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INTRODUCTION 
 
Ovarian carcinoma is the third most common type of 
gynecological malignancy [1]. Due to late detection, 
70% of patients present with advanced cancer with 
distant metastasis upon diagnosis, and ovarian 
carcinoma is the leading cause of death among 
malignant gynecological tumors [2, 3]. Both early 
detection biomarkers for ovarian carcinoma and 
effective therapies for recurrent cases are lacking [4]. It 
is therefore of clinical importance to identify effective 
tumor markers and investigate their role in the 
occurrence and development of ovarian carcinoma to 

aid in early diagnosis, prevention, and control of 
ovarian carcinoma [5]. 
 
A recent large-scale, multi-omics analysis of various 
cancers provides many new insights regarding 
dysregulation of gene levels in cancer [6]. Additionally, 
genomic variations caused by copy number variations 
(CNVs) or single nucleotide variations (SNVs) 
contribute to tumor occurrence and progression [7]. 
Furthermore, epigenetic regulation via DNA 
methylation (MET) in cancer genomics plays a key role 
in variation in disease characteristics [8]. Omics 
analyses in specific cancers, including hepatocellular 
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ABSTRACT 
 
In this study, we identified prognostic biomarkers in ovarian carcinoma by integrating multi-omics DNA copy 
number variation (CNV) and methylation variation (MET) data. CNV, MET, and messenger RNA (mRNA) 
expression were examined in 351 ovarian carcinoma patients. Genes for which expression was correlated with 
DNA copy-number or DNA methylation were identified; three ovarian carcinoma gene subtypes were defined 
based on these correlations. Overall survival and B cell scores were lower, while the macrophage cell score was 
higher, in the DNA imprinting centre 1 (iC1) subtype than in the iC2 and iC3 subtypes. Comparison of CNV, MET, 
and mRNA expression among the subtypes identified two genes, ubiquitin B (UBB) and interleukin 18 binding 
protein (IL18BP), that were associated with prognosis. Mutation spectrum results based on subtype indicated 
that UBB and IL18BP expression may be influenced by mutation loci. Mutation levels were higher in iC1 samples 
than in iC2 or iC3 samples, indicating that the iC1 subtype is associated with disease progression. This 
integrated multi-omics analysis of genomics, epigenomics, and transcriptomics provides new insight into the 
molecular mechanisms of ovarian carcinoma and may help identify biomolecular markers for early disease 
diagnosis.  
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carcinoma, demonstrate that wide variety of genomic 
and epigenomic dysregulations can affect cancer 
occurrence and progression [9]. CNV is a crucial 
regulator of genomic and epigenomic dysregulation that 
contribute to tumor progression and transcriptional 
dysregulation. These public, large-scale, multi-omics 
data sets make it possible to conduct an integrated 
multi-omics analysis of the impacts of genomics, 
epigenomics, and transcriptomics on tumor occurrence 
and progression in ovarian carcinoma [10]. 
 
CNV plays an important role in individual genetic 
variation and in human genetic diversity, and mutation 
rates are higher in genes that display CNV. CNV can 
alter gene expression by regulating mRNA levels and 
by influencing transcriptional regulation, and many 
CNVs are closely related to various diseases [11, 12]. 
Walker et al. conducted a genome-wide association 
analysis of CNVs and risk of ovarian carcinoma in a 
cohort of 2,500 patients with the breast cancer type 1 
(BRCA1) pathogenic variant. They found that the 

absence of CNV at the cyp2a7 locus (19q13.2) was 
correlated with a reduced risk of ovarian carcinoma 
(RR=0.50, p=0.007) [13]. A study of 330 families with 
increased rates of ovarian carcinoma identified three 
new pathogenic CNVs. Of these CNVs, BRCA1 (exon 
4-13 absence, exon 12-18 absence) and ATM (exon 57-
63 absence) were potentially associated with 
susceptibility to ovarian carcinoma [14]. Further 
investigations focused on CNVs will improve 
understanding of the molecular mechanisms of complex 
diseases and help identify susceptible genes [15, 16]. 
However, many other genetic factors are important in 
cancer, and additional analyses are therefore required. 
Epigenetic inheritance refers to hereditary genetic 
changes that occur without any changes in the DNA 
sequence, including histone modification, DNA MET, 
RNA editing, and gene silencing. The occurrence and 
progression of ovarian cancer involve several functional 
pathways, including DNA repair, cell apoptosis, and 
cell cycle regulation, and are affected by changes in 
protooncogenes tumor suppressor genes. Studies have 

 
 

Figure 1. Identification of DNA copy number-correlated (CNVcor) and DNA methylation-correlated (METcor) genes in 
ovarian carcinoma. (A) Correlation z-value distributions for CNVcor genes and METcor genes. Density distribution is shown on the 
y-axis; the dotted line represents the median CNV and MET correlation coefficient values. (B) Venn diagram of overlapping CNVcor 
genes and METcor genes. The green area represents the 413 CNVcor genes. The yellow area represents the 103 METcor genes. The 
overlapping region contains 46 genes. (C) Box plot of CNVcor gene chromosomal distribution (upper figure) and correlations (lower 
figure). In the top image, the proportion of CNVcor genes on each chromosome (adding to a total of 1) is shown on the y-axis; in the 
bottom image, the correlation coefficient of CNVcor genes on each chromosome is shown on the y-axis. (D) Box plot of METcor gene 
chromosomal distribution. The proportion of METcor genes on each chromosome is shown on the y-axis. (E) METcor gene types. The 
proportion of METcor genes by type is shown on the x-axis. F: Distribution of MET loci. The proportion of types of methylated loci is 
shown on the x-axis. 
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suggested that epigenetic changes in these pathways 
contribute to the development of ovarian cancer, and 
DNA MET may serve as a helpful biomarker for early 
diagnosis [17-18]. 
 
Because CNVs and DNA MET are involved in many 
types of cancer, it is important to investigate their 
effects on cancer progression [19]. In this study, CNVs, 
DNA MET, and mRNA expression were measured in 
351ovarian carcinoma samples with clinical 
information. The relationships between mRNA 
expression and both CNV and MET were examined 
separately to identify a CNVcor gene set and a METcor 
gene set. The CNVcor and METcor genes were used 
together to identify for molecular subtypes in ovarian 
carcinoma, and specific targets or biomarkers that drove 
these subtype classifications were examined.  
 
RESULTS 
 
Comparison of CNVcor and METcor gene sets 
 
A total of 3,990 CNVcor genes and 9,651 METcor 
genes were identified at a significance level of p < 0.01. 
In the z-value distribution, CNVcor gene correlations 
were significantly shifted to the right, while METcor 
gene correlations were significantly shifted to the left 
(Figure 1A) (D'Agostino test: p < 1e-5). These results 
indicate a positive correlation between CNVcor genes 
and gene expression and a negative correlation between 
METcor genes and gene expression. Due to the large 
number of genes in these two sets, only those genes 
significantly related to prognosis in each set (p < 0.05, 
413 CNVcor genes and 103 METcor genes) were 
included in subsequent analyses. There was no 
significant overlap between the two gene sets (Figure 
1B), indicating a possible lack of interaction between 
CNVcor and METcor genes. Further analysis of the 
genomic distribution of CNVcor and METcor genes 
revealed that CNVcor is more inclined to appear on 
chr14, chr11, chr12 and chr1 chromosomes (FDR< 
0.05), while METcor is more inclined to appear on 
chr12 and chr15, chr14 and chr16 (p < 0.05) (Figures 
1C, 1D, S1, Table 1) and consist primarily of protein-
coding genes (Figure 1E). The MET loci were primarily 
located in the S-shore, N-shore, and island regions 
(Figure 1F). 
 
Molecular subtypes were identified based on 
CNVcor and METcor genes 
 
The CNVcor and METcor gene sets were clustered 
using non-negative matrix factorization (NMF). The 
standard “brunet” was selected by NMF and then 
subjected to 50 iterations. The clustering number k was 
set at 2-10. The average contour width of the sharing 

Table 1. Fisher significance test for the distribution 
of CNVCor and METCor genes on chromosomes. 

CNVCor gCount FisherP FDR(BH) 

chr14 42 0.00001  0.00008  
chr11 20 0.00059  0.00825  
chr12 52 0.00074  0.00966  
chr1 41 0.00165  0.01981  
chr16 16 0.03923  0.43156  
chr19 56 0.09318  0.93179  
chr18 13 0.11366  1.00000  
chr15 23 0.27520  1.00000  
chr2 32 0.30108  1.00000  
chr20 12 0.30654  1.00000  
chr21 4 0.33219  1.00000  
chr17 40 0.53937  1.00000  
chr10 25 0.58392  1.00000  
chr13 9 1.00000  1.00000  
chr22 13 1.00000  1.00000  
NA 15 NA NA 
METCor    
chr12 11 0.023056 0.530277 
chr16 0 0.02405 0.530277 
chr15 7 0.036821 0.773233 
chr14 7 0.044257 0.88513 
chr6 10 0.070549 1 
chr21 3 0.123508 1 
chr5 1 0.138885 1 
chr4 1 0.189819 1 
chr9 1 0.192522 1 
chr20 5 0.210286 1 
chr17 9 0.216074 1 
chr13 3 0.237298 1 
chr7 2 0.334773 1 
chr19 10 0.344671 1 
chr2 4 0.415739 1 
chr11 5 0.687229 1 
chr1 9 0.745382 1 
chr8 4 0.78068 1 
chr10 3 1 1 
chr18 1 1 1 
chr22 2 1 1 
chr3 5 1 1 
chrX 0 1 1 
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membrane matrix was determined by NMF in the R 
package, and the minimal member number for each 
subtype was set at 10. The optimal clustering number 
was determined using cophenetic, dispersion, and 
silhouette. The optimal clustering number was two 
for CNVcor genes (Figure 2A, S2) and three for 
METcor genes (Figure 2B, S3). Because no 
significant differences were observed when the 
CNVcor genes were clustered into three subtypes 
rather than two, and because the optimal clustering 
number for METcor genes was three, the optimal 
clustering number for CNVcor genes was also set at 
three for subsequent analyses. There were significant 
differences in OS for both the CNVcor and METcor 
genes in the three subtypes (Figure 2C, 2D, Figure 
S4, Table S4). Considerable overlap was observed 
between the CNVcor and METcor genes clustered 
into subtype three (Figure 2E and 2F, p < 0.05). 
 
CNV, MET, and EXP data were integrated to 
divide samples into four categories 
 
Because METcor genes were clustered into three 
subtypes,  K= 2-3  was chosen when calculating 

lambda values in the multi-omics clustering 
analysis. The final lambda values obtained at K=2 
and 3 (3 and 4 clustering subtypes) were 
0.004950495, 0.391089109, and 0.836633663, 
respectively. A considerable difference in sample 
size distribution among the three clustering subtypes 
was noted at K=2. Consequently, K=3 and 4 
clustering subtypes with sample sizes of 1, 65, 128, 
and 156 were selected. Because the minimal 
clustering number cannot be less than 10, the 
subtypes containing one and 65 samples were 
merged into a single subtype. The final three 
resulting subtypes were iC1 (66 samples), iC2 (128 
samples), and iC3 (156 samples). The clustering 
results for the three datasets are presented in Figure 
3A and 3B, and clustering information is shown for 
each sample in Table S5. 
 
OS (Figure 3C, p < 0.001), but not PFS (Figure 3C, 
p>0.05), differed significantly among the 3 
subtypes. In addition, there was considerable 
overlap between the iCluster gene clustering results 
and the CNVcor and METcor gene clustering results 
(Figure 3C, 3D, p < 0.001). 

 
 
Figure 2. Identification of ovarian carcinoma molecular subtypes based on CNVcor and METcor genes. (A) NMF clustering 
results for CNVcor genes. (B) NMF clustering results for METcor genes. (C) KM survival curve for CNVcor gene clustering subsets. Survival 
time is shown on the x-axis, and survival rate determined by log rank P test is shown on the y-axis. (D) KM survival curve for METcor gene 
clustering subsets. Survival time is shown on the x-axis and survival rate determined by log rank P test is shown on the y-axis. (E) Overlap 
between CNVcor and METcor gene clustering subsets. F: Overlap test for CNVcor and METcor gene clustering subsets. Blue circles represent 
the proportion of overlapping samples between two the clusters; significance was determined using the Kolmogorov-Smirnov test. 
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Figure 3. OV sample molecular typing results in multiple datasets. (A) Expression heatmap for CNVcor gene subsets 
identified by iCluster. (B) Expression heatmap for METcor gene subsets identified by iCluster. (C) OS and PFS curves for subtypes 
identified by iCluster. (D) Overlap between METcor and CNVcor gene subsets with iCluster gene subsets. Blue circles represent the 
proportion of overlapping samples between two clusters; significance was determined using the Kolmogorov-Smirnov test. 
 
 

 
 

Figure 4. Associations between aberrations in DNA copy number and DNA methylation in ovarian carcinoma. (A) 
Frequency distribution of CNV Gain and CNV Loss. (B) Frequency distribution of CNV Gain and MetHyper. (C) Frequency distribution 
of CNV Gain and MetHypo. (D) Frequency distribution of CNV Loss and MetHyper. (E) Frequency distribution of CNV Loss and 
MetHypo. (F) Frequency distribution of MetHyper and MetHypo. Larger correlation coefficients (R values) indicate stronger 
correlations; the log rank P test was used. 
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Correlations between CNV and MET variation 
 
Next, we examined the relationship between CNV and 
MET variation. For CNVs, CNV Gain was defined by a 
β>0.3 and CNV Loss by a β<-0.3; for MET, 
hypermethylation (MetHyper) was defined by a β>0.8 
and hypomethylation (MetHypo) by a β<0.2. The 
number of genes showing CNV Gain, CNV Loss, 
MetHyper, and MetHypo was counted separately for 
each sample. CNV Gain and CNV Loss were positively 
correlated (R=0.15, p=0.0037) (Figure 4A), but there 
was no correlation between CNV Gain and CNV 
MetHyper (Figure 4B). There was also a strong positive 
correlation between CNV Gain and MetHypo (R=0.29, 
p=3e-08) (Figure 4C); CNV Loss and MetHyper were 
positively correlated as well (R=0.2, p=0.00022) 
(Figure 4D). There was no significant correlation 
between CNV Loss and MetHypo (Figure 4E). Finally, 
MetHyper and MetHypo were negatively correlated 
(R=-0.29, p=3.1e-08) (Figure 4F, Table S6). 

Immune scores differ among Ovarian Cancer (OV) 
gene subtypes 
 
All OV genes included in this study were clustered into 
three subtypes based on available multi-omics data. No 
significant differences in clinical characteristics (gender 
and age) were found among the three subtypes (Table 
2). Immune scores were determined for samples 
grouped by subtype using tumor immune estimation 
resource (TIMER) tool. Compared to the other two 
subtypes, B cell scores were lower, while macrophage 
cell scores were higher, in iC1 subtype samples, which 
were also associated with the poorest prognoses (Figure 
5A, p < 0.01). The immune scores of iC1 subtypes in 
CD4 T cells, neutrophils and dendritic cells are 
significantly lower than that of iC3 (P<0.05). We 
speculate that these molecular subtypes have different 
cellular immune functions and affect the survival and 
prognosis of patients to a certain extent. 

 
 
 
Figure 5. Infiltration of iC molecular subtypes in different immune cells. (A) Comparison of scores for six types of immune cells 
among the three iCluster gene subtypes. Immune cell scores are shown on the y-axis, and different molecular subtypes are shown on 
the x-axis. The Kruskal-Wallis rank test was used to identify significant differences in immune cell scores between the iC molecular 
subtypes. (B) Scores for six types of immune cells in all samples. iCluster indicates multi-omics molecular subtypes, METcor_C indicates 
METcor gene molecular subtypes, and CNVcor_C indicates CNVcor gene molecular subtypes. 
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Table 2. Comparison of clinical features of OV 
gene subtypes. 

Event Total iC1 iC2 iC3 
Alive 136 13 55 68 
Dead 212 51 73 88 
X 1 0 0 0 
NewEvent         
0 119 26 43 50 
1 230 38 86 106 
Grade         
G1_G2 43 6 18 19 
G3_G4 300 57 108 135 
GX 6 1 3 2 
Stage         
II 20 4 6 10 
III 274 55 103 116 
IV 53 5 20 28 
X 2 0 0 2 
Age         
0~50 75 3 27 45 
50~60 109 16 38 55 
60~70 84 17 29 38 
70~80 66 22 30 14 
80~100 15 6 5 4 
 

Table 3. Ten most significant correlations between UBB 
gene expression and SNVs. 

gName snvGene SNV CorrP Corr 

UBB KMT2D c.10830G>T 1.47E-05 0.286314 

UBB JMJD1C c.5709G>A 1.47E-05 0.286314 

UBB FBXO24 c.950C>G 1.47E-05 0.286314 

UBB PTPN12 c.950A>T 1.47E-05 0.286314 

UBB PTPRN c.905delG 1.47E-05 0.286314 

UBB TP53 c.844C>T 0.000834 0.222683 

UBB EDEM3 c.2548G>A 0.00124 0.215423 

UBB ARL11 c.88T>C 0.00124 0.215423 

UBB ZC3H12C c.1649delC 0.00124 0.215423 

UBB LRRN3 c.1729delG 0.00124 0.215423 

 

Table 4. Ten most significant correlations between IL18BP gene expression and SNVs. 

gName snvGene SNV CorrP Corr 

IL18BP KLHL32 c.685_686insTTCCTGACTGTTAC 4.45E-07 0.331096 

IL18BP ARHGEF38 c.*1973_*1974insCTCTGGT 4.45E-07 0.331096 

IL18BP MMP21 c.890C>T 4.45E-07 0.331096 

IL18BP HSPA8 c.543_544insCCAAAACCATTCGTAGTTTCCACCAGAAA 4.45E-07 0.331096 

IL18BP ASXL3 c.4739_4740insACACCCGACCG 4.45E-07 0.331096 

IL18BP ACSF2 c.1519_1520insACA 4.45E-07 0.331096 

IL18BP PCDHA11 c.1774A>G 4.45E-07 0.331096 

IL18BP CCNB3 c.1083C>T 4.45E-07 0.331096 

IL18BP DUS1L c.1327_1328insCAG 4.45E-07 0.331096 

IL18BP KRTAP9-9 c.202_203insG 4.45E-07 0.331096 
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Scores for the six immune cell types examined in the 
three sample subtypes are shown in Figure 5B; the 
associated data are shown in Table S7. 
 
Molecular characteristics of OV gene subtypes 
 
Differences in CNV, MET, and mRNA expression 
between the iCluster iC1 and iC3 subtypes, which also 
differed significantly in prognosis, were then analyzed 
(Figure S5). Samples were separated into the following 

three types based on CNV and MET data as previously 
described: CNV Gain (MetHyper), CNV Loss 
(MetHypo), and CNV Normal (MET Normal). Genes 
that differed significantly in CNV and MET data 
between the iC1 and iC3 subtypes were identified using 
the Fisher-exact test. Genes with differential expression 
based on gene expression (EXP) data between iC1 and 
iC3 subtypes were identified by DESeq2 (differential 
genes with p < 0.05). The genes that differed in CNV, 
MET, and expression spectrum are shown in Figure 6. 

 
 
Figure 6. The 100 genes with the most significant differences in CNV, Met, and gene expression among iC1 molecular 
subtypes. (A) CNV distribution in iCluster gene subtypes; (B) MET distribution in iCluster gene subtypes; (C) Heatmap of differential 
genes for iCluster gene subtypes. 
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Associations between gene expression, CNV, and 
MET 
 
To investigate the relationship between gene 
expression, CNV, and MET, genes with both 
differential expression in the iC1 and iC3 subtypes 
and with a significant difference in CNV Gain/Loss 
and MetHypo/MetHyper (p < 0.05) were examined in 
a prognostic survival analysis. A total of 1,338 genes 
differing in CNV Gain/Loss, 11 genes differing in 
MetHyper/MetHypo, and 8,195 genes with differential 
expression between the iC1 and iC3 subtypes were 
included. Of the seven genes which differed in all 
three measures between the two subtypes (URI1, 
AKT2, ZHX3, RAB34, FBXO6, IL18BP, and UBB), 
two genes (UBB and IL18BP) were significantly 
associated with prognosis according to one-factor 

survival analysis (Figure 7. Table S8 and Table S9, p 
< 0.05). Specifically, low expression of both UBB and 
IL18BP was associated with poorer prognosis. 
Furthermore, in samples associated with poor 
prognosis, expression of these two genes was lower in 
iC1 subtype samples than in iC3 subtype samples, 
perhaps due to higher MET levels and lower CNV 
levels in the iC1 subtype.  
 
Survival analysis for UBB and IL18BP 
 
Associations between the two genes of interest and 
prognosis were validated using 10 independent 
datasets from the KMplot website 
www.kmplot.com/lung. KM survival curves for OS, 
PFS (p < 0.05), and post-progression survival (PPS) 
for these genes are shown in Figure 8.  

 
 
Figure 7. CNV and MET in UBB and IL18BP were significantly correlated with prognosis. (A) Comparison of CNV, MET, and 
EXP in the UBB gene between iC1 and iC3 subtypes and prognostic survival curve for the TIMM50 gene. From left to right: the 
proportion of UBB Gain and Loss (range: 0-1) in iC1 and iC3 samples, the proportion of UBB hypermethylation and hypomethylation 
(range: 0-1) in iC1 and iC3 samples, UBB expression in iC1 and iC3 samples, and survival curve with samples divided into high and low 
UBB groups based on median gene expression level. (B) Comparison of CNV, MET, and EXP in the IL18BP gene between iC1 and iC3 
subtypes and prognostic survival curve for the TIMM50 gene. From left to right: the proportion of IL18BP Gain and Loss (range: 0-1) in 
iC1 and iC3 samples, the proportion of IL18BP hypermethylation and demethylation (range:0-1) in iC1 and iC3 samples, IL18BP 
expression in iC1 and iC3 samples, and survival curve with samples divided into high and low IL18BP groups based on median gene 
expression level. Survival time is shown on the x-axis and overall survival is shown on the y-axis; differences were identified using the 
log rank P test. 
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Comparison of mutation spectrum in the OV gene 
subtypes 
 
Based on the iCluster gene clustering results, we 
analyzed mutation spectra in the different subtypes and 
screened a set of genes that differed significantly 
between the iC1 and iC3 subtypes (Figure 9). In total, 
83 genes with p < 0.05 were selected based on ranked 
Fisher test p values; associated data are shown in Table 
S10, and Fisher test results for SNV loci by group are 
presented in Table S11. 
 
To investigate mutations in and expression of the UBB 
and IL18BP genes, we calculated the correlation 
between expression of these two genes at each SNV 
locus; the top ten loci are listed in Tables 3 and 4, and 
all results are shown in Tables S12 and S13. It was 
inferred from these results that the mutation loci 
significantly related to expression levels might have 
specific effects on UBB and IL18BP expression. 

DISCUSSION 
 
Several recent studies have shown that genomics, 
epigenomics, and transcriptomics play vital roles in 
tumor development and progression and can help 
predict patient prognosis [20]. Human tumor databases 
provide access to clinical and biological data from many 
large-scale studies using high-throughput sequencing 
technology and genomic chip technology. These 
databases thus serve as valuable resources for multi-
omics analyses [21] which in turn enables identification 
of distinct molecular subtypes. Multi-omics 
investigations can therefore help identify new 
mechanisms underlying and clinically relevant 
definitions for tumor heterogeneity, candidate treatment 
targets, and tumor biomarkers [22].  
 
In this study, a CNVcor gene set and a METcor gene set 
were identified using expression spectrum data from 
351 ovarian carcinoma patients in the TCGA database. 

 
 
Figure 8. UBB and IL18BP gene survival curves in the KMplot dataset. (A) OS, PFS, and PPS curves for the UBB gene in a dataset 
from the KMplot database. Survival time is plotted on the x-axis; OS, PFS, and PPS are plotted on the y-axis. (B) OS, PFS, and PPS curves 
for the IL18BP gene in the KMplot dataset. Survival times are plotted on the x-axes; OS, PFS, and PPS are plotted on the y-axes. 
Differences were identified using the log rank P test. 
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These 351 samples were subdivided into three subtypes 
(iC1, iC2, and iC3). Survival analysis showed that OS 
was much lower in the iC1 subtype than in the other 
two subtypes (iC2 and iC3). In addition, correlation 
analysis indicated that individuals presenting with DNA 
CNV might subsequently develop DNA MET 
variations. Such findings highlight the clinical need for 
multi-omics analysis of CNV data and MET data for 
early diagnosis and accurate prognosis predictions in 
ovarian carcinoma. We further characterized immune 
cell populations the three ovarian carcinoma subtypes. 
B cell scores were lower, while macrophage cell scores 
were higher, in iC1 subtype samples with the poorest 
prognoses compared to the other subtypes.  
 
Differences in CNV, MET, and gene expression levels 
between the iC1 and iC3 subtypes were also examined. 
Combining gene expression with differences in CNV 
Gain/Loss and MetHyper/MetHypo allowed the 
identification of seven candidate genes and resulted in 
the largest difference in prognosis. The expression of 
two candidate genes, UBB and IL-18BP, was associated 
with OS; this finding was also validated using the GEO 
dataset. The results suggest that lower UBB and IL-
18BP expression may be associated with higher MET 
and lower CNV levels; evaluating the expression of 
these genes might therefore aid in early tumor diagnosis 
and prognosis.  
 

Finally, correlation analysis indicated that SNV gene 
mutation loci are significantly associated with UBB and 
IL18BP gene expression. In addition, mutation 
spectrum comparisons showed that overall mutation 
levels were higher in iC1 subtype samples than in iC2 
and iC3 subtype samples, which might contribute to the 
poorer prognoses associated with the iC1 subtype.  
 
The ubiquitin-encoding gene UBB is involved in 
several cancers, and suppression of UBB transcription 
plays a role specifically in ovarian carcinoma-specific 
changes [23]. Alexia et al. found that UBB expression 
was inhibited in approximately 30% of ovarian 
carcinoma patients, suggesting that UBB might be a 
promising treatment target [24]. In addition, recent 
studies indicate that the ubiquitin-proteasome system 
(UPS), which regulates many intracellular signaling 
pathways by controlling the expression, activity, and 
localization of various endogenous proteins, might be a 
promising target for cancer treatment in general [25]. 
Currently, a small number of UPS-targeting drugs (e.g., 
bortezomib) are available. These drugs, which are 
selective proteasome inhibitors, are very effective in 
treating refractory melanoma and mantle cell lymphoma 
[26]. These findings together with our results indicate 
that UBB might both serve as a new therapeutic target 
and assist in the diagnosis of and prognosis predictions 
in ovarian carcinoma.  
 

 
 
Figure 9. Genes with differential mutations in the iC1 and iC3 molecular subtypes. Different colors represent different 
numbers of mutations in the corresponding genes. iCluster indicates multi-omics molecular subtype, METcor_C indicates METcor 
gene molecular subtype, and CNVcor_C indicates CNVcor gene molecular subtype. 
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The IL-18 is thought to bind to the protein products of 
IL18R1 and IL18RAP genes and has a high affinity 
with IL-18 binding protein (IL-18BP) [27]. Both in 
vitro and immunohistochemical experiments have 
shown that IL18BP can suppress the activity of 
endogenous or exogenous IL18 and interrupt its 
biological functions [28]. In addition, interactions 
between IL18, which is an immunity-enhancing 
cytokine, and IL18BP at the cell surface result in anti-
tumor effects, including stimulation of T cell 
proliferation and increases in natural killer cell activity 
[29]. 
 
In our study, ovarian carcinoma patients with low 
IL18BP expression had poorer prognoses. In the tumor 
lesion microenvironment, increased expression of 
immunosuppressive molecules indicates a strong 
immune attack, which is beneficial for patients. 
Conversely, low levels of immunosuppressive 
molecules often suggest that the immune system is 
failing to recognize tumor lesions or is otherwise 
considerably damaged, ultimately resulting in a poor 
prognosis.  
 
In conclusion, in this study we investigated possible 
pathogenic mechanisms of ovarian carcinoma via multi-
omics data analysis of genomics, epigenomics, and 
transcriptomics. We found that DNA CNV and MET 
variation play important roles in ovarian carcinoma. In 
addition, we identified three potentially clinically 
relevant molecular subtypes of ovarian carcinoma and 
screened two key biomarkers. These novel mechanisms 
and clinical classifications might assist in the 
development of accurate diagnostic tests and treatments 
for ovarian carcinoma patients.  
 
MATERIALS AND METHODS 
 
Download of TCGA data 
 
The most recent clinical follow-up data were obtained 
from the TCGA Genetic Disease Control (GDC) API on 
January 24, 2019; CNV, MET, and RNA-seq (including 
read count) data were also obtained for subsequent 
analysis of differential gene expression in different 
patient subsets. In addition, SNV data (mutect version) 
were downloaded from TCGA. Data from 351 patients 
in three datasets were included in the analysis; sample 
information for all three datasets is shown in Table S1. 
 
Profiling of DNA copy numbers, DNA methylation, 
mRNA expression, and SNV data 
 
The CNV data were pre-processed as follows. Two 
regions with 50% overlap were considered identical. 
Regions covering <5 probes were deleted. The CNV 

region was mapped to corresponding genes using the 
GRCh38 release 22 (https://www.gencodegenes.org/ 
human/release_22.html). Multiple CNV regions in a 
gene were merged into a single region, and CNV values 
were averaged to provide a merged CNV value. MET 
data were pre-processed by deleing absent loci in >70% 
of samples. Missing data were imputed using the KNN 
(k-Nearest Neighbor) algorithm. Probes in the TSS 
region from 2kb upstream to 200bp downstream were 
preserved using GRCh38 release 22 and mapped to the 
corresponding genes. RNA-seq data were pre-processed 
by deleting genes with low expression levels (FPKM = 
0 in <0.5% of all samples). SNV data were pre-
processed by deleting mutations in intron regions and 
silent mutations. 
 
Identification of CNVcor and METcor gene sets 
 
The Pearson correlation coefficients for associations 
between CNV and RNA-seq and between MET and 
RNA-seq were calculated separately and converted into 
z-values using the formula ln((1+r)/(1-r)). Genes with p 
< 0.05 in the correlation coefficient test were included in 
the CNVcor and METcor gene sets. CNVcor and 
METcor gene data are shown in Table S2 and S3, 
respectively. 
 
Sample clustering via integration of CNV, MET, and 
gene expression data (EXP) data 
 
The “iCluster” R package was used to conduct multi-
omics clustering analysis by integrating CNV data from 
CNVcor genes, MET data from METcor genes, and 
EXP data from both CNVcor and METcor genes. 
Optimal weights for CNV, MET, and EXP datasets were 
determined based on lambda values. After completing 
20 iterations to optimize lambda values, a total of 101 
lambda sample points valued 0-1 were selected. 
 
Survival analysis 
 
The KMplot website (http://kmplot.com/analysis/) was 
used to validate the data [30]. This database system 
contains integrated data from 8 independent datasets 
consisting of a total of 1,657 TCGA Ovarian Cancer 
(TCGA-OV) samples. Ovarian cancer patients were 
divided into 2 groups (high and low expression) based 
on the expression of the gene of interest. Kaplan-Meier 
plots were used to analyze overall survival in ovarian 
cancer patients. Hazard ratios (HR), 95% confidence 
intervals (CIs), and log rank P-values were evaluated. 
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SUPPLEMENTARY MATERIAL 
 
Please browse the links in Full Text version of this manuscript to see Supplementary Tables. 
 
Supplementary Tables S1 - S13.  
 
 
 
Supplementary Figures  

 
 

Figure S1. Box plot of METcor gene chromosome distribution and correlations. (A) Box plot of METcor gene correlation 
coefficients. The correlation coefficient of METcor genes on each chromosome is shown on the y-axis (B) Box-plot of METcor gene 
chromosome distribution. METcor methylated loci and the transcription start site (TSS) are shown on the y-axis. 
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Figure S2. NMF clustering analysis for CNVcor genes. The NMF clustering method was used to evaluate the clustering effect 
from K=2-10. Cophenetic, dispersion, evar, residuals, rss, silhouette, and sparseness values were evaluated. The optimal clustering 
quantity was selected by combining these values in a consensus matrix. 
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Figure S3. NMF clustering analysis of METcor genes. The NMF clustering method was used to evaluate the clustering effect 
from K=2-10. Cophenetic, dispersion, evar, residuals, rss, silhouette, and sparseness values were evaluated. The optimal clustering 
quantity was selected by combining these values in a consensus matrix. 
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Figure S4. Differences in overall survival for both the CNVcor and METcor genes in the three subsets. KM survival curve 
for CNVcor gene or METcor gene clustering subsets. Survival time is shown on the x-axis, and survival rate determined by log rank P 
test is shown on the y-axis.  
 

 
 

Figure S5. Prognostic differences among different molecular subtypes. The red line represents the iC1, blue line, the iC2, 
green line represents the iC3.Survival time is shown on the x-axis, and survival rate determined by log rank P test is shown on the y-
axis.  
 


