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tendon resection models
Dokwan Lee1, Ki-Taek Hong1, Tae Seong Lim2, Eugene Lee3, Ye Hyun Lee4, Ji Soon Park5, Woo Kim6,
Joo Han Oh7†, Jung-Ah Choi8† and Yongnam Song1*†

Abstract

Background: The role of altered joint mechanics on cartilage degeneration in in vivo models has not been studied
successfully due to a lack of pre-injury information. We aimed 1) to develop an accurate in vivo canine model to
measure the changes in joint loading and T2 star (T2*) relaxation time before and after unilateral supraspinatus
tendon resections, and 2) to find the relationship between regional variations in articular cartilage loading patterns
and T2* relaxation time distributions.

Methods: Rigid markers were implanted in the scapula and humerus of tested dogs. The movement of the
shoulder bones were measured by a motion tracking system during normal gaits. In vivo cartilage contact strain
was measured by aligning 3D shoulder models with the motion tracking data. Articular cartilage T2* relaxation
times were measured by quantitative MRI scans. Articular cartilage contact strain and T2* relaxation time were
compared in the shoulders before and 3 months after the supraspinatus tendon resections.

Results: Excellent accuracy and reproducibility were found in our in vivo contact strain measurements with less
than 1% errors. Changes in articular cartilage contact strain exhibited similar patterns with the changes in the T2*
relaxation time after resection surgeries. Regional changes in the articular cartilage T2* relaxation time exhibited
positive correlations with regional contact strain variations 3 months after the supraspinatus resection surgeries.

Conclusion: This is the first study to measure in vivo articular cartilage contact strains with high accuracy and
reproducibility. Positive correlations between contact strain and T2* relaxation time suggest that the articular
cartilage extracellular matrix may responds to mechanical changes in local areas.
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Background
Articular cartilage is known to be modulated by mech-
anical loading. Changes in loading conditions have been
reported to alter the structural and compositional char-
acteristics of articular cartilage, and may initiate osteo-
arthritis (OA) development [1–3]. Previous studies have
shown that the biochemical composition of articular car-
tilage varies across different regions and is related to re-
gional loading history [4–6]. Weight-bearing regions of
articular cartilage exhibit greater proteoglycan content
compared to non-weight-bearing articular cartilage,
whereas collagen content has been found to be greater
in non-weight-bearing areas [5–8]. Because proteoglycan
and collagen networks are crucial for maintaining the
mechanical strength of articular cartilage, the conditions
of proteoglycan content and collagen networks can pro-
vide valuable information for estimating the degree of
articular cartilage degeneration [9–11].
Traditional measurements of articular cartilage com-

positional properties are based on destructive biochem-
ical and histological procedures that are not applicable
for clinical diagnostic purposes. Recently, T1 and T2 re-
laxation properties of quantitative magnetic resonance
imaging (qMRI) have been proposed for estimating ar-
ticular cartilage biochemical compositions. Because
qMRI utilizes the magnetic relaxation characteristics of
water components and macromolecules, magnetic relax-
ation parameters (T1, T1ρ, and T2) are believed to re-
flect the tissue hydration, collagen, and proteoglycan
compositions of articular cartilage [12–16]. Among these
relaxation values, T2 relaxation time has been widely
used to examine the degeneration of articular cartilage
tissues [12, 17–19]. Prolonged T2 relaxation time is be-
lieved to be a sign of degenerative articular cartilage,
which indicates damage to collagen networks and in-
creased water content in articular cartilage extracellular
matrices [18–20].
Many studies have investigated the relationship be-

tween T2 relaxation time and loading patterns [21–23].
Significant unloading of knee joints resulted in increased
T2 relaxation time, but T2 relaxation time returned to
the normal level when the knee resumed natural weight-
bearing activities [21]. Mild exercises with low-level
shear and compressive loadings have been reported to
effectively reduce the T2 relaxation time of articular car-
tilage in the early stages of OA [22, 23]. These studies
indicate that mild mechanical loadings are important for
maintaining healthy articular cartilage whereas a large
magnitude of mechanical loading or unloading is detri-
mental to articular cartilage. Articular cartilage T2 relax-
ation time measurements have also been used to
estimate articular cartilage conditions following joint in-
juries in various clinical studies. The cartilage T2 relax-
ation times in knees with anterior cruciate ligament

(ACL) tears or reconstructed knees were found to be
greater than the times in intact knees [24]. Because ACL
injuries significantly alter joint biomechanics [25, 26],
changes in T2 relaxation time may be the consequence
of mechanically induced articular cartilage degradation.
Recently, T2 star (T2*) relaxation time has been widely
examined as an alternative method of T2 relaxation time
measurements because T2* relaxation time have been
reported to positively correlate with T2 relaxation time
values on the estimation of articular cartilage degener-
ation [27, 28]. Additionally, the short acquisition time,
high signal-to-noise ratio (SNR), and high out-of-plane
resolutions of T2* imaging procedures should be signifi-
cant advantages in clinical imaging situations [16, 27].
In previous clinical studies, mechanically induced

articular cartilage degeneration and T2 relaxation
time has been investigated by comparing stress/strain
patterns and T2 relaxation time distributions between
the joints with injuries and the contralateral intact
joints, while the cartilage conditions prior to injuries
were not available in most cases [29, 30]. However, it
is important to study the changes in joint mechanics
and T2 relaxation time before and after injuries in a
joint to completely understand the role of mechanical
alterations on articular cartilage degenerations because
articular cartilage biochemical and biomechanical
properties might be different between contralateral
joints even in the same individual [31]. In this study,
we aimed to develop an accurate in vivo canine
model to measure the changes in joint loading and
T2* relaxation time before and after supraspinatus
tendon tears. We measured regional variations in ar-
ticular cartilage loading patterns and T2* relaxation
time distributions after supraspinatus resections. We
hypothesized that supraspinatus tendon tears would
alter the loading patterns and T2* relaxation time dis-
tributions in the shoulder articular cartilages. We also
hypothesized that spatial variations in joint loading
and T2* relaxation time would be correlated.

Methods
Ethical statement and study design
This study was approved by the Animal Care and Use
Committee (approval number: BA1507–180/047–01)
and carried out in accordance with the Guide for the
Care and Use of Laboratory Animals of the Seoul Na-
tional University College of Medicine (Republic of
Korea). Total six shoulders from three adolescent
mongrel dogs (approximately one year old and
weighed 20 kg) were examined. Dogs were obtained
from Kukje Laboratory Animal Center (Republic of
Korea). After the completion of the study, the animals
were euthanized with intraventricular administration
of potassium chloride (2 mmol/kg) under deep
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anesthesia by following AVMA (American Veterinary
Medical Association) guidelines.

Experimental procedure and experimental animals
Gait analysis
In this study, we measured articular cartilage deform-
ation patterns by using kinematics-based 3 dimensional
(3D) shoulder models. We decided to use a marker-
based motion tracking system (eight infrared cameras
with a sampling frequency of 120 frames/sec, Eagle
Digital real-time system, MotionAnalysis Co., USA). The
large tracking areas of motion tracking systems are suit-
able for normal walking activities in in vivo canine
models.
We decided to implant custom markers into shoulder

bones rigidly to minimize skin artifacts in the motion
tracking data. A custom marker was designed with three
conventional reflective balls (diameter of 8 mm) (Fig. 1a).
Two custom markers were installed in the humerus and
scapula using orthopedic stainless surgical threaded pins.
Scapular pins were inserted in two locations along the
scapular spine and humeral pins were inserted into the
distal and proximal ends of the humerus along the lat-
eral side of the diaphysis (Fig. 1b). After four to 5 days
of recovery following the marker insertion surgeries, we
recorded the movements of the shoulder bones by track-
ing the ball markers as the dogs walked freely within our
motion laboratory. Only one shoulder was tested in a

single motion analysis examination to minimize the
loosening of surgical pins. We found that the pins in
shoulder bones were easily loosen when the tested dog
laid the pin-inserted shoulder on the floor. Thus, the
contralateral shoulder remained intact to allow the
tested dog to use the intact shoulder in resting positions.
After 2 weeks of recovery time, gait analysis of the
contralateral shoulder was followed thorough the identi-
cal marker installation and motion tracking procedures.

3D shoulder models
The 3D shoulder models were created from computed
tomography (CT) (matrix: 512 × 512, field of view
(FOV): 400mm, slice thickness: 2.2 mm, slice spacing: 1
mm, Brilliance CT 64-channel, Philips, Netherlands) and
magnetic resonance (MR) (T2 weighted fast field echo
(FFE) sequence, repetition time (TR): 575 ms, echo time
(TE): 11.51 ms, flip angle: 20°, matrix: 512 × 512, FOV:
130 mm, slice thickness: 2 mm, slice spacing: 2.2 mm,
Achieva 3.0 T TX, Philips, Netherlands) images of the
shoulder bones of tested dogs. We tried to maintain the
location and orientation of shoulder joints in each im-
aging step to minimize potential artifacts in MR images
which might be generated from the magic angle effect
[32]. The shoulder bones and custom markers were
automatically reconstructed from the CT images using
the OSIRIX (Pixmeo, Switzerland) and GeoMagic (Re-
search Triangle Park, NC, USA) software, while the ar-
ticular cartilage layers were manually segmented from
the MR images using a custom MATLAB code. The 3D
bone and cartilage models were then combined by align-
ing the subchondral bone profiles of each model (best-fit
alignment in GeoMagic software). The final shoulder
models included scapular and humeral bones, articular
cartilage, and custom markers (Fig. 2a).

Supraspinatus tendon resection model
After completing articular cartilage contact strain and
T2* relaxation time maps for intact shoulders, we com-
pletely resected the supraspinatus tendon in one of the
shoulders while the contralateral shoulder remained in-
tact. The resection area was covered with penrose drain
tubes to prevent a recovery of the resected muscle. The
dogs were allowed to perform normal activities in our
animal research laboratory for 3 months following the
resection surgeries (cage type: SUS304 stainless steel
frame cage with fiber reinforced plastic (FRP) bottom
plate (3.4 m × 1.3 m × 2.4 m), one dog per each cage with
automatic watering system, temperature: 20 ± 2 °C, hu-
midity: 50 ± 10%, light cycle (12 h): 7 am to 7 pm). Mea-
surements of the articular cartilage contact strain and
T2* relaxation time patterns were then repeated for both
shoulders in the supraspinatus-resected dogs. All surgi-
cal processes were conducted under general anesthesia

Fig. 1 A custom marker and its installation to shoulder bones. a A
custom marker was designed with three conventional reflective
balls. b Two custom markers were inserted along the scapular spine
and other two markers were inserted into the distal and proximal
ends of the humerus along the lateral side of the diaphysis
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with an intramuscular injection of 1) satropine sulfate
(0.1 ml/kg of body weight, DAI HAN PHARM. Co., Ltd.,
Seoul, Korea) and 2) the mixture (0.2 ml/kg of body
weight) of xylazine (Rompun, Bayer Korea, Seoul, Korea)
and tiletamine-zolazepam (Zoletil 50, Virbac, Carros,
France).

Experimental outcomes
Gait pattern and articular cartilage strain measurement
The completed 3D shoulder models were aligned with
the marker positions from the motion tracking data to
determine the locations of shoulder bones in each gait
frame (Fig. 2a). The relative positions between the cen-
ters of the humeral head and glenoid cavity were calcu-
lated with six degrees of freedom (DOFs) (three
translational and three rotational motions in a Cartesian
coordinate system) (Fig. 2b). An example of the rota-
tional motion between the Y axis of the humeral head
and glenoid cavity is shown in Fig. 2b. We removed any
abnormal gait cycles that were outside of the mean ±

one standard deviation (red shaded area in Fig. 2b) from
all six DOF components. The remaining gait cycles were
then averaged to generate a representative gait pattern
for each dog (solid red line in Fig. 2b).
Articular cartilage thickness was determined by cal-

culating the perpendicular distance from the subchon-
dral bone interface to the articular cartilage surface
for both the scapular and humeral cartilage. Articular
cartilage contact strain was defined as the ratio be-
tween the undeformed articular cartilage thickness
and the thickness of the overlapping areas between
the scapular and humeral articular cartilage in each
gait fame (Fig. 3a) [33, 34]. The articular cartilage
contact areas were then defined as the cartilage areas
in which the overlapping articular cartilage thickness
was greater than 0.25 mm (in-plane resolution of the
MR images). We created a 3D articular cartilage con-
tact strain map for each gait frame from an entire
representative gait cycle and combined all of these
strain maps to generate a cumulative contact strain

Fig. 2 Registration of 3D shoulder models to motion analysis data. a Image-based 3D shoulder models with scapular and humeral bones,
articular cartilage, and custom markers were aligned with the marker positions from the motion tracking data. b The relative positions between
the centers of the humeral head and glenoid cavity were calculated with six degrees of freedom motions (an example of the rotational motion
between the Y axis of the humeral head and glenoid cavity)
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distribution. In this cumulative strain map, a cumula-
tive contact area was the combination of individual
contact areas from each gait frame.

Articular cartilage T2 star (T2*) relaxation time
measurement
A qMRI scan of each tested dog was performed on
the same day as the morphological CT and MR im-
aging. A T2 weighted multi-echo fast-field sequence
(TR: 700 ms, TE: 3.83/9.37/14.91/20.46/26.01 ms, flip
Angle: 25°, matrix: 768 × 768, FOV: 150 mm, slice
thickness: 2 mm, slice spacing: 2.2 mm) was used in a
3 T clinical MRI scanner (Achieva 3.0 T TX, Philips,
Netherlands). The T2* relaxation time of each pixel
in the MR images was calculated using mono-
exponential least squares fitting [35]. T2* relaxation
time values over 50 ms were removed to minimize the
partial effects of synovial fluid around articular cartil-
age boundaries because T2 relaxation time of synovial
fluid is known to be approximately 100 ms [36], and
the T2* relaxation time is known to be around 50%
of the T2 relaxation time values [27]. We divided
each articular cartilage surface into multiple 20° re-
gions from the posterior to the anterior ends (Fig. 3b)
because our contact strain maps indicated anterior-to-
posterior directional variations after the resection sur-
geries, but the changes in the medial-to-lateral direc-
tion were minimal.

Accuracy and reproducibility of contact strain
measurements
Intra- and inter-observer reliability of manually seg-
mented articular cartilage models was tested. Segmenta-
tion of articular cartilage surface and subchondral bone
interface in a shoulder joint was done by three inde-
pendent researchers in three difference days. Multiple 3
dimensional articular cartilage models were generated
from various segmentation results for a shoulder joint.
Articular cartilage thickness values at 70 random loca-
tions were compared in different cartilage models. Intra-
class correlation coefficients (ICC) with 95% confident
interval (CI) and average root-mean-square (RMS) dif-
ferences in the thickness measurements among different
segmentation results were calculated. We also calculated
variations in average T2* relaxation time when articular
cartilage thickness was increased or decreased within the
average RMS difference in the thickness measurements.
Because articular cartilage contact strains were directly

determined based on the location of the scapular and
humeral bones, we decided to measure the accuracy and
reproducibility of our motion-tracking-based 3D shoul-
der models using a custom plastic phantom model. The
phantom consisted of two rectangular blocks with a
plastic ball attached at one end of each block. The phan-
tom blocks were positioned in three different configura-
tions (relative angles of 0°, 30°, 60°). Two custom
markers were installed in each phantom block to

Fig. 3 3D maps of articular cartilage contact strain and T2* relaxation time. a Articular cartilage contact strain was defined as the ratio between
the undeformed articular cartilage thickness and the thickness of the overlapping areas between the scapular and humeral articular cartilage.
b The T2* relaxation time of each pixel in the MR images was calculated and each articular cartilage surface was divided into multiple anterior-
to-posterior 20° regions
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emulate the in vivo experiments (Fig. 4). We moved the
phantom model in the motion laboratory in random di-
rections for 10 min while the motion tracking system
continuously recorded the positions of the markers. We
created a 3D model of the phantom blocks and mea-
sured 1) the center distance between the two phantom
balls and 2) the angle between the two phantom blocks
for 2000 randomly selected frames. The bias (average
differences in the motion-tracking-based measurements
from the physical measurements of the phantom model)
and precision (variations in the motion-tracking-based
measurements) of the center distance and angle mea-
surements were then calculated to find systemic errors
in motion tracking system. Finally, corresponding bias
and precision of articular cartilage contact strain and
contact area ratio (ratio between contact area and total
cartilage surface area) in in vivo shoulder models were
estimated by changing the position of scapular and hu-
meral bones within the range of bias and precision
values measured in the phantom experiments at each
configuration (0°, 30°, 60° angles between scapula and
humerus).

Statistical methods
Intra- and inter-observer ICC with 95% confidence
interval (CI) of segmentations were analyzed by using
SPSS software (SPSS statistics 25, SPSS Inc., IL, USA).

Pearson correlation coefficients between articular cartil-
age contact strain and T2* relaxation time were calcu-
lated by using MATLAB software (R2016a, MathWorks,
MA, USA). A p-value less than 0.05 was considered to
be a statistically significant difference.

Results
Accuracy and reproducibility of contact strain
measurements
Excellent intra- and inter-observer reliability of cartilage
thickness measurements in different segmentations were
found with ICCs over 0.850. Average RMS differences in
the thickness measurements between cartilage models
from 3 different days and observers were 0.097 mm and
0.125 mm respectively (Table 1). Variations in the aver-
age T2* relaxation time were 0.496 ± 0.202 ms when the
articular cartilage thickness varied within 0.125 mm
which was the maximum value among intra- and inter-
observer RMS differences in cartilage thickness
measurements.
Intra-class correlation coefficients (ICC) with 95%

confident interval (CI) and average root-mean-square
(RMS) differences in the thickness measurements be-
tween different segmentation results were calculated.
The bias and precision of motion-tracking-guided

measurements in the phantom were less than 0.050 mm
for the center distance and 0.692 degree for the angle
measurements (Table 2). Estimated errors (bias) in the
articular cartilage contact strain and contact area ratio
were found to be less than 0.349 and 0.570% respect-
ively. Variations in the measurements (precision) were
less than 0.696% for average contact strains and 1.020%
for contact area ratios (Table 2).
The bias and precision of the center distance and

angle measurements in the phantom model are listed,
and corresponding bias and precision of articular cartil-
age contact strain and contact area ratio in in vivo
shoulder models are also estimated.

Variations in articular cartilage contact strain and T2*
relaxation time after supraspinatus resection
In the 3D shoulder models of all tested dogs, average
and maximum thickness values of articular cartilage
were measured at 0.819 ± 0.086 mm and 1.227 ± 0.166
mm respectively. Unilateral supraspinatus resection sur-
geries were found to alter articular cartilage contact
strain patterns in both shoulders 3 months after the

Fig. 4 A phantom model for the accuracy and reproducibility
evaluation. The phantom consisted of two rectangular blocks with a
plastic ball attached at one end of each block (three different block
angles of 0°, 30°, 60°)

Table 1 Intra- and inter-observer reliability of cartilage thickness
measurements

ICC (95% CI) RMS difference

Intra-observer reliability 0.917 (95% CI: 0.901, 0.931) 0.097 ± 0.074mm

Inter-observer reliability 0.874 (95% CI: 0.849, 0.895) 0.125 ± 0.067mm
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supraspinatus resection surgeries. An example of the ar-
ticular cartilage cumulative contact strain patterns for
one of the tested shoulders is presented in Fig. 5. The
average articular cartilage cumulative contact strain was
reduced in the supraspinatus-resected shoulders by ap-
proximately 2.145%. However, the average cumulative
contact strain in the contralateral shoulders increased by
approximately 2.243% (Fig. 6).
Average T2* relaxation time variations after the

supraspinatus resection surgery exhibited similar pat-
terns with the patterns in the average cumulative contact
strain. The average articular cartilage T2* relaxation
time in the supraspinatus-resected shoulders decreased,
whereas the T2* relaxation time in the intact shoulders

increased over 2.316 ms after the resection surgeries
(Fig. 6).

Regional changes in contact strain and T2* relaxation
time
Because cartilage contact strain and T2* relaxation time
were found to concentrate in local contact areas (Fig. 5),
we decided to calculate regional correlations between
the changes in articular cartilage contact strain and T2*
relaxation time following the supraspinatus resections in
each of the anterior-to-posterior 20° regions for all
tested shoulders. The regional variations in articular car-
tilage contact strain and T2* relaxation time exhibited a

Table 2 Bias and precision of motion-tracking-guided measurements

Phantom model In vivo shoulder model

Center distance
(mm)

Block angle
(°)

Average contact
strain (%)

Contact area ratio
(%)

Bias Precision Bias Precision Bias Precision Bias Precision

Position 1
(Angle: 0°)

0.006 + 0.089
– 0.089

0.049 + 0.133
– 0.133

0.066 – 0.484
+ 0.575

0.048 – 1.020
+ 0.947

Position 2
(Angle: 30°)

– 0.023 + 0.056
– 0.056

– 0.692 + 0.126
– 0.126

– 0.138 – 0.425
+ 0.465

– 0.308 – 0.850
+ 0.758

Position 3
(Angle: 60°)

– 0.050 + 0.084
– 0.084

0.027 + 0.136
– 0.136

– 0.349 – 0.604
+ 0.696

– 0.570 – 0.929
+ 0.997

Fig. 5 Changes in cumulative contact strain and T2* relaxation time distributions after a supraspinatus resection surgery. An example of the
articular cartilage cumulative contact strain and T2* relaxation time patterns before and after the supraspinatus resection surgery for one of the
tested shoulders are presented
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positive linear correlation with a Pearson correlation co-
efficient (r) of 0.726 (p < 0.001, Fig. 7).

Discussion
Injury-related articular cartilage degeneration is believed
to be the consequence of mechanical alterations. How-
ever, the role of altered joint mechanics in articular car-
tilage degeneration in in vivo models has not been
studied successfully due to the lack of information re-
garding pre-injury articular cartilage conditions. This is
the first in vivo study to compare articular cartilage con-
tact strains and T2 star (T2*) relaxation times before
and after a joint injury. We successfully developed a
technique for measuring in vivo articular cartilage con-
tact strains using a motion tracking system and image-
based 3D shoulder models with high accuracy and re-
producibility. Unilateral supraspinatus tendon resection
altered articular cartilage contact patterns in both shoul-
ders. Contact strains in supraspinatus-resected shoulders
were found to decrease, whereas the contact strains in
the contralateral intact shoulders increased. Interest-
ingly, these changes in articular cartilage contact strain
exhibited similar patterns with the changes in the articu-
lar cartilage T2* relaxation time following the supraspi-
natus resection surgeries throughout all tested shoulders

(Fig. 6). It was further supported by positive correlations
between regional variations in articular cartilage contact
strain and T2* relaxation time (Fig. 7). These results are
consistent with previous clinical studies which reported
increased T2* relaxation time on the regions of in-
creased articular cartilage contact loads [37–39]. Al-
though those clinical measurements must be the result
of long-term response to altered joint loading, our rela-
tively short three-month study suggests that the changes
in the articular cartilage extracellular matrix may be ini-
tiated at the early stage of load variations.
Because articular cartilage contact strains were calcu-

lated directly from position measurements of the shoul-
der bones, we attempted to estimate the accuracy and
reproducibility of the position measurements of the pro-
posed motion-tracking-derived 3D models using a plas-
tic phantom. The errors of the position measurements
were less than 50 μm in terms of translation and less
than 0.7° in terms of angular displacement for all three
configurations. The errors in the phantom experiments
were expected to generate approximately 0.4% errors in
the average contact strain and 0.6% errors in the contact
area ratio measurements in in vivo shoulder models.
These errors were a combination of systemic errors in
the motion tracking device, reconstruction errors in the

Fig. 6 Changes in average cumulative contact strain and T2* relaxation time after supraspinatus resections. Changes in the average articular
cartilage cumulative contact strain and in the average T2* relaxation time are shown after the supraspinatus resection surgeries

Lee et al. BMC Musculoskeletal Disorders          (2020) 21:424 Page 8 of 12



image-based 3D models, and alignment errors between
the motion tracking information and 3D models. The re-
sults demonstrate that our technique is as accurate as bi-
plane X-ray radiostereometric analysis, which is typically
used for minimized and limited joint motions (accuracy
of approximately 10–250 μm in terms of translation and
0.03–0.6° in terms of angular displacement) [40, 41].
The accuracy of our method was found to be better than
the accuracy of the popular 2D/3D registration method
of biplane fluoroscopy for real-time joint motion analysis
(accuracy of approximately 200–700 μm in terms of
translation and 0.1–0.9° in terms of angular displace-
ment) [42–44]. Furthermore, our motion-tracking-based
method has a wide measurement area, whereas X-ray-
based methods have limited measurement space between
X-ray sources and detectors. In our in vivo animal study,
a large measurement space was crucial to allow natural
joint motions without any pre-training.
Unilateral supraspinatus tendon resections altered the

articular cartilage contact strain patterns in both shoul-
ders. Decreases in the mean contact strain were found in
the supraspinatus-resected shoulders. However, the
magnitude of the mean contact strain in the contralat-
eral intact joints markedly increased. This may be the re-
sult of compensatory weight shifting behaviors by the
dogs to avoid discomfort without losing joint stability
following the supraspinatus resection surgeries [45]. T2*
relaxation time in the joints with increased contact

strain was also increased by approximately 2.5 ms (Fig.
6). Previously, T2* relaxation time in osteoarthritic ar-
ticular cartilage were reported to be approximately 2 to
5 ms greater than the values in healthy articular cartilage
[28, 35, 37]. Although our 2.5 ms increases in T2* relax-
ation time were smaller than the increases in osteoarth-
ritic cartilages, the increased T2* relaxation time in the
region of increased contact strain may indicate the early
onset of articular cartilage degenerative processes, which
have been identified in abnormally overloaded cartilage
areas in various studies [46, 47]. Because articular cartil-
age T2* relaxation time is related to collagen network
integrity and water content in cartilage matrices [12, 16,
48], prominent positive correlations between regional
variations in articular cartilage contact strain and T2* re-
laxation time (Fig. 7) suggests that the articular cartilage
extracellular matrices responded to the altered loading
patterns, resulting in structural and compositional
changes within a relatively short three-month testing
period.
This study has a few limitations that must be discussed

to contextualize the presented results. First, we only
completed six in vivo canine shoulder models from three
dogs, despite our original intent of using five dogs for
our experiments. One dog died from complications dur-
ing the anesthesia process for CT scanning. We could
not collect motion tracking data for a second dog be-
cause the dog did not want to walk in the motion

Fig. 7 Correlation between regional changes in contact strain and T2* relaxation time following the supraspinatus resections. The regional
variations in articular cartilage contact strain and T2* relaxation time exhibited a linear correlation in both the intact and supraspinatus-resected
shoulders
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laboratory following the supraspinatus resection surgery.
This limited sample size did not allow us to establish
various statistical examinations between average contact
strain and T2* relaxation time before and after the
supraspinatus resections. However, the patterns of in-
creased T2* relaxation time in the shoulders with in-
creased contact strain and decreased T2* relaxation time
in the shoulders with decreased strain were consistent
for all tested shoulders. The linear correlations between
regional contact strain and T2* relaxation time changes
in both the intact and supraspinatus-resected shoulders
were statistically significant, which supports our hypoth-
esis that alterations in joint mechanics produce import-
ant structural and compositional changes in articular
cartilage extracellular matrices. Second, the gait patterns
recorded by our motion tracking system were not con-
sistent for each gait cycle because joint angles and walk-
ing speed varied during normal free walking episodes.
Previous studies have shown that a treadmill can pro-
duce consistent gait patterns [49]. However, we chose to
record the gait cycles of free-walking subjects using a
motion tracking system because 1) treadmill walking re-
quires many training sessions for test subjects to become
familiar with the system and 2) we wished to avoid any
trained gaits using the treadmill, which could have cre-
ated biased joint mechanics. In this study, we only se-
lected gait cycles from dogs walking in straight lines. We
then excluded gait cycles outside of the mean ± one
standard deviation range from the selected gaits. The
remaining gait cycles were averaged to generate a con-
sistent representative gait pattern. We feel that this final
gait pattern successfully described a representative gait
motion for each tested dog by including more than 70%
of the recorded gait cycles.

Conclusion
This is the first study to investigate the relationship be-
tween articular cartilage contact strain and T2* relaxation
time before and after a joint injury in an in vivo animal
model. We intentionally created unilateral supraspinatus
tendon resections in in vivo canine models to alter joint
mechanics, and measured articular cartilage contact strain
and T2* relaxation time before and 3 months after the
supraspinatus resections. Interestingly, patterns in the ar-
ticular cartilage contact strain changes were similar to the
patterns in the articular cartilage T2* relaxation time varia-
tions following supraspinatus resection surgeries. Regional
comparisons between articular cartilage contact strain and
T2* relaxation time revealed positive correlations in all
tested shoulders. Because increased T2* relaxation time is
believed to be early signs of articular cartilage degeneration,
the degenerative process of articular cartilage may be ini-
tiated in areas with increased cartilage strain, potentially
leading to the development of osteoarthritis [28, 35].
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