, BMI body mass index, TP total protein, Alb albumin, ALT alanine aminotransferase,
AST aspartate aminotransferase, ALP alkaline phosphatase, TC total cholesterol, HDL-C high-density lipoprotein
cholesterol, LDL-C low-density lipoprotein cholesterol, TGs triglycerides, FPG fasting plasma glucose, eGFR
estimated glomerular filtration rate, UA uric acid, WBC white blood cell, RBC red blood cell, CRP C-reactive
protein, DD D dimer, Fbg fibrinogen, PAD peripheral artery disease, AF atrial fibrillation, CHD coronary heart
disease, BMD bone mineral density. a Defined as a CSVD burden score of 2 or 3; b defined as both spine and hip
showing normal BMD; c defined as any site meeting criteria for osteopenia but not yet reaching osteoporosis;
d diagnosed if the BMD at either the lumbar spine or the hip met the criteria for osteoporosis; e “F” represents the
F-statistic from one-way ANOVA, “H” denotes the H-statistic from the Kruskal–Wallis test, and “χ2” corresponds
to the chi-square test for categorical variables.

On multivariable ordinal logistic regression analysis (Table 2), osteoporosis (β = 0.847,
OR = 2.332, 95%CI: [1.345, 4.039], p = 0.003), hip osteopenia (β = 0.690, OR = 1.787, 95%CI:
[1.125, 2.806], p = 0.014), hip osteoporosis (β = 0.955, OR = 2.598, 95%CI: [1.540, 4.384],
p < 0.001), and vertebral osteoporosis (β = 0.416, OR = 1.515, 95%CI: [1.010, 2.272], p = 0.044)
were significantly and independently associated with a greater CSVD burden (reference:
CSVD = 0). Higher BMD at the hip (β = −0.073, OR = 0.929, 95%CI: [0.887, 0.972], p = 0.001)
and at the vertebrae (β = −0.049, OR = 0.952, 95%CI: [0.917, 0.989], p = 0.012) was associated
with lower odds of increased CSVD burden.

Table 2. Association between osteoporosis and CSVD burden.

Variables
Model 1 Model 2

Unadjusted OR (95%CI) p Adjusted OR (95%CI) p
Osteopenia a 1.532 (0.974, 2.410) 0.065 1.535 (0.924, 2.552) 0.097

Osteoporosis b 3.333 (2.119, 5.243) <0.001 * 2.332 (1.345, 4.039) 0.003 *
Hip osteopenia 1.871 (1.241, 2.826) 0.003 * 1.787 (1.125, 2.806) 0.014 *

Hip osteoporosis 4.517 (2.921, 6.986) <0.001 * 2.598 (1.540, 4.384) <0.001 *
Spine osteopenia 0.971 (0.694, 1.359) 0.866 1.225 (0.834, 1.796) 0.300

Spine osteoporosis 1.69 (1.203, 2.375) 0.002 * 1.515 (1.01, 2.272) 0.044 *
Hip BMD/(2 × LSD c) 0.886 (0.853, 0.920) <0.001 * 0.929 (0.887, 0.972) 0.001 *

Spine BMD/(2 × LSD d) 0.953 (0.924, 0.982) 0.002 * 0.952 (0.917, 0.989) 0.012 *

BMD bone mineral density, LSD the least significant change. a Defined as any site meeting the criteria for
osteopenia but not yet reaching osteoporosis; b diagnosed if the BMD at either the lumbar spine or the hip met
the criteria for osteoporosis; c the value is 0.021 g/cm2 in our hospital; d the value is 0.024 g/cm2 in our hospital.
* p < 0.05.

In sex-stratified analyses (Table 3), both hip and vertebral osteoporosis were indepen-
dently associated with a higher CSVD burden in female patients (hip: OR = 2.529, 95%CI:
[1.122, 5.703], p = 0.025; spine: OR = 3.129, 95%CI: [1.517, 6.455], p = 0.002; general osteo-
porosis: OR = 1.755, 95%CI: [1.057, 2.912], p = 0.03), and increased hip and vertebral BMD
were correlated with lower odds of increased CSVD burden (OR = 0.907, 95%CI: [0.854,
0.963], p = 0.001; OR = 0.944, 95%CI: [0.899, 0.993], p = 0.025, respectively). In contrast,
no significant association was observed in male patients (hip: OR = 1.964, 95%CI: [0.801,
4.816], p = 0.140; spine: OR = 1.625, 95%CI: [0.732,3.603], p = 0.232; general osteoporosis:
OR = 2.332, 95%CI: [0.981, 5.540], p = 0.055), and changes in hip and vertebral BMD were
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not significantly associated with CSVD burden (OR = 0.973, 95%CI: [0.903, 1.050], p = 0.491;
OR = 0.959, 95%CI: [0.901, 1.021], p = 0.197, respectively).

Table 3. Sex-stratified analysis of the association between osteoporosis and CSVD burden.

Variables Male Female
OR (95%CI) p OR (95%CI) p

Osteopenia a 1.52 (0.756, 3.055) 0.239 1.724 (0.771, 3.853) 0.184
Osteoporosis b 2.332 (0.981, 5.540) 0.055 2.529 (1.122, 5.703) 0.025 *
Hip osteopenia 1.938 (0.999, 3.765) 0.050 1.993 (1.003, 3.962) 0.049 *

Hip osteoporosis 1.964 (0.801, 4.816) 0.140 3.129 (1.517, 6.455) 0.002 *
Spine osteopenia 0.761(0.392, 1.476) 0.420 1.558 (0.954, 2.549) 0.077

Spine osteoporosis 1.625 (0.732, 3.603) 0.232 1.755 (1.057, 2.912) 0.030 *
Hip BMD/(2 × LSD c) 0.973 (0.903, 1.050) 0.491 0.907 (0.854, 0.963) 0.001 *

Spine BMD/(2 × LSD d) 0.959 (0.901, 1.021) 0.197 0.944 (0.899, 0.993) 0.025 *

BMD bone mineral density, LSD the least significant change. a Defined as any site meeting the criteria for
osteopenia but not yet reaching osteoporosis; b diagnosed if the BMD at either the lumbar spine or the hip met
the criteria for osteoporosis; c the value is 0.021 g/cm2 in our hospital; d the value is 0.024 g/cm2 in our hospital.
* p < 0.05.

We performed logistic regression analyses on various imaging markers of CSVD,
including lacunes, EPVS, WMH, and BA. As shown in Table 4, the results indicated that
hip osteoporosis was an independent risk factor for lacunes (β = 0.795, OR = 2.215, 95%CI:
[1.197, 4.1], p = 0.011), multiple lacunes (β = 0.822, OR = 2.274, 95%CI: [1.039, 4.98], p = 0.04),
and severe WMH (β = 0.96, OR = 2.611, 95%CI: [1.171, 5.823], p = 0.019). Osteoporosis
was independently associated with grade 2–4 EPVS (β = 0.799, OR = 2.222, 95%CI: [1.234,
4.004], p = 0.008). Additionally, hip osteopenia, hip osteoporosis, vertebral osteopenia, and
vertebral osteoporosis were each independently associated with grade 2–4 EPVS (β = 0.551,
OR = 1.735, 95%CI: [1.058, 2.844], p = 0.029; β = 0.688, OR = 1.99, 95%CI: [1.133, 3.495],
p = 0.017; β = 0.415, OR = 1.514, 95%CI: [1.004, 2.284], p = 0.048; β = 0.502, OR = 1.652,
95%CI: [1.075, 2.538], p = 0.022). However, no significant association was found between
BMD and BA (p > 0.05).

Table 4. Association between osteoporosis and CSVD imaging features.

Imaging Features Variables
Model 1 Model 2

Unadjusted OR (95%CI) p Adjusted OR (95%CI) p

BA = 1 a Osteopenia b 0.923 (0.574, 1.482) 0.740 0.608 (0.339, 1.090) 0.095
Osteoporosis c 2.533 (1.562, 4.116) <0.001 * 1.030 (0.543, 1.952) 0.928
Hip osteopenia 1.243 (0.79, 1.956) 0.346 0.726 (0.376, 1.400) 0.339

Hip osteoporosis 5.359 (2.97, 9.671) <0.001 * 2.141 (0.906, 5.060) 0.083
Spine osteopenia 0.903 (0.6, 1.36) 0.626 0.961 (0.516, 1.79) 0.899

Spine osteoporosis 1.8 (1.139, 2.843) 0.012 * 1.019 (0.496, 2.095) 0.959
BA = 2 a Osteopenia b 0.923 (0.574, 1.482) 0.740 0.608 (0.339, 1.090) 0.095

Osteoporosis c 2.533 (1.562, 4.116) <0.001 * 1.030 (0.543, 1.952) 0.928
Hip osteopenia 10.207 (4.238, 24.582) 0.817 0.439 (0.136, 1.409) 0.166

Hip osteoporosis 0.904 (0.384, 2.219) <0.001 * 2.411 (0.642, 9.050) 0.192
Spine osteopenia 0.507 (0.697, 2.551) 0.045 0.822 (0.309, 2.185) 0.694

Spine osteoporosis 1.333 (0.697, 2.551) 0.385 0.731 (0.261, 2.043) 0.550
Lacune Osteopenia b 1.354 (0.798, 2.295) 0.261 1.292 (0.682, 2.449) 0.432

Osteoporosis c 2.86 (1.703, −4.802) <0.001 * 1.773 (0.924, 3.403) 0.085
Hip osteopenia 1.626 (0.998, 2.649) 0.051 1.492 (0.838, 2.659) 0.174

Hip osteoporosis 4.328 (2.619, 7.151) <0.001 * 2.215 (1.197, 4.100) 0.011 *
Spine osteopenia 0.718 (0.492, 1.048) 0.086 0.823 (0.523, 1.297) 0.402

Spine osteoporosis 1.378 (0.951, 1.997) 0.090 0.622 (0.26, 1.485) 0.419
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Table 4. Cont.

Imaging Features Variables
Model 1 Model 2

Unadjusted OR (95%CI) p Adjusted OR (95%CI) p

Multiple lacunes d Osteopenia b 1.521 (0.733, 3.513) 0.013 * 1.606 (0.715, 3.606) 0.251
Osteoporosis c 2.462 (1.212, 4.999) 0.010 * 1.73 (0.763, 3.921) 0.189
Hip osteopenia 1.55 (0.774, 3.102) 0.216 1.497 (0.701, 3.198) 0.297

Hip osteoporosis 3.878 (1.962, 7.665) <0.001 * 2.274 (1.039, 4.98) 0.04 *
Spine osteopenia 0.852 (0.531, 1.369) 0.509 1.087 (0.637, 1.856) 0.76

Spine osteoporosis 1.084 (0.684, 1.72) 0.731 1.025 (0.603, 1.743) 0.926
EPVS ≥ 2 e Osteopenia b 1.499 (0.896, 2.507) 0.123 1.673 (0.967, 2.896) 0.066

Osteoporosis c 2.131 (1.282, 3.543) 0.004 * 2.222 (1.234, 4.004) 0.008
Hip osteopenia 1.628 (1.027, 2.581) 0.038 * 1.735 (1.058, 2.844) 0.029 *

Hip osteoporosis 2.165 (1.342, 3.491) 0.002 * 1.99 (1.133, 3.495) 0.017 *
Spine osteopenia 1.184 (0.815, 1.721) 0.375 1.514 (1.004, 2.284) 0.048 *

Spine osteoporosis 1.498 (1.029, 2.18) 0.035 1.652 (1.075, 2.538) 0.022 *
WMH Osteopenia b 1.34 (0.812, 2.211) 0.252 1.209 (0.676, 2.162) 0.523

Osteoporosis c 2.759 (1.63, 4.668) <0.001 * 1.608 (0.849, 3.047) 0.145
Hip osteopenia 1.449 (0.925, 2.27) 0.105 1.164 (0.694, 1.952) 0.566

Hip osteoporosis 4.064 (2.369, 6.971) <0.001 * 1.837 (0.974, 3.467) 0.060 *
Spine osteopenia 0.882 (0.587, 1.325) 0.545 1.052 (0.656, 1.685) 0.834

Spine osteoporosis 1.606 (1.024, 2.52) 0.039 * 1.336 (0.784, 2.276) 0.287
Severe WMH f Osteopenia b 1.6 (0.774, 3.309) 0.205 1.649 (0.716, 3.794) 0.240

Osteoporosis c 3.386 (1.679, 6.83) 0.001 * 2.041 (0.901, 4.622) 0.087
Hip osteopenia 2.21 (1.088, 4.486) 0.028 * 2.061 (0.931, 4.562) 0.075

Hip osteoporosis 5.332 (2.642, 10.758) <0.001 * 2.611 (1.171, 5.823) 0.019 *
Spine osteopenia 0.842 (0.532, 1.333) 0.464 1.085 (0.633, 1.859) 0.766

Spine osteoporosis 1.402 (0.909, 2.162) 0.126 1.193 (0.717, 1.987) 0.497
BMD bone mineral density, BA brain atrophy, EPVSs enlarged perivascular spaces, WMHs white matter hyperin-
tensities. a Ordinal logistic regression was used with BA = 0 as the control group for the independent variables
osteopenia and osteoporosis, while multinomial logistic regression was applied to other variables; b defined as
any site meeting the criteria for osteopenia but not yet reaching osteoporosis; c diagnosed if the BMD at either the
lumbar spine or the hip met the criteria for osteoporosis; d defined as three or more lacunes present; e. defined as
more than 10 EPVSs in the basal ganglia and centrum semiovale; f. defined as a deep white matter hyperintensity
(WMH) Fazekas score of 2 and/or a periventricular WMH score of 3. * p < 0.05.

4. Discussion
Our study examined the relationship between osteoporosis and the burden of CSVD,

including various imaging features of CSVD. While BA was analyzed, it was not found
to be associated with osteoporosis. The findings underscore a significant association
between osteoporosis and the overall CSVD burden, suggesting that bone health may
influence cerebrovascular integrity. Subgroup analysis further revealed that this association
was significant in female patients but not in males, indicating a potential sex-specific
relationship. Given the observational nature of this study, causal inference is limited, and
further longitudinal and interventional studies are needed to determine whether managing
osteoporosis can causally impact CSVD risk.

4.1. Association Between Osteoporosis and CSVD Burden

The positive correlation between osteoporosis and increased CSVD burden observed
in this study aligns with previous research suggesting that BMD and cerebrovascular health
are interconnected [16,20]. Osteoporosis, characterized by reduced bone mass and microar-
chitectural deterioration, may reflect broader systemic processes that also affect cerebral
vasculature. The pathophysiological mechanisms underlying this association may involve
shared risk factors [25–27] such as aging, diabetes [27], and chronic inflammation, which
can simultaneously contribute to bone loss and cerebrovascular damage [2]. Addition-
ally, reduced BMD may indicate impaired calcium homeostasis and vitamin D deficiency,
both of which have been implicated in endothelial dysfunction and increased vascular
stiffness [28,29], leading to CSVD.
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Our study found that even after adjusting for factors such as age, hypertension, and
diabetes, the impact of osteoporosis on CSVD remained significant. This suggests that
osteoporosis may influence cerebral small vessels through additional mechanisms. The
underlying mechanisms of the association between osteoporosis and CSVD are not well
elucidated; we propose that the influence of osteoporosis on CSVD primarily involves
“bone–vascular crosstalk” and “bone–brain interaction”.

Firstly, the skeleton acts as an atypical endocrine organ. Osteocytes secrete various
regulatory factors, such as sclerostin and osteoprotegerin (OPG), which play crucial roles
in the interaction between bone, vasculature, and the brain. Sclerostin may disrupt the
Wnt/β-catenin pathway in the brain, potentially contributing to aging and the progression
of Alzheimer’s disease [11]. OPG, released by osteoblasts to inhibit bone resorption, also
plays a significant role in the development of vascular wall inflammation and endothelial
dysfunction [30]. Elevated OPG levels are associated with an increased risk of cardiovas-
cular events [31]. Additionally, studies suggest that other proteins secreted by osteocytes,
such as lipocalin-2 and fibroblast growth factor 23, may influence neuroinflammation,
synaptic plasticity, and neuronal degeneration [32]. Aging-related bone factors may pro-
mote the development of atherosclerosis by affecting vascular smooth muscle cells [33].
These findings further reveal the link between osteoporosis, the central nervous system,
and vascular diseases.

Furthermore, as a key site for stem cell maintenance and hematopoiesis, bone marrow
provides endothelial progenitor cells (EPCs) and inflammatory cells. Research has found
that aging-related extracellular vesicles (AB-EVs) from the bone matrix can infiltrate vascu-
lar tissues, promoting a bone–fat imbalance and vascular calcification [34]. We hypothesize
that osteoporosis may disrupt the bone marrow microenvironment, thereby affecting stem
cells critical for vascular repair and contributing to the progression of CSVD.

Finally, a recent study revealed that a loss-of-function mutation in the ARHGEF15 gene
may inhibit the Wnt/β-catenin signaling pathway in osteoblasts, leading to dysfunction in
vascular smooth muscle cells and osteoblasts [35]. This dysfunction manifests as CSVD
accompanied by osteoporotic fractures, suggesting a potential shared genetic basis between
osteoporosis and CSVD.

Importantly, our sex-stratified analysis revealed that the association between osteo-
porosis and CSVD burden was significant in female patients but not in males. This sex-
specific disparity may be explained by the pivotal role of estrogen in maintaining both
bone and vascular health [36]. In women, especially postmenopausal individuals, the
abrupt decline in estrogen—a hormone known for its vasoprotective and neuroprotective
properties [37]—can accelerate bone resorption while simultaneously promoting endothe-
lial dysfunction [38], microvascular inflammation [39], and increased arterial stiffness.
These processes may contribute to heightened susceptibility to CSVD. In contrast, men
experience a more gradual decline in sex hormones, which may result in a lesser impact on
the bone–vascular axis. Additionally, differences in body composition [40] and physical
activity patterns, as well as the potential underdiagnosis of osteoporosis in men [41], may
contribute to the observed disparities and warrant further investigation.

These findings indicate that it may be important to consider sex as a biological variable
when studying the bone–brain axis, and suggest that postmenopausal women with osteo-
porosis could represent a particularly vulnerable group for CSVD-related brain changes.
Future research should aim to elucidate the role of estrogen signaling in this interaction
and assess whether sex-specific therapeutic strategies can mitigate cerebrovascular risk in
osteoporotic populations.
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4.2. Osteoporosis and Specific CSVD Imaging Markers

Our logistic regression analysis further revealed that hip osteoporosis is an indepen-
dent risk factor for the presence of a lacune, multiple lacunes, and severe WMH. This
is particularly noteworthy as lacunes and WMH are well-established markers of CSVD,
associated with cognitive decline and an increased stroke risk [42–44]. The protective role
of increased hip BMD against lacunes and severe WMH emphasizes the importance of
maintaining bone health to potentially mitigate CSVD progression.

Additionally, the dose–response relationship observed between osteoporosis (includ-
ing hip and vertebral osteoporosis) and higher grades of EPVS suggests that reduced bone
density may contribute to the pathological expansion of EPVS. This relationship highlights
the multifaceted nature of CSVD, where different imaging markers may be influenced by
bone health through distinct mechanisms.

Interestingly, no significant association was found between BMD and brain atrophy in
our study, diverging from previous reports [17–19] suggesting a link between osteoporosis
and cortical thinning or brain volume reduction. This discrepancy may be due to differ-
ences in study populations or diagnostic criteria. Additionally, brain atrophy may lack
specificity as a marker of CSVD, given that it can result from a range of other conditions.
Beyond neurodegenerative disorders such as Alzheimer’s disease and chronic alcohol use,
contributing factors include vitamin B12 deficiency, which has been linked to neurode-
generation and reduced brain volume. Moreover, age-related physiological brain volume
loss further complicates the interpretation of its relationship with CSVD. However, the
association between osteoporosis and the overall CSVD burden suggests that bone health
may exert a cumulative effect on multiple CSVD subtypes. Further research is needed to
clarify the relationship between osteoporosis and BA, especially in diverse cohorts and
using more sensitive imaging modalities.

The notably low incidence of CMBs observed in our study differs from previous re-
search. This could be due to our study population, which included non-stroke individuals,
some from general health check-up groups. Consequently, the risk of hemorrhagic transfor-
mation was likely lower, and antiplatelet medication use was less common, contributing to
the reduced CMB occurrence.

Despite this study’s merits, such as thorough imaging evaluations and meticulous
clinical and laboratory data collection, several limitations should be acknowledged. The
retrospective, hospital-based design may limit the generalizability of our findings to the
broader population, as selection bias cannot be excluded. Additionally, the modest sam-
ple size constrains the statistical power and external validity, underscoring the need for
multicenter validations. The cross-sectional nature of this study precludes causal infer-
ences, making it unclear whether osteoporosis contributes to increased CSVD burden or
vice versa. Residual confounding from unmeasured variables also cannot be ruled out.
Moreover, we did not exclude individuals with a history of fractures, which may have
influenced bone mineral density independently of osteoporosis and introduced additional
variability. Furthermore, the exclusion of bone-related biomarkers, such as vitamin D and
osteocalcin, due to incomplete data, hampers a deeper understanding of the mechanisms
linking osteoporosis with cerebrovascular disease. Additionally, some odds ratios had
relatively wide confidence intervals, suggesting potential estimate variability due to the
modest sample size or population heterogeneity. Future studies with larger, more diverse
cohorts and refined analyses are needed to validate these findings and enhance estimate
precision.

These findings carry important clinical implications, suggesting that osteoporosis
management may play a role in preventing or slowing the progression of CSVD. With
the increasing recognition of CSVD as a major contributor to cognitive decline and stroke,
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interventions aimed at improving bone health—such as calcium and vitamin D supplemen-
tation, weight-bearing exercises, and pharmacological treatments for osteoporosis—could
have the added benefit of preserving both bone and cerebrovascular health.

5. Conclusions
Our study demonstrates a significant association between osteoporosis and an in-

creased CSVD burden, including specific CSVD imaging markers, with the exception of
BA. This association with total CSVD burden was particularly evident in female patients,
indicating a potential sex-related difference. These results suggest a potential link between
osteoporosis and increased CSVD burden, particularly in women, warranting further
investigation into the underlying mechanisms.
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