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A B S T R A C T   

Porphyra haitanensis, a red seaweed species, represents a bountiful and sustainable marine resource. P. haitanensis 
polysaccharide (PHP), has garnered considerable attention for its numerous health benefits. However, the 
comprehensive utilization of PHP on an industrial scale has been limited by the lack of comprehensive infor-
mation. In this review, we endeavor to discuss and summarize recent advancements in PHP extraction, purifi-
cation, and characterization. We emphasize the multifaceted mechanisms through which PHP promotes 
gastrointestinal health. Furthermore, we present a summary of compelling evidence supporting PHP’s protective 
role against oxidative stress. This includes its demonstrated potent antioxidant properties, its ability to neutralize 
free radicals, and its capacity to enhance the activity of antioxidant enzymes. The information presented here 
also lays the theoretical groundwork for future research into the structural and functional aspects of PHP, as well 
as its potential applications in functional foods.   

1. Introduction 

Marine algae, commonly known as seaweeds, abound in the world’s 
oceans and exemplify the remarkable sustainability inherent in nature. 
As the world increasingly seeks environmentally conscious and sus-
tainable solutions to meet its growing demands, marine algae provide a 
compelling testament to nature’s capacity to supply resources that can 
be responsibly harnessed to promote the well-being of both humanity 
and the environment (Wells et al., 2017). P. haitanensis, a member of the 
Rhodophyta division, commonly referred to as red algae, predominantly 
thrives in the coastal waters of East Asia (Blouin, Brodie, Grossman, Xu, 
& Brawley, 2011). This seaweed species plays an important role in the 
Chinese economy, with its commercial cultivation and harvest giving 
rise to a robust industry that creates substantial revenue and employ-
ment opportunities in China’s coastal regions (Wang et al., 2020). 

Beyond its culinary uses, P. haitanensis holds economic significance by 
being integrated into various food products, including snacks, condi-
ments, and health foods (Venkatraman & Mehta, 2019). Furthermore, 
the bioactive compounds derived from this seaweed, specifically 
P. haitanensis polysaccharide (PHP), have opened doors to a wide array 
of applications across various industrial sectors (Qiu et al., 2022). 

PHP, owing to its unique chemical properties, assumes a pivotal role 
in unlocking the nutritional and therapeutic potential harbored by this 
marine resource. The pharmaceutical properties inherent in PHP 
encompass its antioxidant, immune-modulatory, anti-inflammatory, 
anti-cancer, and prebiotic properties (Shi et al., 2015; Wu et al., 2020; 
Xu et al., 2019; Yao, Veeraperumal, Qiu, Chen, & Cheong, 2020). 
Nevertheless, the comprehensive utilization of PHP in industrial appli-
cations has been limited by the lack of comprehensive information. 
Hence, this review embarks on a quest to summarize and discuss PHP, 
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initiating with an exploration of the various techniques employed for the 
extraction of these polysaccharides. These methodologies span from 
conventional water-based extraction processes to state-of-the-art ap-
proaches like ultrasonic and microwave-assisted extraction techniques, 
elevating extraction efficiency (Gharibzahedi, Marti-Quijal, Barba, & 
Altintas, 2022; Mirzadeh, Arianejad, & Khedmat, 2020). This also 
highlights the growing importance of eco-conscious practices in sus-
tainable extraction methods. Transitioning our focus from extraction to 
purification, we venture into the methodologies implemented to char-
acterize PHP, subsequently revealing their intricate chemical composi-
tions. The amalgamation of advanced spectroscopic techniques, 
molecular weight determination, and monosaccharide composition 
analysis collectively furnishes a comprehensive and intricate under-
standing of PHP’s chemical structure (Huang et al., 2022). 

PHP displays a diverse array of biological activities and attributes 
collectively underscore its diverse and potent pharmacological poten-
tial. It’s worth noting that despite the growing interest in the beneficial 
effects of PHP on gastrointestinal health and the management of 
oxidative stress, there is a noticeable shortage of recent systematic re-
views that comprehensively delve into the underlying mechanisms 
(Cheong, Yu, Chen, & Zhong, 2022; Vaes, Idris, Boesmans, Alves, & 
Melotte, 2022). Hence, in this current review, we embark on a quest to 
unearth the evidence related to the favorable impacts of PHP on 
gastrointestinal health and oxidative stress. This quest involves shedding 
light on PHP’s prebiotic capability to withstand upper gastrointestinal 
digestion, its role in modulating gut microbiota, its ability to generate 
functional metabolites such as short-chain fatty acids (SCFAs), its ca-
pacity to enhance the colonic mucus barrier, its role in reinforcing tight 
junctions to strengthen the intestinal barrier, and its anti-inflammatory 
effects (Chen, Tong, Zeng, Zheng, & Hu, 2021; Yu et al., 2023). 
Furthermore, in the context of preventing oxidative stress, PHP emerges 
as a potent antioxidant. It adeptly neutralizes free radicals, enhance the 
activity of crucial antioxidant enzymes, and mitigates lipid peroxida-
tion, thereby enhancing the body’s intrinsic defenses against oxidative 
damage (Khan, Qiu, Xu, Liu, & Cheong, 2020; Zeng et al., 2023). 

As we undertake this comprehensive review, we delve into the 
intriguing realm of PHP, examining the extraction, purification, and 
characterization processes. We emphasize their impressive biological 
activities, particularly in promoting intestinal well-being and providing 
protection against oxidative stress. These insights may serve as a catalyst 
for breakthroughs in functional foods, healthcare, and the pharmaceu-
tical industry, contributing to a holistic understanding of their potential 
health benefits. 

2. Preparation and extraction of PHP 

2.1. Pre-treatment of macroalgae 

The importance of pretreatment before extracting marine seaweed 
polysaccharides cannot be overstated, as it has a profound impact on the 
quality, yield, and efficiency of the extraction process. Pretreatment 
selectively removes undesirable components like pigments and low 
molecular weight impurities, thus enhancing the purity of the poly-
saccharide extract. Additionally, it increases the bioavailability of the 
polysaccharides, reduces processing time, and promotes sustainable 
resource utilization. Fat-soluble pigments, such as chlorophyll and ca-
rotenoids, have the potential to introduce unwanted colors and off- 
flavors into the extracted polysaccharides (Generalić Mekinić, Šimat, 
Rathod, Hamed, & Čagalj, 2023), thereby affecting their suitability for 
various industrial applications. Furthermore, remaining pigments may 
influence the biological assessment of PHP due their potent antioxidant 
activity (Pan et al., 2021). Typically, fat-soluble pigments can be elim-
inated through refluxing with an organic solvent, such as methanol/ 
dichloromethane/water (4:2:1; v/v/v) (Xu et al., 2019), while ethanol- 
soluble small molecule impurities can be removed by refluxing with 
80% ethanol for 2 h at 80 ◦C (Cao et al., 2016). These pretreatment 

procedures not only improve the purity of the polysaccharides but also 
make significant contributions to their overall functionality and 
bioactivity. 

2.2. Conventional extraction method 

Conventional water-based thermal extraction methods have tradi-
tionally been employed to isolate polysaccharides from various natural 
sources. Typically, this approach involves heating the entire apparatus 
or thermal system to transfer energy to the water, thereby raising its 
temperature (Chemat et al., 2020). In this process, red algae are 
immersed in hot water. The elevated temperature softens the cell walls, 
enhancing the permeability of the cell membranes and promoting the 
dissolution of PHP into the surrounding water (Padayachee, Day, 
Howell, & Gidley, 2017). Consequently, PHP becomes solubilized and 
leaches out from the algae material. Conventional extraction methods 
retain a prominent position due to their inherent advantages, including 
relative simplicity and cost-effectiveness, as demonstrated in Table 1. 
Consequently, they continue to be the most widely employed approach 
for PHP extraction. The standard procedure for obtaining a PHP solution 
from P. haitanensis typically involves using hot water (90 ◦C) for 2–4 h 
(Chen et al., 2023; Qiu et al., 2020), with the most extended extraction 
duration and highest temperature reaching 100 ◦C for 5 h (Cao et al., 
2016). On occasion, it may be necessary to perform multiple cycles to 
fully extract all the polysaccharides from the seaweeds. For instance, the 
residue of P. haitanensis is subjected to three consecutive extractions 
with 20 volumes of distilled water at 95 ◦C, each lasting 2 h (Fu et al., 
2019). (See Table 2.) 

However, a significant limitation arises from the considerable energy 
consumption associated with heating processes (Ameer, Shahbaz, & 
Kwon, 2017), especially when applied to red seaweed, which is char-
acterized by robust cell walls. This aspect can compromise the envi-
ronmental sustainability and economic viability of these techniques. 
Thus, given the growing demand for polysaccharides across various 
industries, it becomes imperative to explore and adopt extraction tech-
nologies that prioritize environmental friendliness and operational ef-
ficiency, effectively overcoming these conventional limitations. 

2.3. Microwave-assisted extraction 

Microwave-assisted Extraction (MAE) marks a groundbreaking 
advancement in polysaccharide extraction, presenting an exceptionally 
efficient and expeditious approach to extract these valuable compounds 
from natural sources. MAE operates through the application of micro-
wave radiation during the extraction process (Soni, Smith, Thompson, & 
Brightwell, 2020). When algae material submerged in water is exposed 
to microwave energy, this radiation prompts the rapid oscillation of 
water molecules within the sample due to their dipolar properties 
(Flórez, Conde, & Domínguez, 2015). This molecular movement gen-
erates heat, leading to localized temperature increases and the build-up 
of internal pressure within the algae (Qiu et al., 2022). As a result, the 
cell walls of the algae are disrupted, facilitating the release of PHP 
molecules into the surrounding solvent (Fig. 1A). 

MAE method significantly shortens extraction times and enhances 
the efficiency of PHP extraction. As depicted in Table 1, the MAE method 
exhibits the shortest extraction duration. MAE resulted in a PHP yield of 
approximately 3.6% under optimized conditions determined through 
single-factor experiments: a microwave power of 300 W, an extraction 
time of 8 min, and a water-to-powder ratio of 50:1 (Yu & Zhang, 2017). 
Additionally, Chen and Xue further refined the MAE process utilizing a 
response surface methodology, achieving a PHP yield of 5.01% with a 
water-to-raw material ratio of 28.98 (mL/g), a microwave power of 
77.84 W, and an extraction time of 14.14 min. Their findings revealed 
that MAE outperforms hot water extraction, notably in terms of 
extraction time, which requires 300 min for hot water extraction, 
resulting in an approximate 191% increase in yield when employing the 
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Table 1 
The preparation, purification and structural information of P. haitanensis polysaccharide.  

Fraction Extraction method Purification 
process 

Yield of 
polysaccharides 

Monosaccharide composition Molecular 
weight 

Backbone or linkages Ref. 

PHP0.5–1-UF, 
PHP1.0–1- 
UF 

Thermal extraction, 80 ◦C hot water at ratio of 20:1 
(w/v) for 2 h 

DEAE- 
Sepharose FF 
Sephacryl S- 
400 HR 

37.1%, 48.6% – 6.68 × 106 Da 
1.14 × 106 Da 

– (Chen, Xu, 
et al., 2021) 

PHPs Thermal extraction, 80 ◦C hot water 
material to water ratio of 0.04， 
for 3 h 

– 20.48% galactose, glucose, and fucose 
(76.2:2.1:1) 

6.3 × 105 Da – (Dong et al., 
2020) 

PHPs Thermal extraction, hot water DEAE- 
cellulose 52 

– 3,6-anhydrogalactose – – (Liu et al., 
2017) 

PHP1 
PHP2 
PHP3 

Thermal extraction, 90 ◦C hot water for 4 h DEAE- 
cellulose 52 

– galactose, glucose, xylose, mannose, 
fructose, and glucuronic acid 
(98.10:0.54:0.19:0.36:0.15:0.66 
94.27:3.95:0.28:0.46:0.26:0.78 
96.91:1.66:0.19:0.54:0.17:0.53) 

5.67 × 105 Da 
4.14 × 105 Da 
3.23 × 105 Da 

– (Wang, Ye, 
Wang, & Fu, 
2022) 

PHPs Thermal extraction, 80 ◦C hot water at ratio of 20:1 
(w/v) for 2 h 

– – – – – (Wang, 
Zhong, et al., 
2023) 

PHP Thermal extraction, 90 ◦C hot water at ratio of 30:1 
(w/v) for 2 h 

– 4.10% galactose (94.85%), glucose (3.18%), 
mannose (1.97%) 

from 2.623 ×
105 to 2.308 ×
104 Da 

1 → 3 and 1 → 4 linked Galp (Xu et al., 
2019) 

LP-G2 Thermal extraction, 110 ◦C hot water 
for 2 h 

DEAE 
Sephadex A- 
50 
Sephadex G- 
100 

– galactose, galacturonic acid, glucose, 
arabinose 
(14.10:0.33:1.52:0.04) 

8381 Da →4)-β-D-galactose→4)-α-L-galactose- 
6-sulfate segments 

(Zhang et al., 
2020) 

PHPD-IV-4 Thermal extraction, at 80 ◦C hot water for 1.5 h at a 
ratio of 1:20 (w/v) 

DEAE- 
cellulose 
Sephadex-G- 
50 

0.24% galactose – →3)-β-D-galactose (1 → 4) 3, 6- 
anhydro-α-L-galactose (1→, and →3) 
β-D-galactose (1 → 4) 
α-L-galactose-6-S (1→ 

(Gong et al., 
2020) 

PHP Thermal extraction, at 90 ◦C hot water for 2 h at a 
ratio of 1:30 (w/v) 

– – galactose, 3,6-anhydrogalactose 
(1.2:1.0) 

2.5 × 105 Da. →4–3,6-anhydro-α-L- 
galactopyranose-(1 → 3)-β-D- 
galactopyranose 

(Khan et al., 
2020) 

PHP Thermal extraction, hot water for 2 h DEAE- 
cellulose-52 

– galactose, 3,6-anhydrogalactose 
(1.2:1.0) 

2.01 × 105 Da (1 → 4)-linked 3,6-anhydro-α-L- 
galactopyranose units or (1 → 4)- 
linked α-L-galactose 6 sulphate units 

(Qiu et al., 
2020) 

PH 
PY 

Thermal extraction, extracted with 20 volumes of 
distilled water at 95 ◦C for 2 h 

dialyze – – – – (Fu et al., 
2019) 

PHPS Thermal extraction, dried material (25 g) was crushed 
and boiled in distilled water (1 L) for 4 h 

– – galactose (60.09%) – – (Shi et al., 
2015) 

APHP Thermal extraction, with 50 volumes of distilled 
water for 5 h at 100 ◦C 

dialyze – – – – (Cao et al., 
2016) 

PHP2 Thermal extraction, at a ratio of 
1:20 (m/V), at 80 ◦C for 2 h. 

DEAE- 
Sepharose FF 
Sephacryl S- 
400 HR 

– galactose (69.27%), mannose (21.32%), 
glucose (9.41%) 

– a hypothetical backbone structure of 
→4) Gα (1 → 6) G4Sβ (1 → 4) Glc (1 
→ and a side chain of Man (1 → 6) Glc 

(Chen et al., 
2023) 

CPP 
PP1 
PP2 
PP3(PP3–1, 
PP3–2, 
PP3–3, 
PP3–4, 
PP3–4a) 

Thermal extraction, hot water (80 ◦C) in a ratio of 
1:20 (w/v) for 1.5 h 

DEAE- 
cellulose 
Sephadex G- 
100 

3.8% (CPP) 
0.41% (PP1) 
0.76% (PP2) 
0.65% (PP3) 
0.68% (PP4) 
0.35% (PP5) 

PP1 (galactose and 3,6-anhydrogalactose) 
PP2-PP4 (galactose, 3,6-anhydrogalactose, 
and 6-O-methyl-galactose) 
PP5 (galactose, 3,6-anhydrogalactose, 
mannose, and glucose) 

PP3–1 
(1.02 × 105 Da) 
PP3–2 
(7.2 × 104 Da) 
PP3–3 
(3.9 × 104 Da) 
PP3–4 
(2.0 × 104 Da) 

→3) β-D-galactose (1 → 4) 3,6- 
anhydro-α-L-galactose (1→, and →3) 
β-D-galactose (1 → 4) α-L-galactose-6- 
S (1→ 

(Gong et al., 
2018) 

(continued on next page) 
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Table 1 (continued ) 

Fraction Extraction method Purification 
process 

Yield of 
polysaccharides 

Monosaccharide composition Molecular 
weight 

Backbone or linkages Ref. 

PP4 
PP5] 

PH Thermal extraction, with 20 volumes of distilled 
water at 95 ◦C for 2 h 

DEAE- 
cellulose 52 
Sephadex G- 
100 

– – – – (Wang, Lin, 
et al., 2023) 

PHP1 Thermal extraction, hot water (80 ◦C) in a ratio of 
1:20 (w/v) for 2 h 

– – galactose – →3) G4Sβ (1 → 3) G (1 → 6) G4Sα (1 
→ 4) LA (1 → 6) G4Sα (1→ 

(Chen, Tong, 
et al., 2021) 

PHPs Thermal and ultrasonicCytotoxicity of-assisted 
extraction, sonicate at 450 W for 30 min, at 100 ◦C hot 
water for 4 h at the ratio of 1:40 (w/v) 

dialyze – galactose (more than 
75%) 

– β-type glycosidic bond (Ji et al., 
2022) 

PHPs Thermal and ultrasonic-assisted/microwave-assisted 
extraction, at the ratio of 1:42 (w/v), in an ultrasonic/ 
microwave instrument (CW-2000) and kept at 80 ◦C 
for 30 min 

DEAE-52 20.53%  2.01 × 105 Da (1 → 4)-linked 3,6-anhydro- 
α-lgalactopyranose units or (1 → 4)- 
linked α-l-galactose 6 sulfate units 

(Yao et al., 
2020) 

PHP Thermal, ultrasonic-assisted and microwave-assisted 
extraction, microwave power of 500 W, ultrasonic 
power of 50 W, at 79.94 ◦C hot water for 29.64 min at 
a ratio of 1:41.79 (g/mL) 

– 20.98% – – – (Xu et al., 
2020) 

PHP 
UHP-PHP 
US-PHP 
M-PHP 

Microwave-assisted extraction, microwave treatment 
at 440 W for 2 min 

dialyze – galactose, glucose, xylose, mannose, 
galacturonic acid 
(83.26:5.94:0.56:2.97:7.27 
79.41:7.07:0.74:2.31:10.53 
85.57:2.79:0.28:3.24:8.12 
73.09:10.03:1.08:6.11:9.70) 

2.176 × 106 Da 
1.080 × 106 Da 
1.0 × 106 Da 
9.46 × 105 Da 

-β-D-galactose and 3,6-anhydro-α-L- 
galactose units 

(Zheng et al., 
2023) 

PHP Microwave-assisted extraction, ratio of water to raw 
material 28.98 (mL/g), microwave power 77.84 W, 
extraction time 14.14 min 

– 4.90% rhamnose, arabinose, xylose, mannose, 
glucose, galactose 
(10.25:9.38:1:12.45:9.9:11.55) 

– – (Chen & Xue, 
2019) 

PY1 
PY2 
PY3 

Microwave-assisted extraction, the microwave power 
300 W, at the ratio of 1:50 (w/v) for 8 min 

DEAE-52 
Sephadex G- 
100 

3.6% galactose and 3,6-anhydrogalactose 
(PY1 34% and 4.6% 
PY2 31.3% and 7.5% 
PY3 26.9% and 3.4%) 

– PY1 had α-glycosidic bonds, PY2 and 
PY3 had the β-amide pyranose. 

(Yu & Zhang, 
2017) 

PHP – – – galactose, 3,6-anhydrogalactose 
(1.2:1.0) 

2.01 × 105 Da (1 → 4)-linked 3,6-anhydro-α-L- 
galactopyranose residues or (1 → 4)- 
linked α-L-galactose 6 sulfate residues 

(Malairaj 
et al., 2023)  
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MAE method (Chen & Xue, 2019). 
Differing from conventional heating methods, MAE possesses the 

capability to target the heating of the solvent rather than the entire 
extraction apparatus. This characteristic results in reduced energy con-
sumption and cost-effectiveness (Zia et al., 2022). Furthermore, MAE 

offers precise control over temperature and irradiation duration, a 
critical factor in preserving the structural integrity and bioactivity of the 
extracted polysaccharides (Shakoor, Hussain, Younas, & Bilal, 2023). 
MAE’s adaptability extends across a diverse range of source materials, 
making it a versatile and environmentally-conscious choice for both 

Table 2 
Evidence of prebiotic activities and gastrointestinal health performance of P. haitanensis polysaccharides.  

Model Metabolite Changes in gut microbiota Other performance References 

in vitro simulated fermentation acetic acid ↑ 
propionic acid 
↑ 
butyric acid ↑ 
SCFAs ↑ 

Ruminococcaceae_UCG-005 ↑ 
Escherichia-Shigella ↓ 
Lactobacillus ↓ 
Helicobacter ↓ 
Prevotella_9 ↓ 
Desulfovibrio ↑ 
Ruminococcus_2 ↑ 

bile acid ↓ (Chen et al., 2023) 

in vitro simulated fermentation SCFAs ↑ 
acetic acid ↑ 
butyric acid ↑ 

Bacteroidetes ↓ 
Proteobacteria ↑ 
Cyanobacteria ↓ 
Bacteroidaceae ↓ 

Mucin-2 ↑ 
ZO-1 ↑ 
occludin. ↑ 

(Malairaj et al., 2023) 

in vitro simulated fermentation acetate acid ↑ 
propionate ↑ 
SCFAs ↑ 

Bifidobacteria ↑ 
Bacteroides ↑ 
Lactobacillus ↑ 
Lactobacilli ↑ 

– (Seong et al., 2019) 

in vitro simulated fermentation propionic acid 
↑ 
SCFAs ↑ 

propionic acid-producing 
bacteria ↑ 
Escherichia-Shigella ↓ 
Fusicatenibacter ↑ 
Ruminiclostridium_5 ↑ 
Bifidobacterium ↑ 
Bacteroides ↑ 
Ruminococcaceae ↑ 

cholesterol ↓ (Chen, Tong, et al., 2021) 

in vitro simulated fermentation SCFAs ↑ 
acetic acid ↑ 
propionic acid 
↑ 
butyric acid ↑ 

pathogenic bacteria ↓ 
Firmicutes ↑ 
Bacterioidetes ↑ 
Proteobacteria ↑ 

– (Xu et al., 2019) 

in vitro simulated fermentation – Proteobacteria ↓ 
Bacteroides ↑ 
Escherichia_Shigella ↓ 

– (Xu et al., 2020) 

in vivo mouse model – – TNF-α ↑ 
IL-6 ↑ 

(Liu et al., 2019) 

in vivo mouse model – Bacteroidetes ↑ 
Firmicutes ↓ 
Bacteroidales S24–7 ↑ 
Ruminococcaceae UCG-014 ↑ 
Lactobacillus ↑ 

– (Zhang, Wang, Han, Liu, & Liu, 
2018) 

in vivo mouse model of diabetes 
mellitus 

hypotaurine ↑ 
pyruvate ↑ 

Helicobacter ↓ 
Desulfovibrio ↓ 
Mucispirillum ↓ 
Enterorhabdus↓ 
Blautia ↑ 
Muribaculaceae ↑ 
Lactobacillus ↑ 

the enrichment factors of the taurine and 
hypotaurine pathways ↑ 

(Ou et al., 2023) 

in vivo high-fat mouse model – Bacteroidetes ↑ 
Proteobacteria ↑ 
Verrucomicrobia ↑ 
Firmicutes ↓ 
Roseburia ↑ 
Eubacterium ↑ 
Helicobacter ↓ 
Bacteroides ↑ 
Alistipes ↑ 

lipid accumulation ↓ 
FFA ↓ 
PGC 1α↑ 
UCP 1 ↑ 

(Wang, Dong, et al., 2022) 

in vivo high-fat mouse model butyric acid ↑ Muribaculaceae ↑ 
Faecalibaculum ↑ 
Bifidobacterium ↓ 

Fabp5 ↓ 
Lower blood lipids 
Fasn ↓ 
Me1 ↓ 
Acaca ↓ 
Elovl6 ↓ 
Cd36 ↑ 

(Zeng et al., 2023) 

in vivo mouse model of food 
allergy 

– Lachnospiraceae ↑ 
Bacteroidia ↓ 
Clostridia ↑ 
Actinobacteria ↑ 
Coriobacteriia ↑ 
Bifidobacterium ↑ 

IL-2 ↓ 
IL-4 ↓ 
IFN-γ ↓ 
IL-17 A ↓ 

(Wei et al., 2023)  
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industries and researchers. This aligns perfectly with the growing de-
mand for sustainable and efficient techniques for extracting PHP. 

2.4. Ultrasound-assisted extraction 

Ultrasound-assisted extraction (UAE) has emerged as a robust and 
eco-friendly method for extracting polysaccharides from a diverse range 
of natural sources. UAE’s underlying mechanism harnesses the energy of 
high-frequency sound waves to facilitate the extraction process (Yan, 
Mei, Li, & Xie, 2022). When ultrasonic waves are applied to seaweed 
suspended in a solvent, they generate intense pressure fluctuations 
within the solvent, a phenomenon known as cavitation (Holkar, Jadhav, 
Pinjari, & Pandit, 2019). During cavitation, the rapid formation and 
collapse of minute bubbles within the solvent produce localized heat, 
shockwaves, and microjets (Udepurkar, Clasen, & Kuhn, 2023). These 
dynamic forces disrupt the cell walls of the seaweed, leading to their 
rupture. As a result, PHP is liberated from their cellular matrix and 

become dispersed in the solvent (Picó, 2013) (Fig. 1B). This method 
offers several salient advantages, including its energy efficiency and 
minimal environmental footprint. UAE diminishes the need for elevated 
temperatures and protracted extraction durations (More, Jambrak, & 
Arya, 2022). For instance, comparing UAE to hot water extraction, PHP 
extracted via UAE under ultrasonic treatment at 100 W and 20 ◦C for 8 
min exhibited higher total sugar content (67.28%), sulfated content 
(25.22%), and uronic acid content (12.38%) (Zheng et al., 2023). 

On the contrary, ultrasonic/microwave-assisted extraction (UMAE) 
represents an innovative hybrid extraction technique that leverages the 
advantages of both ultrasound and microwave technologies to extract 
polysaccharides from seaweed (Xu et al., 2018). In UMAE, the sample is 
subjected to a dual exposure of ultrasonic waves and microwave irra-
diation, either concurrently or consecutively. This synergistic use of 
energy sources leads to an exceptionally effective extraction process 
(Sun et al., 2019). In our previous study, we employed a response surface 
methodology to optimize the parameters for extracting polysaccharides 

Fig. 1. The extraction mechanisms of the different extraction methods for PHP: (A) Microwave-assisted extraction, (B) Ultrasound-assisted extraction, (C) Enzyme- 
assisted extraction. 
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from P. haitanensis using the UMAE technique. The most favorable 
extraction conditions involved a microwave power of 500 W, ultrasonic 
power of 50 W, an extraction duration of 30 min, an extraction tem-
perature of 80 ◦C, and a liquid–solid ratio of 42 mL/g. These conditions 
yielded a PHP extraction rate of 20.53%. Notably, this yield surpassed 
that typically obtained through the conventional thermal method, 
which usually resulted in a PHP extraction rate lower by approximately 
5% (Xu, Chen, Liu, & Cheong, 2020). UAE and UMAE have gained 
recognition for their remarkable efficiency and sustainability, posi-
tioning them as promising advancements in the field of polysaccharide 
extraction. These techniques address the growing demand for environ-
mentally friendly and high-yield extraction methods. 

2.5. Enzyme-assisted extraction 

Enzyme-assisted extraction (EAE) presents a revolutionary approach 
to extracting polysaccharides, particularly from plant-based materials. 
This technique relies on specific enzymes that have an affinity for the 
structural components found in cell walls, including cellulose and 
hemicellulose (Nadar, Rao, & Rathod, 2018). These enzymes work by 
breaking down the intricate polysaccharide matrices, essentially 
cleaving the glycosidic bonds that hold them together (Fig. 1C). This 
enzymatic process effectively weakens the structural integrity of the 
seaweed material, making it more permeable and amenable to extrac-
tion (Charoensiddhi et al., 2016). One of the primary merits of EAE lies 
in its selectivity (Rhein-Knudsen, Ale, & Meyer, 2015). Researchers can 
precisely target specific polysaccharides by carefully choosing the 
appropriate enzymes, thus enabling a customized extraction process. 
Commonly used enzymes in EAE for the selective extraction of particular 
polysaccharides include cellulase, hemicellulase, and pectinase. For 
instance, Li et al. utilized pectinase at a concentration of 50 U/mL, 
conducted the extraction at a pH of 5.0 and a temperature of 47.5 ◦C, for 
a duration of 2 h, resulting in the production of PHP with a molecular 
weight of 217.4 kDa (Li et al., 2020). Another noteworthy advantage of 
EAE is its operation under milder conditions in comparison to certain 
other extraction methods, such as those involving high temperatures 
(Puri, Sharma, & Barrow, 2012). This gentle approach contributes 
significantly to preserving the bioactivity and structural integrity of the 
extracted polysaccharides. 

The infusion of eco-friendly and cutting-edge technologies into the 
extraction of PHP has undeniably marked the onset of a transformative 
era within this field. These technologies have paved the path toward 
more sustainable and environmentally conscious practices, resulting in 
reduced energy consumption and a diminished overall environmental 
footprint associated with the extraction process. Furthermore, the 
maintenance of polysaccharide bioactivity and structural integrity, 
alongside heightened extraction efficiency, has unlocked fresh possi-
bilities for their utilization across diverse industries, encompassing food, 
pharmaceuticals, and cosmetics. The horizon of polysaccharide extrac-
tion promises substantial potential, with ongoing innovations and re-
finements by researchers and industries alike. One notable emerging 
trend involves the incorporation of artificial intelligence and computa-
tion learning algorithms into the extraction procedures (Rathore, Nikita, 
Thakur, & Mishra, 2023). These technological advancements possess the 
capacity to fine-tune extraction parameters, predict optimal conditions, 
and enhance yields, ultimately streamlining the entire process. Addi-
tionally, the quest for sustainability will steer the development of more 
environmentally benign solvents and greener extraction methodologies. 

3. Purification techniques 

3.1. Ethanol precipitation 

The process of ethanol precipitation is a pivotal step in the isolation 
of PHP from the initial crude polysaccharide extract. When ethanol is 
introduced to the polysaccharide solution, it serves to diminish the 

solubility of the polysaccharides in the solvent, owing to the addition of 
an appropriate precipitant. This precipitant disrupts the hydrogen 
bonding and electrostatic interactions occurring among the poly-
saccharide molecules, resulting in their aggregation and subsequent 
insolubility, ultimately forming a precipitate. In this approach, the 
extract polysaccharide solution is gradually mixed with chilled 95% 
ethanol, typically at a ratio of 1:2 or 1:3 (polysaccharide solution to 
ethanol) (Zhang et al., 2003). Following a suitable incubation period, 
which often extends for several hours or overnight, it is suggest to up-
hold the mixture at low temperatures (Khan et al., 2020), either by 
employing an ice bath or a refrigerated centrifuge, to facilitate effective 
precipitation. Ethanol precipitation is highly esteemed for its simplicity, 
cost-effectiveness, and its capability to yield relatively pure poly-
saccharide fractions, establishing it as a cornerstone in the methodolo-
gies employed for PHP purification. 

3.2. Protein removal from PHP 

During the ethanol precipitation step, it’s possible for proteins to co- 
precipitate with PHP, potentially causing interference with PHP’s 
intended applications or analysis. Some techniques are employed to 
mitigate this issue, and one commonly used method is the Sevag 
method, also known as the chloroform-butanol method (Wu, Hu, Huang, 
& Jiang, 2013). The Sevag method capitalizes on the varying solubility 
of proteins and polysaccharides in a biphasic solvent system consisting 
of chloroform and n-butanol (in a 4:1 ratio, v/v), separated by the 
addition of water to facilitate polysaccharide extraction (Wang, Zhong, 
Zheng, Zhang, & Zeng, 2023). Proteins, being insoluble in the 
chloroform-butanol phase, precipitate at the interface, while the PHP 
remains in the aqueous phase. In some cases, it may be necessary to 
employ the Sevag reagent multiple times to ensure complete removal of 
proteins until they are entirely eliminated from the solution (Zhang 
et al., 2014). 

The trichloroacetic acid (TCA) method offers another effective 
approach for eliminating proteins from polysaccharides. In this method, 
a TCA solution is introduced to the mixture of polysaccharides and 
proteins, causing the proteins to denature and precipitate as a result of 
the acid’s protein-denaturing properties (Georgiou et al., 2018). 
Following an incubation period, the mixture is typically subjected to 
centrifugation to separate the protein precipitate from the supernatant 
containing both polysaccharides and proteins. However, it is important 
to be aware that the acidic environment generated by TCA may poten-
tially impact the stability of sulfated PHP and could lead to the degra-
dation of polysaccharides through the hydrolysis of glycosidic bonds 
(Wang et al., 2021). Another frequently employed approach for depro-
teinization involves the use of enzymatic methods, which offer a precise 
and selective means of removing proteins while safeguarding the 
integrity of PHP. In this technique, specific proteolytic enzymes like 
proteases, pepsin, and papain are employed to target and break down 
proteins while preserving PHP’s structural integrity (Hong, Fan, Cha-
lamaiah, & Wu, 2019). For instance, a solution containing 600 U/mL of 
alkaline protease was introduced to the mixture and incubated at 50 ◦C 
for 3 h to facilitate deproteinization (Ji et al., 2022). Alternatively, 
papain (at a concentration of 0.1%, w/v) was applied to cleave the 
protein components within the polysaccharide-protein mixture, result-
ing in protein-free PHP (Wu et al., 2020). This enzymatic process allows 
for precise control, permitting adjustments to digestion time and 
enzyme concentration as needed. 

3.3. Chromatographic purification 

Chromatographic purification techniques are indispensable for 
achieving high-purity fractions due to their exceptional ability to elim-
inate impurities while safeguarding the structural integrity of poly-
saccharides. These techniques play a critical role in various applications, 
including biological assays of PHP and their incorporation into 
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pharmaceuticals, biotechnology products, and functional foods, where 
the purity and specificity of PHP are of paramount importance (Xu, 
Huang, & Cheong, 2017). The realm of chromatographic purification 
techniques offers a variety of methods, each with distinct advantages in 
terms of selectivity and purity. Notably, gel filtration chromatography 
and ion-exchange chromatography methods are frequently employed in 
the purification process of PHP (Cheong, Qiu, Du, Liu, & Khan, 2018; 
Wang et al., 2023). 

Gel filtration chromatography proves to be a suitable method for 
fractionating PHP based on their diverse molecular weights. This tech-
nique relies on the utilization of porous gel beads packed within a col-
umn, with various commercially available gel bead options (Gaborieau 
& Castignolles, 2011). The process entails introducing the PHP mixture 
into the column, where, as it traverses the gel matrix, molecules undergo 
separation based on their respective sizes. Larger polysaccharides are 
the first to elute, as they cannot penetrate the small pores within the gel 
beads, while smaller molecules move more slowly through the porous 
network and elute later (Ji et al., 2023). For instance, the commercial 
available Sephadex G-100 gel filtration was employed to purify a PHP 
fraction, resulting in a molecular weight of 523 kDa (Wang, Lin, et al., 
2023). In another investigation conducted by Chen et al., Sephacryl S- 
400 HR gel filtration was utilized to isolate the PHP2 fraction, charac-
terized by a backbone structure of →4)Gα(1 → 6)G4Sβ(1 → 4)Glc(1 → 
(Chen et al., 2023). Gel filtration chromatography offers numerous ad-
vantages, including its simplicity, the preservation of polysaccharide 
integrity through gentle purification conditions, and the capability to 
separate polysaccharides from other macromolecules such as proteins, 
nucleic acids, and low molecular weight compounds. 

Ion exchange chromatography represents a valuable method for 
purifying PHP based on their ionic properties. This technique leverages 
the charged characteristics of PHP and their impurities (Lizeng Cheng, 
Wang, He, & Wei, 2018). Within a column filled with an ion exchange 
resin, PHP selectively bind and separate according to their ionic prop-
erties. Negatively charged polysaccharides adhere to positively charged 
ion exchange resins, while neutral polysaccharides pass through the 
column more rapidly (Zhang et al., 2004). Precise adjustments to the pH, 
ionic strength, and buffer conditions fine-tune the separation process. 
For instance, DEAE-cellulose 52 was employed to purify the PHP frac-
tion. Initial elution with distilled water effectively removed neutral 
polysaccharides and proteins that did not bind to the gels. Subsequently, 
sulfated PHP was eluted using a 2.0 mol/L NaCl solution, resulting in 
purified PHP with sulfated and uronic acid contents of 14.26% and 
14.02%, respectively (Shi et al., 2015). In another study by Chen et al., 
an ion exchange chromatograph DEAE-Sepharose FF column was 
employed to fractionate PHP. Elution was performed stepwise with 0.5 
mol/L and 1.0 mol/L NaCl solutions, yielding PHP0.5 and PHP1.0 
fractions with contents of 69.3 μg/mg and 50.7 μg/mg, respectively 
(Chen et al., 2021). 

Chromatographic purification techniques assume a pivotal role in 
achieving elevated levels of purity for PHP, rendering them suitable for 
applications in industries like pharmaceuticals, biotechnology, and 
functional foods, where purity and specificity hold utmost importance. 

3.4. Membrane filtration 

Membrane filtration plays a pivotal role in the purification of poly-
saccharides, relying on semipermeable membranes with specific pore 
sizes to segregate molecules based on their molecular weight and size. 
This technique effectively rids the solution of impurities, especially 
those of smaller molecular size, by allowing them to permeate through 
the membrane. Researchers have the flexibility to tailor the filtration 
process by selecting membranes with the appropriate molecular weight 
cut-off. For instance, the polysaccharide extraction solution underwent 
72 h of dialysis through a membrane with a 3500 Da molecular weight 
cut-off. This process effectively eliminated low molecular weight im-
purities, resulting in the isolation of PHP (Yun-Tao Wu et al., 2020). In 

another study conducted by Chen et al., two distinct membranes were 
employed, one with a 3500 Da molecular weight cut-off and another 
with a 10,000 Da molecular weight cut-off. Dialysis for a day with these 
membranes removed low molecular weight impurities, leading to the 
isolation of PHP1 and PHP2 fractions, respectively (Chen, Tong, et al., 
2021). Membrane filtration is highly regarded for its scalability, cost- 
effectiveness, and its ability to maintain the structural integrity of 
polysaccharides. As a result, it proves to be an invaluable tool for 
research at both laboratory-scale and industrial applications across 
various sectors such as food, pharmaceuticals, and biotechnology. 

4. Characterization of PHP 

The process of structural characterization plays a crucial role in 
acquiring a deeper understanding of the composition and properties of 
PHP. It provides valuable insights that expand our comprehension of 
their potential applications and bioactivity. This method encompasses 
the use of diverse analytical techniques to investigate elements such as 
monosaccharide composition, chemical structure, functional groups, 
molecular weight, and chain conformation within these complex 
biomolecules. 

The utilization of a combination of analytical techniques, including 
High Performance Liquid Chromatography (HPLC), Gas Chromatog-
raphy (GC), Fourier Transform Infrared spectroscopy (FT-IR), nuclear 
magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS), 
has led to the elucidation of the distinctive chemical structure of PHP. 
Analysis of the monosaccharide composition, typically conducted 
through HPLC or GC, has revealed that PHP is primarily composed of 
higher levels of galactose and anhydro-galactose, while containing 
lower concentrations of glucose, fucose, and xylose. Dong et al. utilized a 
method involving the conversion of monosaccharides into their corre-
sponding 1-phenyl-3-methyl-5-pyrazolone derivatives, followed by 
detection using HPLC. Their findings revealed molar ratios for PHP, 
galactose, glucose, and fucose, with a ratio of 76.2:2.1:1 (Dong et al., 
2020). In another study, the molar ratio of galactose to fucose was re-
ported to be approximately 92:8 (Quanbin Zhang et al., 2004). PHP 
derived from marine environments exhibits differences in mono-
saccharide composition compared to PHP originating from intestinal 
medicinal plants. The latter may include monosaccharides like glucose, 
fructose, mannose, rhamnose, and xylose. For example, garlic and onion 
polysaccharides predominantly consist of fructans, primarily composed 
of fructose (Wang & Cheong, 2023). Aloe vera polysaccharides, on the 
other hand, are primarily composed of mannose and glucose (Liu et al., 
2019). Furthermore, red seaweed differs from other seaweed types due 
to the presence of anhydrogalactose, a key bioactive monosaccharide. 
Anhydrogalactose has gained recognition for its remarkable biological 
activities, particularly its antioxidant properties and potential for skin- 
whitening applications in the cosmetic industry (Cheong et al., 2018; 
Yun et al., 2013). The anhydro-galactose to galactose molar ratios 
within different species of red seaweed polysaccharides vary. For 
instance, P. haitanensis, Gracilaria chouae, and Gracilaria blodgettii poly-
saccharides exhibit molar ratios of approximately 1.0:1.4–1.6, while 
Gelidium amansii polysaccharides have a molar ratio of 1.0:1.0. Some red 
seaweeds contain relatively low amounts of anhydro-galactose, such as 
Bangia fusco-purpurea polysaccharide (Jiang et al., 2019), and Eucheuma 
galetinae has a molar ratio of 1.0:3.0 (Xie, Zhang, Liu, Chen, & Cheong, 
2020). 

The functional groups found in PHP, particularly the sulfate groups, 
play a pivotal role in mediating the interactions of these polysaccharides 
with biological systems, contributing to their pharmaceutical activity. 
FT-IR analysis is instrumental in identifying these functional groups 
within PHP by measuring the absorption and interaction of infrared 
radiation with the sample. For PHP, FT-IR analysis has successfully 
revealed critical chemical groups, including hydroxyl, carbonyl, and 
sulfate groups. Notably, distinct infrared signals in PHP were observed 
at 3422, 1639, 1419, 1225, 1155, 1073, 930, and 817 cm− 1. Specifically, 
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the signals at 1225 cm− 1 and 819 cm− 1 were attributed to the asym-
metric stretching vibration of the sulfate group (Malairaj et al., 2023; 
Zhang et al., 2009), while the signal at 1637 cm− 1 corresponded to the 
carboxyl group in uronic acid (Chen & Xue, 2019). Furthermore, the 
content of these functional groups can be quantified using a colorimetric 
method. The sulfate content of PHP can be determined through the 
barium sulfate turbidimetric approach, using potassium sulfate as a 
standard, typically ranging from 6.48% to 11.96% (Wu et al., 2020). The 
content of uronic acid can be ascertained using the sulfuric acid- 
carbazole method with glucuronic acid as the standard, and it typi-
cally falls within the range of 9.67% to 12.33% (Zheng et al., 2023). 

The determination of the molecular weight of PHP using high- 
performance size exclusion chromatography is a fundamental aspect 
of polysaccharide characterization. High-performance size exclusion 
chromatography segregates molecules based on their hydrodynamic 
volume and size, enabling the determination of PHP’s molecular weight 
(Xu et al., 2017). S Multiple studies have reported PHP molecular 
weights within the approximate range of 10–100 kDa. For example, 
Wang et al. employed an Ultrahyrogel™100 high-performance size 
exclusion column to determine three polysaccharide fractions, PHP-1, 
PHP-2, and PHP-3, using a series of standard calibration curve 
methods. Their findings showed molecular weights of 567.05 kDa, 
414.09 kDa, and 323.80 kDa, respectively (Ji et al., 2022). Additionally, 
Gong et al. utilized a TSK-GEL G3000PWXL column to determine various 
PHP products (PHPD-I–IV), resulting in molecular weights of 329 kDa, 
203 kDa, 128 kDa, and 10 kDa, respectively. (Gong et al., 2020). High 
molecular weights have also been reported, such as PHP0.5–1-UF and 
PHP1.0–1-UF, with values of 2.06 × 106 Da and 6.68 × 106 Da, 
respectively, determined and separated using the SB-806 M HQ column 
(Chen, Xu, et al., 2021). The precise determination of PHP’s molecular 
weight assumes a crucial role in upholding quality control and consis-
tency, ensuring that PHP-based products maintain their designated 
properties and efficacy. 

Nuclear magnetic resonance (NMR) spectroscopy is a potent tool for 

unraveling the glycosidic linkages and backbone structure of intricate 
polysaccharides, including PHP. This methodology offers insights into 
the anomeric configurations, ring conformations, and branching points 
within the polymer. Moreover, 2D NMR techniques, such as correlation 
spectroscopy (COSY), total correlation spectroscopy (TOCSY), hetero-
nuclear single quantum coherence (HSQC), and heteronuclear multiple 
bond correlation spectroscopy (HMBC), are particularly valuable in 
discerning atomic connectivity and inter-nuclear correlations within 
PHP, thereby providing an intricate overview of its chemical structure 
(Cheng & Neiss, 2012). The chemical structure of PHP, which was 
previously reported, has been summarized in Fig. 2. For example, 
PHP1’s primary linkage types were identified as →3)-β-D-galactose-4- 
sulfate-(1 → 3)-β-D-galactose-(1 → 6)-β-D-galactose-4-sulfate-(1 → 4)-L- 
Arabinose-(1 → 6)-β-D-galactose-4-sulfate-(1→, with elucidation ach-
ieved through a combination of 1H NMR, 13C NMR, TOCSY, COSY, and 
HSQC techniques (Chen, Tong, et al., 2021). Similarly, PHPD-IV-4 dis-
played a similar backbone, comprising repeating units of →3)-β-D- 
galactose-(1 → 4)-3,6-anhydro-α-L-galactose-(1→, and →3)-β-D-galac-
tose-(1 → 4)-α-L-galactose-6-sulfate-(1→, confirmed through 1H NMR, 
13C NMR, HSQC, and TOCSY methods (Gong et al., 2020). Reports have 
described the chemical backbone of PHP normally as featuring alter-
nating (1 → 4)-linked 3,6-anhydro-α-L-galactopyranose units or (1 → 4)- 
linked α-L-galactose 6-sulfate units (Qiu et al., 2020;Qiu, Jiang, Fu, Ci, & 
Mao, 2021). However, Chen et al. introduced a notably distinct PHP type 
characterized as a sulfate glucogalactan, with a backbone structure of 
→4)-β-D-galactose-(1 → 6)-β-D-galactose-4-sulfate-(1 → 4)-β-D-glucose- 
(1 → and a mannose-(1 → 6)-glucose side chain, elucidated through the 
application of 1H NMR, 13C NMR, HSQC, COSY, and TOCSY techniques 
(Chen et al., 2023). 

This in-depth structural characterization lays the foundation for 
understanding the PHP’s properties, bioactivity, and their potential 
applications in diverse industries, ultimately driving further research 
and biotechnological advancements in this field. 

Fig. 2. Representative chemical structure unit of PHP as reported by (A) Chen et al. (B) Chen et al. (C) Gong et al. (D) Chen et al.  
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5. Beneficial effect of PHP on the gastrointestinal tract 

5.1. PHP remains indigestible and maintains its structural integrity during 
the upper gastrointestinal tract’s digestion 

The human gastrointestinal system is a complex and indispensable 

part of the body, consisting of a series of organs and structures respon-
sible for the digestion, absorption, and transport of food and essential 
nutrients. Its primary role is to break down ingested food into vital 
components like carbohydrates, proteins, and fats, which are then 
absorbed into the bloodstream to provide energy and necessary nutri-
ents for bodily functions. Besides its primary nutrient absorption 

Fig. 3. PHP improves the colonic mucus barrier function. (A) PHP after digestion in saliva; (B) Simulated gastric fluid; (C) Simulated small intestinal fluid (Xu et al., 
2020). “Reprinted from International Journal of Biological Macromolecules, 152, Shu-Ying Xu, Xian-Qiang Chen, Yang Liu, Kit-Leong Cheong, Ultrasonic/ 
microwave-assisted extraction, simulated digestion, and fermentation in vitro by human intestinal flora of polysaccharides from Porphyra haitanensis, 748-756. 
Copyright 2023, with permission from Elsevier. “ (D–F) Representative images of fluorescent in situ hybridization. Host nuclei are colored in blue (4′6-dia-
midino-2-phenylindole, DAPI) and FISH positive bacteria are colored in red (EUB338-Cy3 probe). Scale bars are 10 μm; (G-I) Protein levels of ZO-1, occludin, 
claudin-1, and E-cadherin in colonic tissue are determined by Western blotting. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 compared with the CON 
group. #p < 0.05, ##p < 0.01, ###p < 0.001, and ####p < 0.0001 compared with the DSS group. “Adapted with permission from (Yu et al., 2023). Copyright 2023 
American Chemical Society.” (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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function, the gastrointestinal system is intricately interconnected with 
the immune system and hosts a diverse community of gut microbiota 
(Obata & Pachnis, 2016; Patra, Amasheh, & Aschenbach, 2019). This 
complex interplay between the digestive system and overall health 
emphasizes the critical significance of maintaining the optimal func-
tioning of the gastrointestinal tract (Monteiro & Batterham, 2017). 
Consequently, comprehending how dietary components, including PHP, 
can positively influence this essential system has profound implications 
for our general well-being. 

PHP possesses a distinctive macromolecular characteristic in that it 
withstands digestion in the upper gastrointestinal tract (Xu et al., 2020). 
While simpler carbohydrates like monosaccharides and disaccharides 
are broken down and absorbed in the stomach and small intestine, PHP 
remains structurally intact. It exhibits remarkable resistance to digestion 
by key enzymes such as amylase and trypsin, and remains unaffected by 
the acidic environment of the stomach (Lovegrove et al., 2017) (Fig. 3A- 
C). Amylase, produced in the salivary glands and pancreas, primarily 
focuses on breaking down starches into glucose and maltose (Brownlee, 
Gill, Wilcox, Pearson, & Chater, 2018). However, PHP, with its complex 
monosaccharide composition mainly consisting of galactose and anhy-
drogalactose, evades the action of amylase (Zhang et al., 2022). 
Furthermore, in the stomach, the acidic environment is primarily 
dedicated to protein digestion rather than carbohydrate breakdown. The 
in vitro simulated digestion experiments involving human saliva, 
gastric, and small intestinal juices confirm that PHP remains structurally 
unaltered (Xu et al., 2020). This suggests that PHP largely preserves its 
integrity as it travels through the upper gastrointestinal tract, eventually 
reaching the large intestine. Here, it can undergo enzymatic degradation 
by specialized enzymes and fermentation by gut bacteria, further 
highlighting its unique role in gastrointestinal health and nutrition. 

5.2. Effect of PHP on the gut microbiota 

The gut microbiota consists of a diverse array of microorganisms 
inhabiting the gastrointestinal tract, making it an integral facet of 
human biology. This vibrant and multifaceted community includes 
bacteria, viruses, archaea, fungi, and a plethora of microorganisms, 
collectively playing a pivotal role in the maintenance of overall health 
(Sartor & Wu, 2017). Its constitution and variety are susceptible to in-
fluence by numerous factors, encompassing genetics, dietary habits, age, 
and environmental exposures (Gao et al., 2022). Unhealthy dietary 
patterns prevalent in contemporary lifestyles wield a profound influence 
on the gut microbiota, often yielding detrimental repercussions for our 
well-being (Kendig, Leigh, & Morris, 2021). The contemporary diet, 
characterized by the excessive consumption of processed foods teeming 
with sugars, unhealthy fats, and deficient in dietary fiber, has been 
correlated with a substantial transformation in the composition and 
diversity of the gut microbiota (Ye, Xu, & Liu, 2021). This trans-
formation, commonly denoted as dysbiosis, involves a decline in bene-
ficial microorganisms and an upsurge in potentially deleterious species 
(Petersen & Round, 2014). 

A well-balanced gut microbiota has been associated with a reduced 
susceptibility to chronic inflammatory conditions, such as inflammatory 
bowel disease and autoimmune disorders (Tlaskalová-Hogenová et al., 
2011). PHP has exhibited its capability to foster this equilibrium and 
significantly elevate the diversity of the gut microbial community, 
making it a pivotal factor in nurturing a more robust and resilient gut 
microbiota. In an in vitro fermentation analysis of PHP using the rat 
intestinal microbiome, the evaluation of microbial diversity through 16S 
rRNA gene sequencing unveiled notable increases in both the Shannon 
index and Simpson index (Chen, Tong, et al., 2021). These indices are 
instrumental in assessing microbial diversity by taking into account not 
only species richness but also the uniformity of their distribution 
(Nielsen et al., 2020), and they were significantly higher in the PHP 
group compared to the control group. Moreover, when examining the 
abundance-based coverage estimator (ACE) and Chao indexes of the two 

distinct dosage groups of PHP, they outperformed not only the high-fat- 
diet-induced mice group but also the control group (Gong et al., 2020). 
Diminished microbial diversity and richness, as typically observed in 
individuals following high-fat diets, have been closely associated with 
an elevated risk of metabolic disorders, inflammation, and obesity 
(Araújo, Tomas, Brenner, & Sansonetti, 2017). These outcomes affirm 
that PHP can amplify microbial diversity and richness, characteristics 
often correlated with enhanced metabolic well-being, resilient immune 
system functionality, and a lowered risk of microbial imbalances or 
dysbiosis. 

The dominant phyla in the gut microbiota encompass Firmicutes, 
Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucomicrobia, 
with Firmicutes and Bacteroidetes collectively constituting >90% of the 
gut microbial population (Soma Ghosh & Pramanik, 2021; Senghor, 
Sokhna, Ruimy, & Lagier, 2018). Bacteroidetes are particularly 
renowned for their specialized capability to enzymatically break down 
and ferment complex polysaccharides. Recent research has shown that 
both in vitro PHP fermentation and in vivo PHP administration lead to 
an increased relative abundance of Bacteroidetes within the gut micro-
biota (Xu et al., 2019; Zeng et al., 2023). This phenomenon can be 
attributed to Bacteroidetes’ proficiency in metabolizing PHP. Firmicutes 
are also actively involved in the process of breaking down poly-
saccharides. However, they have developed distinct strategies to thrive 
in the dynamic gut environment, often competing with Bacteroidetes. 
Wang et al. investigated the impact of PHP on the modulation of colonic 
microbiota in obese mice, uncovering an increase in the relative abun-
dance of Bacteroidetes and a decrease in Firmicutes (Wang et al., 2022). 
This shift in microbial composition, characterized by elevated Firmi-
cutes and reduced Bacteroidetes, has been observed in both obese mice 
and humans and is reversed following weight loss induced by dietary 
changes (Magne et al., 2020). This observation has led to the hypothesis 
that an altered microbial composition, specifically a decreased presence 
of Bacteroidetes, may be associated with increased energy extraction 
from the diet and a heightened susceptibility to weight gain (Basak, 
Banerjee, Pathak, & Duttaroy, 2022). 

PHP has been shown to enhance the population of probiotics, 
including Bifidobacteria, Lactobacillus, and Lactobacilli (Seong et al., 
2019). Often referred to as beneficial bacteria, these probiotics are 
known for their ability to positively influence the presence of advanta-
geous microorganisms in the gut, which, in turn, can yield a multitude of 
health benefits. While these beneficial bacteria may not be the primary 
degraders of complex polysaccharides like Bacteroidetes, they can still 
derive advantages from the presence of Bacteroidetes, responsible for the 
breakdown of these complex carbohydrates. As Bacteroidetes degrade 
polysaccharides, they release simpler sugar molecules and produce 
SCFAs as byproducts. These SCFAs not only function as an energy source 
for the gut microbiota but also create an environment conducive to the 
proliferation and activity of Bifidobacteria and Lactobacillus. These ad-
vantageous genera thrive in the presence of SCFAs and can utilize these 
compounds, in addition to other substrates, to support their own growth 
and metabolic functions. Moreover, the presence of a flourishing and 
diverse consortium of beneficial bacteria can effectively outcompete and 
supplant deleterious microorganisms. In this regard, PHP has been 
documented to reduce the relative prevalence of Helicobacter (Wang, 
Dong, et al., 2022) and Escherichia-Shigella (Chen, Tong, et al., 2021). 
While Escherichia coli is a common and generally harmless resident of the 
human gut, certain pathogenic strains can cause food poisoning and 
other gastrointestinal infections (Kaper, Nataro, & Mobley, 2004). 
Shigella species are accountable for the transmission of shigellosis, an 
exceptionally communicable diarrheal ailment (Bengtsson et al., 2022). 

5.3. Enhancing the production of short-chain fatty acids: Functional 
metabolites 

Intact PHP reaching the large intestine becomes a valuable substrate 
for various gut bacteria, many of which possess an extensive array of 
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carbohydrate-active enzymes (CAZymes) within their genetic makeup 
(Kaoutari, Armougom, Gordon, Raoult, & Henrissat, 2013). This feature 
is especially prominent among specific bacterial groups, such as those 
belonging to the phyla Bacteroidetes, Firmicutes, Actinobacteria, and 
Clostridia, renowned for their robust repertoire of CAZymes (Wardman, 
Bains, Rahfeld, & Withers, 2022). These enzymes play a crucial role in 
breaking down dietary fibers and complex carbohydrates, contributing 
not only to the host’s energy metabolism but also fostering the pro-
duction of SCFAs, including acetate, propionate, and butyrate (Zmora, 
Suez, & Elinav, 2019). The results from in vitro fermentation assays 
provide compelling evidence that PHP, when subjected to fermentation 
by human gut microbes, leads to the generation of elevated concentra-
tions of SCFAs. The total SCFA concentration increased from 19.37 
mmol/L to 32.32 mmol/L, notably featuring heightened levels of acetic, 
propionic, and butyric acids (Xu et al., 2019). Furthermore, in an in vitro 
fermentation test employing rat fecal microbiota, PHP was observed to 
yield substantial amounts of major SCFAs. After 24 h of fermentation, 
the concentrations of these SCFAs in the PHP2 fermentation group 
exhibited a remarkable increase (p < 0.05), approximately 10–15 times 
higher compared to the control bacterial mother liquor group (Chen 
et al., 2023). This favorable impact of PHP on SCFA production extends 
beyond in vitro experiments, as in vivo studies provide additional sup-
port for this effect. Mice administered with PHP demonstrated increased 
SCFA concentrations, leading to a lower pH environment. Notably, the 
PHP (300 mg/kg) group exhibited significantly higher concentrations of 
acetic acid and butyric acid compared to the control group (p < 0.05) 
(Malairaj et al., 2023). 

SCFAs assume a pivotal role in diverse aspects of gastrointestinal 
health and overall well-being. They serve as essential energy sources for 
the cells lining the colon. Of these, butyrate is particularly favored as an 
energy substrate for colonic epithelial cells (Salvi & Cowles, 2021). Its 
availability is essential for maintaining the integrity of the gut barrier, 
which is critical in preventing the permeability of the gut lining and, 
subsequently, reducing the risk of toxins and harmful substances 
entering the bloodstream, a situation that could lead to inflammation 
and various gastrointestinal disorders. Furthermore, SCFAs make a sig-
nificant contribution to the stability and diversity of the gut micro-
biome. Produced through the fermentation of polysaccharides, they 
establish a favorable environment characterized by a low pH, creating 
conditions conducive to the flourishing of beneficial gut bacteria (Deleu, 
Machiels, Raes, Verbeke, & Vermeire, 2021). This, in turn, aids in out-
competing potentially harmful microorganisms and helps maintain a 
balanced ecosystem within the gut. 

Additionally, emerging research indicates that short-chain fatty acids 
(SCFAs) exert influence over lipid metabolism and energy utilization by 
operating through the gut-liver axis (Pabst et al., 2023). In this context, 
PHP demonstrates its potential by mitigating the effects of a high-fat 
diet, primarily by boosting the production of butyric acid within both 
the colon and liver. This augmentation has been associated with the 
upregulation of genes linked to phosphatidylcholine metabolites and 
fatty acid transport, including those involved in fatty acid transport 
(CD36), fatty acid oxidation (Acacb), and peroxisome proliferator- 
activated receptor (PPAR) gamma within the liver (Zeng et al., 2023). 
PPAR represents a pivotal target gene associated with the advantageous 
outcomes of SCFAs in addressing liver metabolic syndrome, under-
scoring the potential regulatory role of SCFAs (Oh, Visvalingam, & 
Wahli, 2019). In practical terms, PHP has demonstrated the capacity to 
alleviate the effects of a high-fat diet in mice, leading to reduced fat 
accumulation in serum, liver, and adipose tissues. This effect is attrib-
uted to the activation of PGC-1α expression (Wang, Dong, et al., 2022). It 
is noteworthy that SCFAs have also been reported to activate PGC-1α 
expression, thereby promoting improved mitochondrial function and 
increased energy expenditure (Zhang et al., 2023). Collectively, these 
mechanisms contribute to an enhanced lipid metabolism. 

5.4. PHP improves the colonic mucus barrier function 

The intestinal barrier encompasses several essential components, 
including the chemical barrier provided by the mucus layer, the physical 
barrier maintained by the epithelial cell layer, and the immune barrier 
found within the lamina propria (Dahlgren & Lennernäs, 2023). Among 
these constituents, mucus takes on the role of the foremost line of de-
fense, serving as a vital guardian that restricts exposure to a multitude of 
threats targeting the epithelium. Originating as a gel-like secretion from 
specialized cells in the gastrointestinal tract, mucus serves as a versatile 
and protective shield. A fundamental component of this mucus layer is 
mucin 2 (MUC2), primarily synthesized by intestinal goblet cells situ-
ated within the epithelial cell layer (Yao, Dai, Dong, Dai, & Wu, 2021). 

During colitis, inflammation often results in damage to goblet cells 
responsible for producing mucus. This damage can trigger changes in 
the composition and properties of the mucus layer, reducing its ability to 
maintain the intestinal barrier’s integrity. Particularly in a dextran 
sulfate sodium (DSS)-induced colitis mouse model, mucosal tissue, crypt 
structures, and goblet cells are prone to damage. The reduction in mucus 
layer thickness in DSS-induced mice heightens the exposure of gut mi-
crobes to the immune system (Ahl et al., 2016). Interestingly, PHP has 
demonstrated its potential to alleviate mucosal damage, especially in the 
DSS model. PHP facilitates the restoration of the mucosal layer and 
promotes the regeneration of goblet cells (Yu et al., 2023) (Fig. 3D-F). 
This, in turn, leads to an increased goblet cell count, facilitating mucin 
replenishment and subsequent thickening of the mucus layer (Knoop & 
Newberry, 2018). This fortified mucus layer acts as a robust protective 
barrier against harmful bacteria, offering significant benefits in reducing 
inflammation, maintaining gut health, and preventing the recurrence of 
gastrointestinal disorders. 

5.5. PHP enhances tight junction and adherent junction to seal the 
intestinal barrier 

Tight junctions are critical for maintaining the integrity of the in-
testinal barrier, serving as barriers between adjacent epithelial cells that 
line the gastrointestinal tract. They act as gatekeepers, carefully regu-
lating the passage of molecules and substances through the intercellular 
spaces (Balkovetz, 2006; Zihni, Mills, Matter, & Balda, 2016). In in-
flammatory bowel disease, any compromise to these tight junctions 
worsens the disruption of these structures, resulting in increased intes-
tinal permeability of the gut lining (Schulzke et al., 2009). This 
heightened permeability can allow for the uncontrolled passage of 
bacteria, antigens, and toxins from the gut into the bloodstream, sub-
sequently triggering an abnormal immune response and leading to 
chronic inflammation (Suzuki, 2013). Notably, PHP has demonstrated a 
positive impact on the expression and assembly of tight junction pro-
teins. Immunochemistry investigations have revealed that mice fed PHP 
exhibited a significant increase in the expression of ZO-1 and occludin 
compared to control mice (Malairaj et al., 2023) (Fig. 3G-I). ZO-1, 
occludin, and claudin are pivotal proteins involved in the establish-
ment and preservation of tight junctions within epithelial cells. ZO-1 is 
an essential cytoplasmic protein, which acts as a bridge connecting 
transmembrane proteins like occludin and claudin to the actin cyto-
skeleton, thereby forming a robust linkage between neighboring cells 
(Kuo, Odenwald, Turner, & Zuo, 2022). Elevating the levels of ZO-1 and 
occludin assumes considerable significance in upholding the integrity of 
tight junctions, thereby contributing to the overall well-being of the 
intestinal barrier. 

Additionally, scratch wound-healing assays performed using intes-
tinal epithelial cells-6 have shown that PHP can enhance cell migration 
and proliferation while also promoting the suppression of E-cadherin. 
These effects have been attributed to the activation of PKCβII by PHP, 
ultimately leading to enhanced wound healing (Hua-Mai Qiu et al., 
2020). E-cadherin is a fundamental transmembrane protein crucial for 
fostering cell adhesion and preserving the structural integrity of tissues 
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(Lommel et al., 2013). It is predominantly concentrated within epithelial 
tissues, where it establishes adherens junctions connecting adjacent 
cells. E-cadherin molecules extend from one cell’s surface to establish 
robust adhesive connections with E-cadherin molecules on neighboring 
cells, significantly contributing to the structural integrity of the digestive 
tract’s lining (Liu et al., 2023). 

5.6. Anti-inflammation effect of PHP within the gastrointestinal tract 

The gastrointestinal immune barrier is notable for its dual role in 
both pathogen defense and immune tolerance maintenance. Poly-
saccharides have been the subject of extensive research due to their 
capacity to directly modulate the immune system, influencing the 
release of pro-inflammatory cytokines and enhancing the activity of 
anti-inflammatory molecules (Hou, Chen, Yang, & Ji, 2020; Yuan, Li, 
Huang, Fu, & Dong, 2023). Likewise, PHP has exhibited immunomod-
ulatory properties. Notably, PHP enhances the phagocytic activity of 
RAW264.7 macrophages and increases the secretion of interleukin (IL)- 
6, IL-10, and tumor necrosis factor-alpha (TNF-α) (Liu et al., 2017). The 
mechanism by which PHP induces the production of nitric oxide in 
RAW264.7 macrophages involves the activation of the Jun N-terminal 
kinase (JNK) and Janus kinase (JAK2) signaling pathways (Liu et al., 
2017). 

Anti-inflammatory molecules such as interleukin-10 (IL-10), trans-
forming growth factor-beta (TGF-β), and various regulatory T cells 
(Tregs) play a crucial role in curbing excessive immune responses and 
preventing autoimmunity. A prior investigation revealed that PHP not 
only significantly elevates the levels of cytokines IL-2, TNF-α, and IFN-γ 
but also modulates Th1 and Th2 responses while promoting the prolif-
eration of the CD4+CD25+ Treg subpopulation in the spleen (Fu et al., 
2019). PHP demonstrates robust immunomodulatory activity by influ-
encing immunocyte maturation and differentiation through the NF-κB- 
dependent pathway (Fu et al., 2019). The pivotal role of CD4+ T cells lies 
in their interactions with antigen-presenting cells, notably dendritic 
cells, for the recognition of foreign antigens or pathogens. This recog-
nition initiates a sequence of immune responses, culminating in the 
activation of other immune cell types, including B cells and CD8+

cytotoxic T cells. Growing evidence suggests that CD4+ T lymphocytes 
are often hyperactive in the context of colitis, thereby contributing to 
intestinal inflammation (Shale, Schiering, & Powrie, 2013). Studies have 
revealed an increased presence of activated CD4+ cells in the colons of 
individuals with colitis (Leung et al., 2014). In a study conducted by Yu 
et al., the administration of PHP-D to mice with DSS-induced colitis 
significantly reduced the levels of activation when compared to those in 
the DSS group (Yu et al., 2023). 

PHP significantly contributes to the enhancement of the gastroin-
testinal immune barrier through indirect yet influential interactions 
with the gut microbiota, profoundly impacting immune function. PHP 
has the potential to stimulate the growth of beneficial prebiotic strains, 
including Lactobacillus, Lactobacilli, and Bifidobacterium (Seong et al., 
2019; Wei et al., 2023). These specific prebiotic strains have been shown 
to produce antimicrobial peptides and anti-inflammatory factors, such 
as interleukin-10 (IL-10), within the gastrointestinal tract (Hrdý et al., 
2020). These antimicrobial peptides not only target pathogenic invaders 
but also exert notable anti-inflammatory effects (Underwood et al., 
2012). The production of IL-10 by Bifidobacterium, which aids in miti-
gating inflammation, acts as a counterbalance to pro-inflammatory 
signals, ultimately contributing to reduced inflammation (Yan et al., 
2020). Additionally, the functional metabolite known as SCFAs func-
tions as potent immune modulators, playing a pivotal role in regulating 
immune cell activity and cytokine production (Corrêa-Oliveira, Fachi, 
Vieira, Sato, & Vinolo, 2016). SCFAs possess the capacity to dampen 
excessive immune responses and decrease inflammation within the 
gastrointestinal tract (Li et al., 2018). This immune system modulation is 
instrumental in maintaining a balanced and responsive immune func-
tion, preventing unnecessary inflammation, and potentially alleviating 

autoimmune conditions and allergies. 

6. Preventive effect of oxidative stress on organ damage 

Oxidative stress refers to a physiological condition referred by an 
imbalance in the generation of reactive oxygen species (ROS), including 
superoxide anions and hydrogen peroxide (Checa & Aran, 2020). ROS, 
highly reactive oxygen-containing molecules, naturally arise as 
byproducts of various metabolic processes in the human body. While 
they serve essential functions in cell signaling and immune defense, 
excessive ROS production, surpassing the body’s antioxidant capacity, 
can lead to damage at the cellular and molecular levels (Apak, Özyürek, 
Güçlü, & Çapanoğlu, 2016). This damage disrupts normal cell func-
tioning and can contribute to a wide array of health problems. The 
development of long-lasting medical conditions like cardiovascular 
diseases, neurodegenerative disorders, cancer, diabetes, and inflamma-
tory conditions is intricately linked to the gradual accumulation of 
oxidative damage (Shatadal Ghosh, Banerjee, & Sil, 2015; Sivandzade, 
Prasad, Bhalerao, & Cucullo, 2019). Polysaccharides play a pivotal role 
in counteracting the adverse effects of ROS and in promoting overall 
health as part of the battle against oxidative stress (Lu, Tan, Zhong, & 
Cheong, 2023; Wang, Xue, & Mao, 2020). 

ROS comprise a spectrum of both free radical and non-free radical 
oxygenated molecules, including hydrogen peroxide (H2O2), superoxide 
(O2•

− ), singlet oxygen (1O2), and the hydroxyl radical (•OH) (Shu Liu, 
Oshita, Kawabata, Makino, & Yoshimoto, 2016). Moreover, there are 
reactive species involving nitrogen, iron, copper, and sulfur (Mishanina, 
Libiad, & Banerjee, 2015). Within the realm of antioxidant research, 
assays that assess radical scavenging activities are fundamental. These 
assays often employ stable free radicals such as DPPH (2,2-diphenyl-1- 
picrylhydrazyl) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sul-
fonic acid)) as chemical markers for evaluating a substance’s antioxi-
dant potential (Arranz, Cert, Pérez-Jiménez, Cert, & Saura-Calixto, 
2008). PHP exhibited notable antioxidant activity, with a ABTS acid 
radical scavenging activity of approximately 53.16% at 2 mg/mL, DPPH 
radical scavenging efficacy of around 34.63% at 2 mg/mL, and a hy-
droxyl radical scavenging potential of roughly 23.80% at 2 mg/mL 
(Khan et al., 2020). Polysaccharides extracted from various origins and 
harvest periods of P. haitanensis demonstrated DPPH radical scavenging 
activity, hydroxyl radical scavenging, and remarkable scavenging ca-
pabilities (Fig. 4A-C). Notably, at a concentration of 6 mg/mL, both 
PHPR and PHPX displayed scavenging rates of 83.62% and 82.86%, 
respectively, underscoring their exceptional scavenging abilities against 
reactive radicals (Ji et al., 2022). 

Polysaccharides offer a notable mechanism for mitigating oxidative 
stress through the upregulation of endogenous antioxidants. The human 
body boasts a sophisticated network of these internal antioxidants, 
which encompass enzymes like superoxide dismutase (SOD) and gluta-
thione peroxidase (GSH-Px), as well as non-enzymatic antioxidants like 
glutathione (Raish et al., 2018). These internal protectors act as the 
body’s initial line of defense against the detrimental effects of ROS. PHP 
has the ability to bolster the body’s resistance to oxidative stress by 
enhancing the production and activity of these internal defenders. To 
illustrate, when RAW264.7 cells were exposed to H2O2, there was a 
significant reduction in the enzyme activity of GSH-Px, SOD, and CAT (p 
< 0.05). Intriguingly, PHP with molecular weights of 524 kDa and 217 
kDa were found to enhance the activities of intracellular SOD, GSH-Px, 
and CAT (Yin-Ting Li et al., 2020) (Fig. 4D-F). The aging process is often 
marked by a gradual reduction in the production of antioxidant en-
zymes. This decline is closely linked to the aging of cellular components, 
including the mitochondria, which become progressively less efficient 
and can lead to increased production of ROS (Trifunovic & Larsson, 
2008). Significantly, PHP has demonstrated the ability to enhance the 
overall antioxidant capacity and the activities of key enzymes such as 
SOD and GSH-Px in aging mice (Zhang et al., 2004). Specifically, the 
administration of PHP at a dosage of 50 mg/kg increased the maximal 
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activity of GSH-Px in the livers and brains of aging mice, while a dosage 
of 100 mg/kg maximally increased GSH-Px activity in the hearts of aging 
mice. Furthermore, the administration of PHP within a dose range of 
100–200 mg/kg successfully inhibited lipid peroxidation, evident in the 
reduced production of malondialdehyde (MDA) in the livers, hearts, and 
brains of aging mice (Zhang et al., 2004). In diabetes, increased ROS 
production within liver cells can lead to oxidative stress and subsequent 

liver damage. In a previous study demonstrated that the administration 
of PHP led to an enhancement in the activities of antioxidant enzymes 
(SOD, GSH-Px, and GSH) in the livers of alloxan-induced diabetic mice, 
signifying an amelioration (Cao et al., 2016). Moreover, the histopath-
ological examination of the liver using H&E staining in diabetic mice 
revealed indications of cellular damage, heightened inflammation, and 
potential lipid accumulation, all suggestive of oxidative stress effects. 

Fig. 4. Antioxidant activity of PHP. (A-C) were DPPH, hydroxyl, and superoxide of PHP in different harvest periods. “Reprinted with permission from (Ji et al., 
2022). Copyright 2023 Wiley.” (D) Effect of CPH and DCPH on MDA level; (E) SOD activity; (F) GSH-Px activity. “Reprinted with permission from (Li et al., 2020). 
Copyright 2023 Wiley.” (G-H) Histopathological features of liver in the experiments. Liver tissues were stained with H&E (400 ×). (G) Normal group; (H) Model 
group; (F) High-dose group (Cao et al., 2016). “Reprinted from Bioactive Carbohydrates and Dietary Fibre, 8, Chunjie Cao, Meizhen Chen, Bin Liang, Jingyan Xu, 
Tianwen Ye & Zufeng Xia, Hypoglycemic effect of abandoned Porphyra haitanensis polysaccharides in alloxan-induced diabetic mice, 1-6. Copyright 2023, with 
permission from Elsevier. “. 
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However, following the administration of PHP to diabetic mice, these 
symptoms were alleviated. (Cao et al., 2016) (Fig. 4G-I). 

7. Future perspective 

The future outlook in the field of PHP is exceptionally promising, 
poised to drive scientific innovation and practical utilization. Sustain-
able methods for extracting and preparing PHP compounds are gaining 
significant prominence. With the increasing demand for these valuable 
substances, the development of extraction techniques that blend high 
efficiency with environmental responsibility is of paramount impor-
tance. A particularly encouraging strategy involves the adoption of 
green methods, characterized by their non-toxic and energy-efficient 
processes, which effectively mitigate the environmental impact associ-
ated with traditional extraction techniques. Moreover, the incorporation 
of high-efficiency extraction methods, such as ultrasonic or microwave- 
assisted extraction, can notably enhance the sustainability of PHP pro-
duction. Concurrently, researchers are delving into closed-loop extrac-
tion systems to curtail waste and energy consumption, thus contributing 
to a more ecologically conscious and economically viable industry. 
Additionally, there is a growing emphasis on exploring the recycling and 
repurposing of extraction byproducts for diverse applications, such as 
biofuel production or agriculture, aimed at optimizing resource effi-
ciency. Persistent research into the structural diversity of PHP and its 
connection to biological activities will remain a central focus, enabling 
structural modifications that enhance bioactivity or tailor these com-
pounds for specific applications. 

Moreover, the food industry stands at the threshold of incorporating 
PHP as natural nutraceutical and fiber enhancements, a highly prom-
ising development. The integration of PHP into the food and nutraceu-
tical sectors holds vast potential, with these compounds serving as 
natural additives and ingredients, elevating the nutritional profiles and 
functional attributes of an extensive array of food products. As PHP is 
sourced from natural resources, it offers an avenue to replace synthetic 
additives in processed foods. This transition not only results in cleaner 
ingredient lists but also aligns with the surging consumer demand for 
natural products. In the nutraceutical domain, PHP is currently being 
investigated for their diverse health benefits, encompassing antioxidant, 
immunomodulatory, and prebiotic properties. Significantly, PHP plays a 
pivotal role in endorsing gut health and sustaining gut microbiota, 
making them invaluable inclusions in the realm of functional foods. 
Future research endeavors may uncover more specific health applica-
tions, further reinforcing their position in the development of functional 
foods and dietary supplements. As public awareness of the health ben-
efits linked to seaweed-derived compounds continues to expand, the 
food and nutraceutical industries are strategically positioned to unlock 
the potential of marine seaweed polysaccharides in the formulation of 
innovative, health-enhancing products. This fosters the ongoing 
advancement of healthier and more functionally rich dietary options. 

8. Conclusion 

In conclusion, this review has shed light on the extraction and 
characterization of PHP, highlighting their impressive biological activ-
ities, particularly in the realms of promoting intestinal well-being and 
providing protection against oxidative stress. PHP have unequivocally 
showcased their ability to positively influence gut health by fostering a 
harmonious microbiome and mitigating inflammation. Furthermore, 
their robust antioxidant properties make them indispensable in coun-
teracting oxidative stress, thereby reducing the susceptibility to various 
chronic diseases. As our understanding of the intricate interplay be-
tween gut health and oxidative stress continues to progress, the potential 
for leveraging polysaccharides in preventive and therapeutic ap-
proaches takes on ever greater significance. The horizon for PHP appears 
promising, with ongoing research poised to unravel the intricate struc-
tures and relationships that underpin their functionality. 
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