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ABSTRACT: Bacterial chemoreceptors cluster in highly
ordered, cooperative, extended arrays with a conserved
architecture, but the principles that govern array assembly
remain unclear. Here we show images of cellular arrays as well
as selected chemoreceptor complexes reconstituted in vitro
that reveal new principles of array structure and assembly.
First, in every case, receptors clustered in a trimers-of-dimers
configuration, suggesting this is a highly favored fundamental building block. Second, these trimers-of-receptor dimers exhibited
great versatility in the kinds of contacts they formed with each other and with other components of the signaling pathway,
although only one architectural type occurred in native arrays. Third, the membrane, while it likely accelerates the formation of
arrays, was neither necessary nor sufficient for lattice formation. Molecular crowding substituted for the stabilizing effect of the
membrane and allowed cytoplasmic receptor fragments to form sandwiched lattices that strongly resemble the cytoplasmic
chemoreceptor arrays found in some bacterial species. Finally, the effective determinant of array structure seemed to be CheA
and CheW, which formed a “superlattice” of alternating CheA-filled and CheA-empty rings that linked receptor trimers-of-dimer
units into their native hexagonal lattice. While concomitant overexpression of receptors, CheA, and CheW yielded arrays with
native spacing, the CheA occupancy was lower and less ordered, suggesting that temporal and spatial coordination of gene
expression driven by a single transcription factor may be vital for full order, or that array overgrowth may trigger a disassembly
process. The results described here provide new insights into the assembly intermediates and assembly mechanism of this
massive macromolecular complex.

Motile bacteria sense and respond to their environment
through a networked system of chemoreceptors.1 These

receptors are best understood in Escherichia coli, where an
extended array of methyl-accepting chemotaxis proteins
(MCPs) is found at the pole of each cell. Dimeric MCPs are
anchored in the inner cell membrane and sense stimuli through
their periplasmic ligand-binding domains. The resulting signal,
either attractive or repulsive, is transferred down the length of
the MCPs through conformational changes in various domains,
culminating in a change in the activity of a histidine kinase,
CheA, bound to the cytoplasmic tip of the MCP dimer. CheA
also functions as a homodimer, performing trans-autophos-
phorylation and the subsequent transfer of a phosphoryl group
to one of two response regulators. One of these, CheY, binds to
the flagellar motor when phosphorylated, triggering a switch in
the predominant direction of rotation, and thus effecting
“tumbles” that interrupt linear “runs” and change the search

direction. The other response regulator, CheB, is a methyl-
esterase whose activity is stimulated by phosphorylation. The
balance of the activities of CheB and the methyltransferase
CheR dictates the methylation state of specific glutamate
residues in the MCPs that are responsible for adaptation.
The polar chemoreceptor array has a highly regular structure:

trimers of MCP dimers are linked in extended hexagonal
lattices, with 12 nm spacing between the centers of adjacent
hexagons. Associated molecules of CheA and CheW, a coupling
protein, form rings linking trimers-of-receptor dimers into
hexagons and neighboring hexagons into the extended lattice.2,3

This arrangement and spacing is highly conserved among
different bacterial species and between different signaling states
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in E. coli.4−6 The structure of the extended lattice is important
because it gives rise to one of the most striking aspects of the
chemotaxis system, its high degree of cooperativity. Signal
amplification in vivo can lead to apparent Hill coefficients (nH)
ranging from 10 to 27 depending on the type of receptor and
its modification state, indicative of a highly cooperative
system.7,8 It remains unclear, however, how this extended,
regular lattice forms.
To study the structure and function of the chemoreceptor

array, a variety of protocols have been explored to reconstitute
complexes in vitro. Such samples have been used to study
phosphotransfer,9−12 cooperativity,13−15 stability,16,17 and
protein−protein interactions.18−21 Here, we apply electron
cryotomography (ECT) to image native chemoreceptor arrays
as well as selected chemoreceptor complexes reconstituted in
vitro. We find that the stoichiometry, mixing order, and the
presence of membranes and crowding agents all effect higher-
order structure. Our results point to an assembly process in
which coordinated production of receptors and CheA and
CheW in the presence of stabilizing membranes and the dense
cytoplasmic environment all contribute to the formation of fully
ordered, extended lattices.

■ MATERIALS AND METHODS

Strains and Growth Conditions. Strains used in this study
are listed in Table S1 of the Supporting Information. pCO3 was
derived from pJC322 by polymerase chain reaction-based site-
directed mutagenesis to generate tsrA413T. Strains were grown
to midexponential phase in Tryptone Broth (TB) at 30 °C,
with appropriate antibiotics. Expression of Tsr from pCO3 was
induced with 250 μM isopropyl β-D-1-thiogalactopyranoside
(IPTG). Expression of CheA and CheW was induced from
pPM25 with 100 μM sodium salicylate. Strain UU2619 was
lysed by incubation with 300 ng/mL pencillin for 1 h at 30 °C.
Strain CO4 was lysed by treatment with 2 mg/mL lysozyme for
45 min at 37 °C, followed by treatment with 1 mg/mL DNase
for 30 min at 37 °C. Samples were kept on ice until they were
frozen for ECT.
Electron Cryotomography (ECT). A 20 μL cell culture

was mixed with a pelleted 100 μL colloidal gold solution, BSA
treated to avoid aggregation.23 Three microliters of this cell/
gold mixture was then applied to R2/2 copper Quantifoil grids
(Quantifoil Micro Tools). After excess liquid had been blotted
away using a Vitrobot (FEI), the sample was plunge-frozen in a
liquid ethane/propane mixture.23,24 Images were collected
using either an FEI Polara G2 (FEI Co., Hillsboro, OR) 300
kV field emission gun electron microscope at California
Institute of Technology, an FEI TITAN Krios (FEI Co.) 300
kV field emission gun at the University of California (Los
Angeles, CA), or an FEI TITAN Krios (FEI Co.) 300 kV field
emission gun with an image corrector for lens aberration
correction at Janelia Farms. All microscopes were equipped
with Gatan (Pleasanton, CA) image filters. California Institute
of Technology and Janelia Farms microscopes were outfitted
with a K2 Summit counting electron detector camera (Gatan),
and the University of California microscope was outfitted with a
4 megapixel CCD (Gatan). Data were collected using
UCSFtomo25 or BatchTomo (FEI Co.) using cumulative
electron doses of approximately ≤160 e/A2 for each individual
tilt series. The images were CTF corrected, aligned, and
reconstructed using weighted back projection using the IMOD
software package.26 SIRT reconstructions were calculated using

TOMO3D.27 Subvolume averaging and symmetrizing were
conducted using PEET.28

Classification by Missing Wedge Effect-Corrected
Principle Component Analysis (WMD-corrected PCA)
Using PEET. WMD-corrected PCA, which attempts to
compensate for the missing wedge effect in the electron
cryotomogram, and k-means clustering was performed using
PEET.28 Subvolumes were chosen from a single array patch and
contained one to six receptor hexagons, and associated density
above and below. Varying the cube size of the subvolume did
not affect the results. Classes with fewer than 10 particles were
discarded, as they likely contained misaligned or false particles,
and the resulting subvolume averages were too noisy to
interpret. The results of WMD-corrected PCA, including
variances and information criteria, are summarized in Table
S2 of the Supporting Information.

Purification of Signaling Components and Assembly
in Vitro. Two different types of in vitro reconstitutions were
tested employing full length Tsr, CheA, and CheW.
In method A, Tsr-containing inner membranes were

prepared essentially as described previously,21,29 with some
modifications. Briefly, Tsr expression was induced from plasmid
pJC322 with 1 mM IPTG for 4 h in HCB326, an E. coli strain
lacking native chemotaxis proteins. Cells were collected,
resuspended in lysis buffer [50 mM KH2PO4 (pH 7.5), 5
mM DTT, 10 mM EDTA, 1 mM 1,10-phenanthroline, 10%
glycerol, and 1 mM phenylmethanesulfonyl fluoride (PMSF)],
and lysed with a Constant Cell Disruption System (Constant
Systems, Kennesaw, GA). Cell debris was removed by
centrifugation and the supernatant equilibrated with 10 mM
aqueous iodoacetamide. Membranes were isolated by ultra-
centrifugation and passage over a sucrose gradient and
resuspended in Tsr reaction buffer [50 mM HEPES (pH
7.5), 50 mM KCl, and 5 mM MgCl2] with 1 mM PMSF.
Membrane suspensions were stored at −80 °C until they were
used. The membrane protein content was determined by a
modified BCA assay (Pierce Biotechnology, Rockford, IL).
Membranes typically contained 20% Tsr, determined by
densitometry of Coomassie-stained sodium dodecyl sulfate−
polyacrylamide gel electrophoresis (SDS−PAGE) gels.
To reconstitute signaling complexes, native membranes

containing Tsr were combined with purified His6-CheW and
His6-CheA (prepared as described in refs 21 and 29). The
following ternary complex components were combined: 12 μM
Tsr, 6 μM His6-CheW, and 2 μM His6-CheA in Tsr reaction
buffer. Samples were incubated at room temperature for 15
min, extruded through a 27 gauge needle, and incubated again
for 30 min at room temperature before being washed. The
resulting sample was immediately placed on ice until they were
imaged.
Method B was a modification of several previous

protocols.16,17,19,20,29 The E. coli serine receptor (Tsr) was
overexpressed in gutted E. coli strain UU1581, which lacks all
chemotaxis proteins, including receptors and adaptation
enzymes, using plasmid pJC3.22 Inside-out, inner bacterial
membrane vesicles containing Tsr were isolated as previously
described.11,18 The total protein concentration in the
membranes was determined by the BCA assay, and the fraction
of total protein represented by receptors (typically ∼20%) was
determined by ImageJ densitometry of SDS−PAGE gels.
Signaling complexes were reconstituted by combining 6.7

μM Tsr receptor, 5 μM CheA kinase, and 10 μM CheW
adaptor protein in activity buffer [160 mM NaCl, 6 mM MgCl2,
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50 mM Tris, and 3 mM EDTA (pH 7.5)] for 45 min at 22 °C
in the presence of 0.5 mg/mL BSA, 2 mM TCEP, and 2 mM
PMSF. Samples were centrifuged at 21000g for 7 min, and
pellets were washed twice to remove unbound CheA and
CheW by resuspension in a 10-fold excess of activity buffer
(without BSA, TCEP, and PMSF) and repelleting. After the
final wash, pellets were resuspended in the original volume of
activity buffer, resulting in functional, stable complexes.16,17,19,20

The resulting sample was immediately placed on ice, shipped
overnight, and then cryo-frozen and prepared for ECT.
Ordered Assembly of Array Components in Vitro.

Cytoplasmic fragments of the Tar receptor without the
transmembrane and HAMP domains (amino acids 1−256)
and with full methylation (CF4Q) were generated. CF4Q, CheW,
CheA, and CheY were expressed and purified as previously
described.30 Protein purity was assessed via SDS−PAGE
analysis, and protein concentrations were determined using a
BCA assay (Thermo Fisher Scientific). All lipids were
purchased from Avanti Polar Lipids, and large unilamellar
vesicles (LUVs) were prepared as previously described.31 PEG

8000 (Fluka) and D-(+)-trehalose (Sigma-Aldrich) were
prepared as 40% (w/v) stock solutions in deionized water
and passed through a 0.22 μm syringe filter prior to being used.
A modified kinase buffer [50 mM potassium phosphate, 50 mM
KCl, and 5 mM MgCl2 (pH 7.5)] was used for sample
preparation.
Formation and characterization of kinase-active ternary

complexes followed published methods,30,31 further specified
as follows. Vesicle-mediated CF4Q ternary complexes were
prepared by incubating 30 μM CF, 12 μM CheW, and 6 μM
CheA with 580 μM total LUVs (1:1 DOPC:DOGS-NTA-Ni2+

ratio), while PEG-mediated CF4Q complexes were prepared by
incubating 50 μM CF, 20 μM CheW, and 12 μM CheA with
final concentrations of 7.5% (w/v) PEG 8000 and 4% (w/v)
trehalose. For both PEG- and vesicle-mediated complexes, CF
was added last to minimize CF-promoted aggregation,32 and
samples were incubated overnight at 25 °C in a circulating
water bath and subjected to an enzyme-coupled assay and gel-
based cosedimentation assay to check for phosphorylation
activity and ternary complex formation.

Figure 1. Classification of E. coli chemoreceptor array hexagons reveals ordered CheA occupancy. (A) Tomographic slice through an array patch at
the level of the chemoreceptors. (B) Cutout of the patch, and corresponding power spectrum (C), revealing hexagonal lattice. (D) Tomographic
slice of the same array patch below the level of the chemoreceptors, showing CheA. (E) Cutout of the patch, and corresponding power spectrum
(F), revealing ordered occupancy by CheA. (G−I) Classification by principal components analysis and k-means clustering of hexagons in the same
array patch results in two distinct classes: hexagons linked by three CheA dimers (green symbols, subvolume average circled in panel G) and
hexagons lacking CheA dimers (turquoise symbols, subvolume average circled in panel H). The organization of class averages is shown in panel I.
Scale bars are 100 nm, and power spectra are not to scale.
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■ RESULTS

WT E. coli Chemoreceptor Arrays Are Superlattices of
Alternating CheA-Filled and CheA-Empty Rings. In E. coli
polar chemoreceptor arrays, dimers of CheA link adjacent
trimers of MCP dimers. On the basis of the crystal structures of
these components and their complexes, it is apparent that in
the extended hexagonal lattice, not all hexagons can be
occupied by three CheA dimers. Rather, a regular pattern was
predicted in which CheA-filled hexagons alternate with CheA-
empty hexagons.3 While this hypothesis was strongly supported
by the demonstration that there are two different kinds of array
hexagons in a tomogram (“filled” and “empty”), the arrange-
ment of these units was not reported.2

Because of further advances in sample preparation (receptors
locked in a single state), data collection (thinner sample, direct
detector), and processing (contrast transfer function correc-
tion), we are now often able to visualize CheA dimers
individually in tomograms within intact arrays. This allowed us
to confirm the order of the “superlattice” of CheA-filled and
CheA-empty hexagons directly. To do this, we analyzed
tomograms of wild-type (WT) cells expressing serine-sensing
receptors in the demethylated state (Tsr-EEEE). This
modification state of the receptors promotes stable packing of
the P1 and P2 domains of CheA,6 leading to a strong keel-like
density that facilitates identification of CheA dimers in
tomograms. We observed a layer of CheA below the MCP
hexagons in tomograms, which appeared to be highly ordered,
as confirmed by Fourier transform (Figure 1). Individual CheW
molecules were not identifiable, likely because of their smaller
size. We then used principal component analysis (PCA) to
identify classes of hexagons in a tomographic slice on the basis
of CheA occupancy. Only two classes of receptor hexagons
were observed: one in which each pair of Tsr trimers is linked
by a CheA dimer and one in which none of them is (Figure
1G,H). When we forced more classes to exist, only additional
filled and empty classes resulted, confirming that there are very
few if any partially filled hexagons. These two classes were
present in a roughly 2:1 ratio (117 filled rings and 64 empty

rings). By mapping the classes back onto the tomographic slice,
we found a strictly alternating pattern (Figure 1I), confirming
that native arrays are a superlattice. The trimers-of-receptor
dimers lie at the vertices of a hexagonal lattice with 12 nm
spacing. Connected to the cytoplasmic tips of the receptors, the
associated CheA (together with CheW) forms another lattice.
Here, the three CheA dimers linking one receptor hexagon lie
at the vertices of a larger hexagonal lattice with a spacing of 21
nm. This results in a hexagonal array of receptors linked to a
lattice of alternating CheA-filled and CheA-empty hexagons.
This pattern is reflected in the power spectrum shown in Figure
1F. We also classified arrays from cells expressing Tsr in the
methylated state (Tsr-QQQQ). While the classification did not
result in a high degree of confidence, it did separate the
hexagons into the same two classes: one in which each pair of
Tsr trimers is linked by a CheA dimer and one in which none
of them is. The resulting CheA localization pattern resembled
that seen in Tsr-EEEE, but with some errors in the distribution
pattern, likely because of a higher number of misclassified
subvolumes because of the smaller keel density of CheA
(Figure S1 of the Supporting Information).

Overexpressed Chemoreceptors, in the Absence of
CheA and CheW, Form Zippers. As different investigators
have explored different protocols to characterize array structure
and function, one of the earliest strategies was to simply
overexpress receptors, often in the absence of CheA and CheW.
Strongly overexpressed Tsr chemoreceptors are known to form
non-native ordered arrays termed “zippers” in which two
receptor layers interact with one another at their normally
CheA−CheW-binding, cytoplasmic tips, creating characteristic
membrane invaginations.33−36 We investigated the structure of
these zippers at higher resolution using a preparation of E. coli
Tsr in purified inner membranes. Interestingly, we found that
zippers survived cell lysis and membrane purification, indicating
that the interactions between the kinase-binding domains of the
MCPs at their membrane-distal tips are highly stable.
Importantly, the fundamental building block in zippers was
seen to be trimers of dimers, just as in native arrays, but when
viewed from the top, zippers exhibited tighter packing, with

Figure 2. Overexpression of Tsr without sufficient CheA and CheW results in zippers. (A) A side view of a receptor zipper reveals two layers of
membrane-bound receptors interacting at their membrane-distal tips. PD denotes periplasmic domains and IM inner membrane leaflets. The scale
bar is 50 nm. Arrows indicate relative positions of subvolume averages shown at the right in panels B−D. Scale bars are 10 nm. (E−H) Model of
receptor density from the subvolume average and manually fitted Tsr crystal structure from ref 46 in top view (E−G, levels roughly corresponding to
B−D, respectively) and side view (H), showing the arrangement of receptors. Blue and yellow colors indicate receptors of opposing orientation.
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triangular lattices at the top and bottom and a hexagonal
pattern at midsection (Figure 2). This complicated pattern was
the result of two layers of receptors linked in a hexagonal lattice
with a center-to-center spacing of 9 nm at the midsection, with
alternating trimers facing opposite directions (Figure 2 and
Movie S1 of the Supporting Information).
In Vitro Assembly of Array Components Results in

Functional Complexes, Hexagons, and Small Arrays.
Another strategy that has been used to reconstitute chemo-
receptor systems in vitro is to add excess purified CheA and
CheW to overexpressed receptors purified within their native E.
coli membranes. Different variations of this basic strategy have
been explored. One important variable appears to be the length
of time CheA and CheW are allowed to interact with the
receptors, as the largest Hill coefficients have been measured
after the longest incubation times (exceeding 4 h13). Here we

isolated inner membrane vesicles containing Tsr and then
combined them with purified CheA and CheW for 15−45
min.16,37 This type of preparation is known to generate
functional receptor−CheA−CheW units in which receptors
bind attractant serine and regulate CheA kinase activity in the
normal way. ECT revealed Tsr zippers similar to those
observed in Tsr inner membranes prior to addition of CheA
and CheW (see above), as well as large, loosely associated
aggregates (Figure 3; overview in Figure S2 of the Supporting
Information). The zippers likely formed within the cell and
remained associated throughout lysis and addition of CheA and
CheW. Inner membrane preparations are known to yield an
∼80:20 molar ratio of inside-out to right-side-out receptors.17

Both receptor orientations are observed in the images, and the
outward-pointing cytoplasmic tips dominate as expected
(Figure 3 and Figure S2 of the Supporting Information).

Figure 3. In vitro reconstitution of signaling complexes produces a variety of structures. Arrangements observed included receptor zippers with 9 nm
center-to-center hexagonal spacing (side view, A; top view, B), loosely ordered aggregates (C), individual hexagons of six trimers of dimers (D),
receptors oriented inward (E) and outward (F) from vesicles, linked hexagons (G), multiple unlinked hexagons (H), and the largest 12 nm
hexagonal array patch observed (I). Arrows indicate structures of interest. Scale bars are 100 nm.
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Besides the expected zippers, a range of assembly
intermediates was observed, providing insight into the
mechanism of array assembly. We also found partial or full
Tsr hexagons, double hexagons, and small arrays formed from
multiple hexagons. Individual receptor hexagons were fully
occupied by three CheA dimers (Figure S3 of the Supporting
Information). No large, nativelike arrays were detected,
however, consistent with the low Hill coefficient observed for
this type of preparation.16 We have not observed small
assembly intermediates in native cells but would likely to be
unable to resolve them because of the relative thickness of the
sample.
Co-overexpression of Chemoreceptors, CheA, and

CheW Yields Nativelike Hexagonal Arrays, but CheA
Occupancy Is Diminished. Suspecting that optimal array
formation may require simultaneous production of receptors,
CheA, CheW, some investigators have tried co-overexpression.

Concomitant overexpression of CheA and CheW has in fact
already been shown to produce large arrays without membrane
invaginations.38 In cells overexpressing Tsr from one plasmid
and CheA and CheW from another, we observed arrays with
the native 12 nm hexagonal spacing (Figure 4). We again used a
Tsr variant (Tsr-A413T) that locks the P1 and P2 domains of
CheA into an identifiable “keel” to investigate CheA
occupancy.6 By immunoblotting, we determined that Tsr and
CheA had been overexpressed to similar extents [25.5 and 26
times their WT levels, respectively (Figure S4 of the Supporting
Information)], but classification of hexagons in tomograms
revealed significantly lower and less ordered occupancy of
CheA than in native arrays (Figure S5 of the Supporting
Information). Two major classes were observed with zero or
two CheA dimers per ring. Direct observation of CheA dimers
in the tomograms confirmed the lack of any superlattice order
of CheA-filled or CheA-empty rings.

Figure 4. Co-overexpression of Tsr, CheA, and CheW restores WT array structure. (A) A tomographic slice of a lysed E. coli cell overexpressing the
chemotaxis proteins Tsr-A413T, CheA, and CheW reveals extended well-ordered hexagonal arrays with 12 nm center-to-center spacing. The inset
shows a higher-magnification subvolume average showing the top view of a single hexagon. (B) Array patch at the level of the receptors and the
corresponding power spectrum (C). (D) Same array patch at the level of CheA and the corresponding power spectrum (E) showing a lack of order
in the CheA arrangement. Scale bars are 100 nm, and power spectra are not to scale.
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Ordered, Vesicle-Mediated Assembly of Receptor
Fragments, CheA, and CheW in Vitro Leads to Large
Arrays. The overexpression experiments described above
suggest that in addition to proper ratios of receptors, CheA,
and CheW, assembly of native arrays depends on proper
temporal and perhaps spatial ordering of the process. To
expore this possibility, we used a system in which soluble MCPs
lacking their transmembrane domains could be added to
mixtures of Ni2+-NTA-conjugated lipids and CheA and CheW
in different orders.31,32 His-tagged cytoplasmic fragments of the
aspartate-sensing Tar chemoreceptor lacking their periplasmic
ligand-binding domains, transmembrane domains, and HAMP
domains (Tar-CF) were purified. We found that by first adding
purified CheA and CheW to Ni2+-NTA-tagged lipids and then
adding the soluble receptor fragments, we could form vesicle-
associated arrays containing at least 20 hexagons with a 12 nm
center-to-center spacing (Figure 5). The ordered patches may

have been even larger, but unfortunately, the high degree of
curvature of the vesicles precluded accurate estimation of the
total hexagon number, as well as visualization of the
organization of CheA dimers. Zippers and loose aggregates of
MCPs were not observed.
The Membrane Is Not Essential for Array Formation

and Can Be Replaced by Crowding Agents. Membrane
interactions are essential for transmembrane chemoreceptor
array formation and function.39−41 However, many bacteria
contain soluble cytoplasmic chemoreceptor arrays that do not
associate with any membrane42,43 [e.g., Vibrio cholerae (Figure
S6 of the Supporting Information)]. If cytoplasmic receptors
can form extended arrays without an organizing membrane, can
normally polar chemoreceptors do so as well? To test this, we
again purified soluble cytoplasmic fragments of the Tar

receptor, as well as CheA and CheW, from E. coli. Again we
assembled complexes in vitro using these components, with
CheA and CheW present in stoichiometric excess, but this time
in the absence of lipid vesicles. To mimic cellular conditions,
we included the molecular crowding agents PEG-8000 and
trehalose in the assembly reaction mixture.30 Interestingly,
extended arrays formed with an architecture identical to those
of the cytoplasmic clusters in Rhodobacter sphaeroides and V.
cholerae in vivo (Figure S6 of the Supporting Information). Two
CheA and CheW base plates, 31 nm apart, flanked two
hexagonal lattices of chemoreceptor trimers with a 12 nm
center-to-center spacing to form a “sandwich” (Figure 6). In
contrast to zippers, in which receptors interact at the kinase-
binding tip, in this case the two receptor layers interacted at
their membrane-proximal tips. As observed for polar chemo-
receptors,3,5,44 the kinase-binding regions near the CheA and
CheW base plates were well ordered, with a decreasing level of
order toward the midsection of the sandwich (Figure S7 of the
Supporting Information). To assess CheA occupancy, we
classified an array patch and observed hexagon classes with
zero, one, two, and three CheA dimers, indicating less order
than in native membrane-bound arrays (Figure S8 of the
Supporting Information), consistent with direct observation
(Figure 6F,G). Interestingly, we were able to assemble
functional complexes in the absence of membranes only from
Tar-CF in the methylated (QQQQ) adaptation state, not in the
demethylated (EEEE) state, even in the presence of higher
concentrations of molecular crowding agents, suggesting that
the methylated receptor state may form more stable complexes.

■ DISCUSSION
Here we explored the structure and assembly of chemoreceptor
arrays by imaging both native arrays and selected in vitro
preparations that yield functional receptor−CheA−CheW
complexes. We found that native arrays are not only
hexagonally ordered, but a superlattice of alternating CheA-
filled and CheA-empty rings exists. When Tsr receptors are
overexpressed in the absence of CheA and CheW, stable
double-layer zippers form as previously observed, and this study
reveals that the receptors are still arranged as trimers-of-
receptor dimers, though packed in a non-native lattice. When
receptor-containing membranes are incubated with purified
CheA and CheW, isolated “functional units” (pairs of trimers-
of-receptor dimers linked by CheA dimers) and “rings” (six
trimers-of-receptor dimers linked by three CheA dimers) were
found, as were clusters of rings forming small arrays, but no
large, nativelike arrays were observed (as expected given the
low Hill coefficient reported for this type of preparation16).
Instead, the observed small complexes and arrays are proposed
to be early intermediates in the assembly of native arrays.
Larger, more extended 12 nm hexagonal arrays are produced by
co-overexpression of the receptor, CheA, and CheW, or by
reconstituting receptor cytoplasmic domains with CheA and
CheW on Ni-NTA lipid vesicles. The same receptor
cytoplasmic domains form sandwiched arrays upon being
incubated with CheA and CheW in the absence of membranes,
but in the presence of crowding agents.
One of the principles that emerges from these observations

and others already in the literature is that with the exception of
some crystal structures, for example the Thermatoga receptors,
where the receptors were arranged in “hedgerows” of dimers,45

receptors always form trimers of dimers linked together tightly
at their kinase-binding tips but splaying outward toward their

Figure 5. Addition of MCPs after CheA and CheW produces extended
12 nm arrays. Vesicle-mediated assembly of Tar-CF, CheA, and CheW
leads to extended arrays, shown in a tomographic slice. The inset
shows a power spectrum (not to scale) of the white-boxed region that
shows the hexagonal order of the array, with a 12 nm center-to-center
spacing. The scale bar is 200 nm.
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ligand-binding tips. However, the degree of splaying observed
by ECT is less than that seen in the crystal structure.3,6,46 This
same building block is seen in native arrays, zippers,
reconstituted mixtures, and cytoplasmic arrays. This structure
probably forms rapidly within cells and is highly stable,
remaining intact through cell lysis and/or diverse purification−
reconstitution procedures.
The second principle that emerges is that the trimers-of-

receptor dimers unit exhibits striking versatility in the kinds of
contacts it can form with other trimers-of-receptor dimers and
other components of the signaling pathway. In native arrays,
trimers of receptor dimers form extended hexagonal arrays
anchored in the membrane at their ligand-binding tips and
associating laterally through networked CheA and CheW. In
the absence of CheA and CheW, trimers bind each other at
their kinase-binding tips in antiparallel fashion to form
superstable zippers. A more recent crystal structure reveals
two potential CheA- and CheW-binding sites along each
dimer.47 In the absence of membrane binding, either through
deletion of transmembrane domains or in endogenous
cytoplasmic chemoreceptors, MCPs again form bilayers, but
in these cases through interactions at the ends of the receptors
distal to their CheA-binding tips. Because there are so many
possible structures that can form, while the architecture seen in
cells is universally conserved,4 the assembly process within a
cell must be tightly regulated.
For transmembrane receptors, the membrane likely accel-

erates array formation by holding newly synthesized receptors
in a plane and then stabilizes arrays after formation.39−41 These
findings reveal, however, another assembly principle: the
membrane is neither necessary for proper array organization
(evidenced by endogenous cytoplasmic clusters in many
organisms and in vitro assembly of cytoplasmic fragments of
normally polar receptors) nor sufficient (evidenced by
zippering of receptors in the absence of coupling proteins).

Active signaling complexes of cytoplasmic receptor fragments
can be generated via association with lipid vesicles48 and can
also be generated in the absence of membrane binding, by
increasing the extent of molecular crowding to mimic the
cellular environment.30 Our new results show that both of these
preparations contain extended arrays with a 12 nm spacing
equivalent to that of intact receptor arrays. In addition, our
results also show that extended arrays are always stabilized on
both faces, by either membranes or CheA and CheW base
plates (arrays stabilized on only one side have not been
observed). Molecular crowding agents increase the apparent
local concentration of components by excluding volume,
shifting the equilibria of biomolecular interactions in favor of
associated states. The ability of molecular crowding agents to
promote arrays of CheA and CheW and cytoplasmic receptor
domains underscores the dramatic role that the dense cellular
environment can play in assembly.49−51

As a final assembly principle, the effective determinant of
array structure seems to be CheA and CheW, for both
membrane-bound and cytoplasmic arrays. In native arrays, we
find nearly complete, and highly ordered, CheA occupancy.
Filled hexagons containing three CheA dimers surround an
empty hexagon containing none. This leads to a slightly higher
receptor:CheA ratio in arrays (6:1) compared to the total
concentration ratio in cells (3.4:1).52 It may be that cells
contain excess CheA and CheW to promote correct assembly.
When Tsr, CheA, and CheW are decoupled and overexpressed,
the resulting arrays exhibit the same 12 nm hexagonal packing
as native arrays, but we observe less-than-native CheA
incorporation, suggesting that the assembly process may
become defective when the precise stoichiometry and temporal
control provided by native transcription is disrupted.
Alternatively, overexpression could activate a putative dis-
assembly mechanism responsible for removing CheA and
destabilizing the array, thereby preventing excess array growth,

Figure 6. E. coli Tar chemoreceptors lacking transmembrane regions form extended arrays in the presence of CheA, CheW, and molecular crowding
agents. Tomographic slices showing extended arrays. (A) A side view reveals two parallel CheA and CheW base plates (arrows) spaced 31 nm apart.
Top views of the chemoreceptors close to either base plate (B and C, corresponding to white and black arrows in A, respectively) reveal a well-
ordered, hexagonal arrangement with a center-to-center spacing of 12 nm. Insets show enlarged subvolume averages. (D) Array patch at the level of
the receptors and the corresponding power spectrum (E). (F) Same array patch at the level of CheA and the corresponding power spectrum (G),
showing the lack of order. Scale bars are 100 nm, and power spectra are not to scale.
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as previously suggested.17 Intriguingly, Bacillus subtilis has been
reported to have a much higher ratio of MCP to CheA than E.
coli, approximately 23 receptor dimers to one CheA dimer53

versus 3.4:1 for E. coli.52 Thus, at least in B. subtilis, it appears
that relatively little CheA is required to nucleate a
morphologically correct array with respect to receptor packing.
We imagine then that in cells, receptors are inserted into the

membrane as they are produced and quickly dimerize. Next,
receptor dimers trimerize, and then CheA dimers capture
trimers-of-receptor dimers into six-receptor functional units
before any off-pathway complexes form. These functional units
either unite through CheW with existing arrays or link together
to form CheA-filled rings, which then unite to existing arrays.
Given the known interactions of CheA and CheW, both
processes lead directly to the highly cooperative superlattice of
alternating CheA-filled and CheA-empty rings (Figure 7 and
Movie S1 of the Supporting Information).
The special conditions that exist within cells that allow and

guide this assembly process may, however, be challenging to
mimic in vitro. Given that, the smallest functional unit that
displays full regulation of kinase activity is the six-receptor-
dimer, one-CheA-dimer, two-CheW unit that also seems to be
the basic building block of array assembly, and all the
reconstitution protocols explored here produce such functional
units. Their biochemical and biophysical properties can
therefore be studied effectively as long as care is taken not to
include the signal from non-native structures that may also be
present. This can be done through CheA- or CheW-readout
methods (rather than simply monitoring receptors); for
instance, monitoring the effects of mutagenesis, cross-linking,
or protein modification on kinase activity measures only the
effects within functional complexes.18−21,54−56 Notably, certain
reconstitutions have also already exhibited Hill coefficients
close to those observed for cellular arrays,13 suggesting that
nativelike higher-order structures must be present. We hope the
interplay between EM and in vitro reconstitution methods,
together with the application of the new assembly principles
revealed here, will eventually allow the production of even
larger-than-cellular arrays with the fully native structure for
enhanced structural, biophysical, and biochemical character-
ization of array properties.
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