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Abstract

The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive
inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins
and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of
importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of
safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable
plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals
against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale
propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made
vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine
preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein
of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from
these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing
alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after
harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable
pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an
advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use
in veterinary immunization programs.
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Introduction

Transgenic plants are gaining acceptance as a platform for the

production of affordable recombinant proteins in the pharmaceu-

tical industries [1,2]. Since the first manuscript reporting plant-

made vaccine (PMV) production [3], many studies have

demonstrated the value of expressing antigens in plants [4,5].

Advantages associated with using a plant expression system

include the ability to utilize gene splicing to produce multi-antigen

vaccines and the decreased risk of product contamination with

human or animal pathogens. Plant-made heat stable vaccines can

be shipped and stored without refrigeration and have the potential

to be produced in edible plant organs and delivered orally without

the requirement for recombinant protein purification. Encapsula-

tion within the plant cell wall may increase the oral efficiency of

the vaccine and stimulate mucosal and systemic immune

responses, and hence may be effective against respiratory

infectious diseases [6]. Influenza is a respiratory condition in

animals and humans caused by enveloped, segmented, single-

stranded, negative sense RNA members of the Orthomyxoviridae

family of viruses [7]. Avian influenza virus (AIV) can infect a

variety of avian and mammalian species including domestic

poultry and humans, and poses a serious international pandemic

threat [8]. It may be possible to diminish the risk of a pandemic

outbreak of AIV by immunising susceptible farm animals against

the virus. In fact, the first plant-made vaccine (PMV) to be

commercially licensed was a partially purified, injectable poultry

vaccine against Newcastle Disease Virus (NDV) [9]. Production of

cheap and effective vaccines is particularly important for the

developing world where ready access by subsistence farmers to

refrigerated, expensive animal vaccines is often extremely limited.

As current regulations allow crude or partially purified veterinary

vaccine formulations to be administered by injection (http:

//www.aphis.usda.gov/animal_health/vet_biologics/publications/
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memo_800_301.pdf), a plant-made vaccine that could be admin-

istered without requiring antigen purification may make immuni-

zation of large numbers of at risk farm animals economically

feasible.

Several studies have reported the successful plant-based

production of an AIV surface protein, the haemagglutinin (HA)

glycoprotein, using transient transformation in Nicotiana [10,11].

Agrobacterium-mediated transient expression of HA in N. benthamiana

enabled high accumulation (50 mg/kg) of virus-like particles

(VLPs) consisting of HA antigen. These plant-made VLPs were

purified within three weeks of introduction of DNA constructs into

leaf tissues. Mice that were immunised intramuscularly with two

doses, each containing 0.5 mg, of the purified H5-VLPs were

protected against H5N1 influenza virus challenge [10]. Similarly,

a TMV-based, deconstructed viral transient expression system in

N. benthamiana leaf tissues produced a HA yield of 60 mg/g fresh

weight. Following purification, the antigen elicited strong H5-

specific immune responses in mice and displayed high haemag-

glutination inhibition (HI) and virus-neutralizing (VN) antibody

titres. The purified plant-made HA also provided full protection to

ferrets challenged with the A/Indonesia/05/05 influenza virus

[12].

Stably transformed Nicotiana species are also well suited for

producing plant-made vaccines and offer some advantages over

transient production systems. Stable transformation is easily

achieved in Nicotiana and eliminates the need for repeatedly

introducing constructs as well as reducing the potential for batch

variation inherent in transient production systems. Furthermore,

plants such as N. tabacum, grow rapidly and can produce large

amounts of leaf biomass per hectare potentially containing high

concentrations of antigen (reviewed in [13]). Nicotiana species are

not food crops and hence the possibility of contaminating the food

chain is reduced. However, there are some disadvantages

associated with the use of transgenic N. tabacum to produce

vaccine proteins. N. tabacum has the capacity for prolific production

of small seeds which are easily distributed and remain viable in the

soil for many years. Regulations regarding bio-containment may

constrain the use of such a plant as a protein-production system. In

addition, leaf tissues of most species in the genus Nicotiana,

including N. tabacum, can contain substantial quantities of toxic

pyridine alkaloids, particularly nicotine, nornicotine, anatabine

and/or anabasine [14,15]. The levels of alkaloids increase in leaf

tissues of Nicotiana following insect attack or physical damage to

aerial tissues, such as removal of the inflorescences or vegetative

apices [16,17,18,19,20,21,22]. While it is possible that some

metabolic components present in crude leaf extracts have

synergistic, adjuvant effects when combined with antigenic

proteins to improve the immune response [23,24,25], the presence

of alkaloids in vaccine preparations of crude or partially purified

extracts of tobacco leaf tissues may present regulatory hurdles

associated with their use in animals. The requirement to purify the

vaccine would increase the cost of veterinary vaccine production in

transgenic tobacco. Hence, the ability to reduce the seed and

alkaloid production capacity of Nicotiana would enhance the

prospects for utilizing these plants as a vaccine production

platform.

Knowledge relating to alkaloid production in Nicotiana has

increased rapidly in recent years and has facilitated the use of

antisense- or RNAi-mediated technology to down regulate key

alkaloid biosynthesis genes [26,27]. Recently we have demon-

strated the use of double stranded RNA gene-silencing to reduce

or eliminate alkaloid production in leaf tissues of the tree tobacco

Nicotiana glauca, even when plants were wounded or decapitated

[16]. The availability of these transgenic lines provided the

opportunity of crossing them with transgenic HA-producing N.

tabacum to produce an alkaloid-free HA-containing plant whose

leaf extracts would be able to induce an antigen-specific immune

response in animals without purification. Previous research has

indicated that this inter-specific hybrid Nicotiana plant would be

viable and potentially have the advantage of being self-sterile [28].

To test this idea, DNA constructs utilizing two promoter

sequences, the Cassava Vein Mosaic Virus promoter [CsVMV]

or the chimeric octapine synthase-mannopine synthase 4OCS-

DMas promoter [29], and two HA coding sequences (a native or a

plant-optimised sequence) were produced. The HA sequence was

designed by Dow Agrosciences LLC to induce an immune

response against the avian influenza virus. These constructs were

transformed into plants of the aabb genotype of N. tabacum variety

LAFC 53 [22,30]. This LAFC 53 variety (nic1nic2/aabb

genotype) was recently shown to contain mutations in alkaloid

pathway regulatory genes belonging to the AP2/ERF family of

transcription factors [26] and produces less pyridine alkaloid than

its near-isogenic parental line of the Nic1Nic2/AABB genotype

[22]. The HA antigen-producing ability of transgenic N. tabacum

variety LAFC 53 plants containing the various constructs was

assessed and selected individuals were then crossed to A622-RNAi

silenced N. glauca to obtain the HA-producing, interspecific hybrid.

The capacity for pyridine alkaloid synthesis in the interspecific N.

tabacum X N. glauca hybrid was determined and the immunoge-

nicity of the HA crude plant extract was then assessed in mice

trials following subcutaneous injection.

Results

Characterization of plant-made HA protein
To obtain a control sample of plant-made HA protein,

Agrobacterium-mediated transient expression using a deconstructed

viral vector [31] was undertaken in six-week-old N. benthamiana

plants. Up to 23 mg/g fresh weight (FW) of HA were produced in

leaves harvested seven days post infiltration (data not shown).

Purification from 600 g of fresh tissue provided 12.6 mg of HA, a

yield around 90%. The purified HA was used as a positive control

in further analyses. To produce HA in stably transformed plants,

transgenic plantlets of N. tabacum LAFC 53 were generated

containing one of the three expression constructs shown in

Figure 1. These Nt LAFC-HA plants were screened for their ability

to produce HA using capture ELISA. Approximately 80

independent ammonium glufosinate resistant lines for each

construct were recovered, and about half were found to

accumulate HA protein at levels $0.5 mg/g FW. These plants

were selected for further analysis. The mean HA content for each

construct was calculated from these independent Nt LAFC-HA

lines from the ELISA analysis, and demonstrated that the Nt

LAFC-HA plants containing the 4OCS-DMas promoter construct,

pDAB4493, produced significantly higher HA levels (p,0.05)

compared to those produced by plants harbouring the CsVMV

promoter construct, pDAB4492 (Figure 2a). There was no

significant difference (p$0.05) between mean HA content of Nt

LAFC-HA plants transformed with constructs containing either

the native or plant codon-optimized coding region (Figure 2a).

All the glufosinate-resistant stable transgenic Nt LAFC-HA

plants were healthy and showed no obvious phenotypic deviations

from normality. From the independent Nt LAFC-HA lines, two to

three elite plants expressing high HA levels ($10 mg/g FW) as

determined by ELISA were chosen for further analysis.. The

presence of the HA gene was confirmed in these plants using PCR

(data not shown). Western analysis demonstrated that the

monomeric form of the HA protein produced in these elite Nt
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LAFC-HA plants had a molecular weight of approximately

75 kDa, as did the purified HA control (Figure 2b). The HA

protein can retain dimeric or trimeric conformation on SDS-

PAGE of approximately 150 kDa and 225 kDa respectively, and

these were observed in the extracts from several transgenic plants

and the HA control. At least two of the highest HA expressing Nt

LAFC-HA lines, were chosen from lines containing each of the

constructs and used for creation of the interspecific hybrid plants.

Characterization of the interspecific hybrids
We have shown previously that the 35S-A622-RNAi construct

reduces the high alkaloid levels normally produced by N. glauca

plants to undetectable levels [16]. To reduce the level of alkaloids

produced by the elite Nt LAFC-HA plants, they were crossed with

N. glauca A622-RNAi as described in the methods section. The best

performing hybrid line with respect to high HA levels, based on

the ELISA results, and the lowest alkaloid content, based on the

HPLC data, was selected for further analysis. The parent line of

this hybrid, pDAB4493-8a Nt LAFC-HA contained two copies of

the HA gene (Figure 2c). The same parental pDAB4493-8a Nt

LAFC-HA line was also crossed with wild-type N. glauca to

produce an alkaloid-containing hybrid as a control.

Hybrid seeds germinated with high efficiency (.95%). Glufo-

sinate-resistance confirmed the presence of the HA construct.

These hybrid plants were vigorous with healthy leaves. The shape

and size of the flowers and leaves of the hybrid plants were of

intermediate appearance between both parental species (Figure 3a)

which is characteristic of interspecific hybrids in the genus Nicotiana

[32,33]. To confirm the hybrid nature of these plants, amplifica-

tion of a molecular marker based on variability in intron length

within the Nicotiana nuclear gene family encoding quinolinate

phospho-ribosyltransferase (QPT) (Ryan et al., in preparation) was

undertaken. The sizes of the fragments generated from PCR

analysis of hybrid genomic DNA indicated both QPT gene

paralogues from the N. tabacum and N. glauca parents are present in

the hybrid plants (Figure 3b). The hybrid plants did not set seed,

even after manual application of hybrid pollen, or pollen from

either parental species, to stigmata. Further analysis using

acetocarmine chromosome staining, revealed that pollen of hybrid

plants was empty and shrivelled and incapable of germination,

unlike the pollen of both parental species (Figure 3c). This

indicates that these transgenic hybrid plants are sterile and is in

accord with previous observations made of interspecific hybrids

between N. tabacum and N. glauca, [28,34].

The presence of the HA antigen was confirmed in the Nt LAFC-

HA X N. glauca A622-RNAi hybrid plants (Figure 3d). There was

no significant difference in HA levels in these plants compared to

the Nt LAFC-HA X wild type N. glauca hybrid control plants.

Vegetative shoot regeneration and clonal propagation of the

interspecific hybrid Crossing with the tree tobacco N. glauca

provides the interspecific hybrid with the capacity to grow much

larger than the N. tabacum parent, affording a substantial increase

in biomass production. Under greenhouse conditions, the

interspecific hybrid typically reaches a height of about 3 metres

before flowering (as opposed to about 1.5 metres for N. tabacum)

when grown in 0.5 litre pots. Ease of clonal propagation from

cuttings and a high capacity for vegetative shoot regeneration are

potentially important features in the context of a vaccine

production system involving sterile N. tabacum X N. glauca hybrid

plants. To examine clonal propagation, vegetative cuttings from

the transgenic hybrid plants were dipped in commercial rooting

powder (containing 2 mg/g indolebutryic acid) before transfer to

compost. All of these cuttings rapidly developed roots and gave rise

to vigorously growing clonal plants (data not shown). This is a

feature of both parental species and was therefore expected in the

hybrids.

To test the capacity for vegetative shoot regeneration, the Nt

LAFC-HA X N. glauca A622-RNAi hybrids were decapitated by

removal of the top ,1 cm of their apices. One week after

decapitation, vigorously growing vegetative side shoots were

observed emerging from the top 4–5 nodes on each decapitated

plant. Analysis of these young emerging side shoots showed they

contained no nicotine or anabasine, or indeed any other

methanol-soluble metabolite with a characteristic pyridine alkaloid

spectral absorption profile (Figure 4a). This contrasted with the

high levels of alkaloid (mainly anabasine) of almost 10 mg/g dry

weight in total, in the corresponding control side shoots of the

decapitated Nt LAFC-HA X wild type N. glauca control hybrid

(Figure 4b).

Figure 1. Constructs used to drive expression of HA gene in N. tabacum LAFC 53. CsVMV = the cassava vein mosaic virus promoter. 4OCS-
DMas = a chimeric synthetic promoter. Native HA = the coding region of haemagglutinin from the turkey Wisconsin HA5 AIV strain. Plant-codon
optimised HA = the modified haemagglutinin coding sequence based on plant codon usage frequency. LB and RB represent the left and right T-DNA
borders respectively. VSP 39 = the terminator of the soybean vegetative storage protein. PAT = the phosphinothricin acetyl transferase gene.
doi:10.1371/journal.pone.0035688.g001
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The above results suggest that clonal propagation and repeated

mechanical harvesting could be used to scale up the supply of

vaccines or other classes of therapeutic proteins in these plants.

Such a system may provide an additional advantage as clonally

propagated plants may be less susceptible to transgene silencing

that can occur during sexual reproduction and hence provide a

more predictable level of antigen content in the harvested material

[35].

Immunogenicity and efficacy of plant-made HA in mice
To determine if the HA containing crude plant extract from the

interspecific hybrid could invoke an immune responses, the extract

was injected subcutaneously into mice. The previously performed

ELISA analysis of leaf tissue extracts from both the HA-expressing

transgenic hybrids, Nt LAFC-HA X wild type N. glauca, and Nt

LAFC-HA X N. glauca A622-RNAi (Figure 3d), indicated the

presence of 5.4–9.6 mg/g FW of HA. Mice (5–7 individuals per

group) were injected subcutaneously with these crude leaf extracts

adjusted to contain 5 mg HA antigen. Details of the treatment

groups are provided in Table 1. An equivalent amount of purified

HA antigen was used in the positive control treatments. In an

attempt to minimise any distress in the mice injected with the

control tissue extracts that contained pyridine alkaloids, vaccine

doses were calculated to contain less than half of the published

LD50 of nicotine and anabasine [36,37]. Despite these precautions,

some mice injected with samples containing alkaloid exhibited

toxic responses. A stage 1 toxic response [38], consisting of a

noticeable trauma in the first hour following injection, was

observed in one in seven mice of vaccine group E and F following

the first injection. A more severe stage 2 response, composed of

chronic convulsions lasting up to 2 hours was observed in all seven

mice in group E and three of the mice in group F following the

second injection. Only one in seven mice in group E and two in

seven mice in group F showed a similar response after the third

dose. Similar reactions have been observed previously in rats

suffering acute nicotine poisoning [38]. No such symptoms were

observed in animals receiving either purified HA protein or crude

leaf extract from the alkaloid-free transgenic plants.

Serum HA-specific antibody titres in injected mice, as detected

by ELISA, peaked on day 28 post-vaccination. By this time, mice

immunised with HA treatments possessed significantly higher

geometric mean HA-specific serum total IgG titres than their

negative-control counter treatments (p = 0.0002) (Figure 5a). No

significant difference was observed between HA-specific IgG titres

induced by the purified HA or crude HA extracts. While the

addition of the adjuvant alum enhanced the response to the

purified HA sample, the antigen-specific immunoglobulin (Ig)

responses to the HA containing crude extracts were similar,

irrespective of the presence or absence of either adjuvant or

pyridine alkaloids.

An examination of the IgG isotypes showed high HA-specific

IgG1 antibody responses to all HA treatments (Figure 5b), with

purified samples eliciting the highest response. The presence of

adjuvant did not significantly increase the immune response

induced. The IgG2a response was low, leading to high IgG1/

IgG2a ratios, ranging from 16.3 to 61.7. The inclusion of adjuvant

did not substantially affect these ratios.

Haemagglutinin inhibition (HI) titres using purified split virus

(Turkey Wisconsin, H5N9) were measured to confirm the

bioactivity of antibodies raised against plant-made HA. Although

purified HA treatments (groups A and B) displayed inhibition of

viruses at somewhat higher dilutions, there was no significant

difference in agglutinating ability between antibodies raised in

mice using any of the plant-made vaccine treatments (Figure 6). All

transgenic treatments displayed inhibition dilutions that were

significantly higher than observed in the negative controls

(p,0.0001) (Figure 6).

Figure 2. Analysis of T0 N. tabacum LAFC 53 plant lines
transformed with HA constructs. 2a. The mean HA content in Nt
LAFC-HA plants transgenic for each construct type quantified using
ELISA analysis. *Mean levels of HA in plants transgenic for pDAB4493
were significantly different (p,0.05; t-test) to those containing
pDAB4492. Nt = non-transgenic N. tabacum var. LAFC 53. Error bars
represent standard error of mean (SEM) (n = 40 for plants transgenic for
pCHA; n = 45 for plants transgenic for pDAB4492; n = 52 for plants
transgenic for pDAB4493), FW = fresh weight. 2b. Western analysis of
leaf extracts from representative Nt LAFC-HA plants. Extracts from
plants containing HA constructs were loaded in central lanes as
indicated. Purified HA was loaded as a control in the left lane whilst leaf
extract from non-transgenic N. tabacum var. LAFC 53 was loaded in the
right lane. All lanes contained 10 mg total soluble protein (TSP). 2c.
Detection of HA transgene in selected elite transgenic lines of N.
tabacum containing the pDAB4493-HA construct. Southern blot
hybridisation of Hind III digested genomic DNA isolated from Nt
LAFC-HA transgenic plants probed with the HA gene.
doi:10.1371/journal.pone.0035688.g002
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Overall, these results show that the mouse groups treated with

the crude alkaloid-free HA-containing samples developed HA-

specific IgG adaptive immune responses and that reducing

alkaloid content had no significant impact on the HA specific

immune responses induced.

The innate immune response in human peripheral blood

mononuclear cells (PBMCs) was also characterised by monitoring

IFNa and TNFa cytokine profiles following overnight incubation

(Figure 7). The cytokines released during innate immune responses

form a foundation to adaptive immune responses [39]. The

cytokine production assay can provide evidence of a possible

adjuvant effect associated with the crude plant extract. A high

TNFa response, accompanied by a low IFNa response can also

indicate the presence of endotoxin. CL75 was used as a control for

elevated TNFa production or a response by TLR8, while

gardiquimod was used as a control for elevated IFNa production

or a response by TLR7. When using human PBMCs, levels of

TNFa below 50 pg/mL and IFNa below 50 pg/mL were taken as

negligible or negative [40]. The purified HA sample produced

very strong TNFa but not IFNa responses. Crude extracts from

transiently expressing agroinfiltrated leaves induced a low if not

negligible TNFa response although this level was significantly

higher than the wild type control (p,0.05). Interestingly, the

extract from the control N. glauca A622-RNAi lines (not producing

HA), resulted in strong TNFa and IFNa responses (Figure 7). The

response observed for the control N. glauca A622-RNAi extract was

mimicked by the Nt LAFC-HA X N. glauca A622-RNAi hybrid

extract, although to a much lesser extent. Our preliminary

experiments involving mouse macrophages deficient for TLR2/4

(data not shown) showed that the extract from N. glauca A622-

RNAi plants induced a strong cytokine response in TLR2/4

deficient cells. Taken together, the results suggest that the innate

immune system may be responding to the presence of an

unidentified component/s in the N. glauca A622-RNAi extract,

other than lipopolysaccharide or endotoxins characteristic of

gram-negative bacteria.

Discussion

The potential for a pandemic outbreak has led to classification

of H5N1 AIV in List A of the l’Office International des Épizooties

(OIE; World Organization for Animal Health). AIV is also

Figure 3. Characterisation of N. tabacum X N. glauca hybrids. 3a. Floral and vegetative phenotypes of the hybrid (centre) compared with
parentals. All plants in the bottom panel are eight weeks old. 3b. Molecular evidence for the presence of both parental genomes in N. tabacum X N.
glauca interspecific hybrids. PCR was used to detect species-specific length variability in intron 5 of Nicotiana QPT paralogues. N. tabacum LAFC 53
generates different sized bands from N. glauca. Parental DNA refers to genomic N. glauca and N. tabacum LAFC 53 mixed in vitro. DNA-free refers to
PCR performed without template. 3c. Microscopic analysis of pollen. Panels i–iii show pollen after initial staining with acetocarmine. Panels iv–vi
shows pollen after incubation in pollen germination medium. Flanking panels show pollen from parental species as indicated. Centre panel shows
non-viable hybrid pollen. All scale bars represent 50 mm. 3d. ELISA analysis of HA levels in individual interspecific hybrid plants. Data represents
means of triplicate analysis 6 SEM. DW = dry weight. All lines are derived from To parental Nt LAFC-HA pDAB4493-8.
doi:10.1371/journal.pone.0035688.g003
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recognized as an important constraint to international trade in

animals and hence has substantial economic impact [41].

Recently, attention of the scientific community has focused on

the development of a plant-made vaccine against avian influenza

using transient transformation of Nicotiana [10,11,12,42,43,44,45].

These studies used purified proteins to induce an immune

response thereby avoiding possible negative health consequences

due to the presence of secondary metabolites such as pyridine

alkaloids. While stable transgenic Nicotiana species have potential

as a highly productive, bioreactor species for producing therapeu-

tic and antigenic proteins, allowing rapid vaccine production and

ease of scale-up [13], a reduction in the alkaloid metabolites

produced in Nicotiana may enhance their usefulness. A low-

alkaloid, male-sterile tobacco has been used previously to produce

recombinant interleukin-10 protein [46,47]. However, despite the

low alkaloid characteristics, the potential usefulness of this female

fertile line for large-scale production of antigenic proteins may be

limited as most regulatory authorities would be likely to insist on

repeated manual removal of inflorescences to ensure adequate

environmental bio-containment. Apart from the technical diffi-

culties inherent in ensuring no seed set if such operations were

conducted on a large commercial scale, increased alkaloid

synthesis is likely to occur in such plants as a result of removal

of apices and leaf tissues, albeit at a lower level than in

conventional high-alkaloid tobacco varieties [22]. In the present

study, we included the use of crude leaf extracts of plants from the

low alkaloid variety of N. tabacum LAFC 53 stably transformed with

HA as a control. This variety of tobacco is capable of producing

moderate to high levels of pyridine alkaloid in its roots but

generally contains low alkaloid levels in leaves. However, despite

having relatively low levels of alkaloid, injection of crude extracts

from HA-containing plants of this variety caused some distress in

animals consistent with alkaloid toxicity. In contrast the HA-

producing interspecific tobacco hybrid which has no detectable

alkaloids in the leaf tissues caused no toxicity problems. Moreover,

decapitation of this interspecific hybrid encouraged the rapid

production of vigorously growing side shoots that were also found

to be devoid of alkaloids, indicating that alkaloid levels are likely to

remain negligible even in a field situation where tissue damage is

likely to occur. The sterile nature, the ease of vegetative

reproduction, and the robust side-shoot regenerative capacity of

these genetically altered Nicotiana hybrids makes them attractive

hosts for automated, large scale harvesting of alkaloid-free,

vaccine-containing plant material for animal immunisation

studies. Whether lack of alkaloids would require such transgenic

plants to be protected from increased susceptibility to insect attack

if they were grown on a large scale in open plantations is as yet

unknown and would be a necessary question to address

experimentally if such trials were to proceed.

All plant-made HA treatments in this study produced a

substantial increase in HA antibody titre over the corresponding

negative control treatments. There was no significant difference

between the titres of HA-specific IgG induced by the different

transgenic plant-made HA treatments, therefore the sterile and

alkaloid-free HA hybrid lines have the same capacity as the

purified antigen to induce an HA immune response, without the

induction of a toxic effect. The high IgG1/IgG2a ratios induced

by plant-made HA treatments indicate a strong Th2 immune

response as required for protection against avian influenza [48],

however the Th1 response would need to be improved for better

protection against the virus. This response may be improved by

increasing the HA antigen dose and/or inclusion of a CpG

adjuvant [49]. The biological activity of the HA-induced

antibodies was verified by testing their ability to inhibit

agglutination of purified AIV virus (Turkey, Wisconsin H5N9) to

chicken red blood cells. The level of HI titre obtained is generally

considered to be biologically significant [50,51]. Again, there was

no significant difference between the neutralising ability of

antibodies induced by plant-made antigen from sterile, alkaloid-

free hybrid lines and the antibodies induced by purified or

alkaloid-containing counterparts.

Figure 4. Analysis of interspecific hybrids for alkaloid content. 4a. Chromatograms of the pyridine alkaloid profile in the parental and hybrids
lines after removal of plant apices. (i) Nicotinic acid mononucletide was extracted as a background metabolite in the methanol-soluble fraction, (ii)
Anabasine profile, (iii) Nicotine profile. 4b. Total pyridine alkaloid levels in vegetative regenerating shoots of parental and WT hybrid controls and HA-
containing interspecific hybrid plants. Analysis was undertaken one week after removal of plant apices; graphs represent the mean of three separate
plants per treatment (6 SEM), ND = None Detected. DW = dry weight.
doi:10.1371/journal.pone.0035688.g004

Table 1. Summary of the different experimental groups and candidate vaccine formulations.

Vaccine group* Origin of vaccine Vaccine formulations

A Nicotiana benthamiana agroinfiltrated with HA Purified plant-made HA antigen

B N. benthamiana agroinfiltrated with HA Purified plant-made HA antigen+alum

C Hybrid Nt LAFC-HA x N. glauca A622-RNAi Crude HA plant extract without alkaloid

cC Control Hybrid Nt LAFC x N. glauca A622-RNAi Control plant extract without alkaloid

D Hybrid Nt LAFC-HA x N. glauca A622-RNAi Crude HA plant extract without alkaloid+alum

cD Control Hybrid Nt LAFC x N. glauca A622-RNAi Control plant extract without alkaloid+alum

E Nt LAFC-HA Crude HA plant extract with low alkaloid

cE Control Nt LAFC non transgenic plant Control non transgenic plant extract with low alkaloid

F Hybrid Nt LAFC-HA x WT N. glauca Crude HA plant extract with normal alkaloid

cF Control Hybrid Nt LAFC x WT N. glauca Control plant extract with normal alkaloid

All HA antigen treatments consisted of 5 mg of HA. 20% alum (aluminium hydroxide) was added as an adjuvant where indicated.
*Lower case ‘‘c’’ refers to the control group for each designated HA treatment group.
doi:10.1371/journal.pone.0035688.t001
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Immunity in vertebrates is comprised of innate and adaptive

immune responses. Once initiated, adaptive immunity is mediated

by specific, clonally distributed B and T lymphocytes that undergo

4–7 days of clonal selection and expansion of relevant cell lines

[52]. During this delay, infection is controlled by the innate

immune response that is mediated through non-clonal recognition

receptors that include the toll-like receptor (TLR) pattern

recognition receptor family. TLRs are cytoplasmic or transmem-

brane proteins that can recognize pathogen-derived ligands and

initiate complex signal transduction cascades [52]. Each TLR

recognizes a diverse range of structurally differing ligands. The

best understood of the TLRs is TLR4 that recognizes bacterial

lipopolysaccharides (or endotoxins) while others such as TLR 3, 7

or 8 are known to be involved in viral nucleic acid recognition.

Engagement of innate immune sensors by pathogens is critical for

the proper mounting of an antibody response and is of paramount

Figure 5. Capacity of HA-containing plant extracts to elicit an immune response. 5a. HA-specific systemic immune response of mice. The
horizontal lines represents the geometrical means of HA specific IgG titres at day 28, while the data points represent IgG titres from individual mice.
Detailed description of treatments is described in Table 1. Solid dots indicate response to samples containing HA antigen. Open circles indicate
responses to samples without HA antigen. A significant difference exits between HA positive samples and control samples (p = 0.0002). 5b. Detection
of anti-HA specific IgG isotypes in mice sera on day 28. The horizontal lines represent the geometrical means of IgG isotype titres, while the dots
represent IgG isotype titres from individual mice. Detailed description of treatments is described in Table 1.
doi:10.1371/journal.pone.0035688.g005
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Figure 6. Haemagglutination inhibition (HI) titres of sera from immunized mice. The geometrical means of the HI titres are expressed as
reciprocals of the highest dilution of serum that inhibited four haemagglutinin units of virus. Values above the broken line (dilutions of $1:40)
indicates the presence of protective HI titres. A significant difference exits between HA samples and the non immunised control (p,0.0001).
doi:10.1371/journal.pone.0035688.g006

Figure 7. Innate immune response in human peripheral blood mononuclear cells. Cytokine production was measured by specific ELISA,
absorbance 750 nm. Data from biological triplicates representative from two independent experiments involving two different blood donors. IFN,
interferon; TNF, tumor necrosis factor. Gardiquimod and CL75 were used as controls (see methods).
doi:10.1371/journal.pone.0035688.g007
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importance for better vaccine design [53]. We investigated the

ability of plant extracts used in this study to induce an innate

immune response, and in particular, to determine if possible

endotoxin contaminations were present. The very strong TNFa
but not IFNa responses observed in our purified plant extract are

the hallmark of endotoxin contamination. Since this was not seen

in the crude transiently produced HA extracts, we believe

contamination of the HA sample occurred some time during the

purification process. The strong response for both TNFa and

IFNa that was induced by the A622-RNAi silenced N. glauca

extract, and to a lesser extent by the A622-RNAi hybrid extract,

indicates the presence of an inducer of the innate immune

response independent of an endotoxin contaminant in these plant

extracts. The induction may have been due to ssRNA present in

the RNAi plants, but these products are unlikely to be stable

enough to be endocytosed and activate endosomal TLR7 and

TLR8 responses. In Nicotiana, the alkaloid and polyamine

pathways share common precursors. The blocking of the

pyrimidine alkaloid pathway due to the absence of A622 activity

is likely to result in a build up of intermediate metabolites and/or

increase in the flux of precursors through the polyamine pathway.

Future work will investigate the nature of the innate immunity

inducer/s present in these extracts. Since polyamines have

previously been reported in the literature to induce innate

immune responses, these are thought to be likely candidates

[54,55]. It should be noted that although previous studies have

observed that innate immune responses act as a foundation to

enhance adaptive immune responses [39], no substantial

difference was observed between the adaptive immune response

resulting from crude HA extracts of the A622-RNAi hybrid lines,

that contain the putative inducer/s of the innate immune system

and the HA extracts from non- A622-RNAi plants (purified HA

extracts, and extracts from non-hybrid/WT hybrid lines). This

may be due to a threshold innate immune response not being

reached by the hybrid line which evoked a lower response than

the N. glauca A622-RNAi line (Figure 7), or the lack of

conservation of the innate immune sensor(s) involved between

human and mouse. Nevertheless, the results indicate the potential

for engineering further enhancement of these hybrid lines for

veterinary vaccine production purposes, with potential self-

adjuvanting properties.

In conclusion, our studies indicate the efficacy of HA-

containing, self-sterile, interspecific Nicotiana hybrids for produc-

tion of plant-made influenza vaccines. Elimination of pyridine

alkaloids in transgenic hybrid plants reduced toxicity of the crude

antigen extracts without adversely affecting plant growth and

productivity or the capacity of the plant extract to illicit an

immune response. Such alkaloid-free N. tabacum X N. glauca A622-

RNAi interspecific transgenic hybrids therefore have potential as a

model vaccine bioreactor system for production of plant-made

vaccines against influenza virus and possibly other infectious

agents. In particular, the use of such a system for animal

immunization studies has potential to improve efficiency of bio-

containment procedures and reduce the need for vaccine

purification which could substantially diminish the cost of

downstream processing.

Lastly, one of the major factors with administering antigens in

plant extracts is ensuring consistency in the dosage levels required

for effective immunization. The ability to use large-scale clonally-

propagated plant material for antigen production has the potential

to provide consistent levels of antigen in the plant extract and

hence address this problem.

Materials and Methods

Production of HA in plants
The HA glycoprotein was produced in Nicotiana leaf tissues

either by transient transfection with a viral-based vector system

(MagnICON) or through stable Agrobacterium-based genetic

transformation using a binary vector. A combination of native

or plant-codon optimized coding regions and the constitutive

promoters: cassava vein mosaic virus (CsVMV) promoter or

synthetic 4OCS-DMas promoter was assessed for the capacity to

produce the HA antigen. The pCHA, pDAB4492 and pDAB4493

binary plasmids are proprietary plant expression vectors belonging

to Dow AgroSciences LLC. The pCHA and pDAB4492 vectors

contain the CsVMV promoter whilst pDAB4493 contains the

4OCS-DMas promoter. Both pDAB4492 and pDAB4493 contain

the plant-optimized coding region of the HA gene (Figure 1). All

plasmids were cultured in Escherichia coli DH5a and electroporated

into Agrobacterium tumefaciens LBA4404 [56]. For preparation of

purified HA, the plant codon-optimised HA coding sequence was

amplified from the construct pDAB4493, using primers with

flanking NcoI and BamHI sites, and ligated into magnICON

plasmid pICH11599 (Icon Genetics) to produce the pICH-HA

sub-clone. Nicotiana benthamiana leaves transiently expressing HA

were produced using A. tumefaciens strain GV3101 transformed with

pICH-HA and co-transformed with the cytoplasm-targeting and

integrase modules of the MagnICON system (Icon Genetics

GmbH, Germany) [31,57,58]. A vacuum infiltration device was

used for this process. Plants were inverted so that their aerial

portion was submerged in 3 litres of A. tumefaciens, OD600 of 0.5

before being inserted into the vacuum infiltration device. A

vacuum was pulled to 25 mm Hg for 1 min, then quickly released.

The plants were returned to the greenhouse and the leaves

harvested ten days post-infiltration (dpi) and stored at 280uC until

processing.

Stable plant transformation
Transgenic plants of Nicotiana tabacum LAFC 53 (a low-alkaloid

variety of aabb genotype) [22,30], containing expression constructs

from pCHA, pDAB4492 or pDAB4493 binary vectors, were

obtained using a leaf disc transformation procedure as described

previously [16]. Independently transformed lines were selected on

medium containing 100 mg/L ammonium glufosinate and

transferred individually to pots of soil when root systems were

well developed. Plants were screened for HA production in leaf

tissues when approximately 10 cm in height using an enzyme-

linked immunosorbant assay (ELISA). Plants expressing high levels

of HA antigen (Nt LAFC-HA) were used in subsequent

experiments.

Genomic DNA extraction for detection of the HA gene in
transgenic plants

Nt LAFC-HA plants expressing high HA levels were selected for

further molecular characterisation. Genomic DNA was extracted

from 100 mg fresh leaves of T0 transgenic lines. Leaf material was

collected and snap frozen in liquid nitrogen before being crushed

to a fine powder with two 3 mm tungsten carbide beads for 1 min

at a frequency of 28/s in a bench-top Qiagen Mixer Mill.

Genomic DNA was then prepared using a standard CTAB

extraction protocol [59]. Genomic DNA (,0.5 mg) plants was used

as template in PCR analysis using transgene-specific primers;

HAF237 (59-GGSAACCCAATGTGTGATGAG-39) and

HAR1071 (59-CCATCCATCWAC CATKCCTTGCC-39) with

an annealing temperature of 52uC and a total of 30 cycles. An

amplicon of 854 bp was anticipated when using DNA from HA-
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positive transgenic plants. Southern transfer [60] was performed

using 15 mg of DNA from selected elite transgenic Nt LAFC-HA

plants following digestion with Hind III for both pDAB4492-HA

and pDAB4493 constructs and with Stu I for pCHA-HA. The HA

PCR amplicon of 854 bp noted above was labelled by incorpo-

ration of digoxigenin (DIG)-labelled dCTP using a PCR DIG

Probe Synthesis kit (Boehringer Mannheim, Germany). Probing

and visualization was performed using Roche Applied Science

DIG wash and block buffer set and a DIG Luminescent Detection

Kit. Hybridising bands were detected by exposure of labelled

membranes to X-ray film for 2–5 min.

Purification of reference HA protein
For large scale production of purified plant-made HA,

infiltrated leaf samples were homogenized in protein extraction

buffer (200 mM sodium borate pH 9, 5 mM EDTA pH 8,

20 mM DTT & 2.0% (w/v) sodium deoxycholate) and filtered

to removed cell debris. The lysate was centrifuged at 26,000 g for

30 min and filtered through Whatmann filter paper number 1.

Protein was precipitated by adding 1/3 volume of cold ethanol

(4uC) and stirring overnight at 4uC, followed by centrifugation at

14,000 g for 45 min. The pellet was resuspended in 600 mL of

buffer (50 mM Tris pH 8, 5 mM DTT & 2.0% (w/v) Tween 20)

for 1 hour at 4uC followed by centrifugation at 26,000 g for

30 min. The supernatant was extracted with an equal volume of

diethyl ether twice and the aqueous phase was degassed and

diluted into an equal volume of column buffer contained a final

concentration of 0.5% W/V Tween 20, 20 mM Tris-HCl pH 8,

150 mM NaCl, 0.5% (w/v) CHAPS, 1 mM CaCl2, 1 mM MgCl2
and 1 mM MnCl2.

The soluble protein was purified in a two-step purification

procedure by Green Chemistry Laboratories, Monash University,

Australia using a concanavlin A column and the anion exchange

resin Capto Q (GE healthcare). The soluble protein was loaded

into a 20 mL conA column. The column was eluted with 20 mM

Tris-HCl pH 8, 1 mM EDTA pH 8, 0.1% (w/v) CHAPS, 1 M

NaCl buffer and fractions containing HA were pooled and

dialyzed (10,000 MWCO Snake Skin, Pierce) against 20 mM Tris

pH 8, 1 mM EDTA pH 8 and 0.1% CHAPS at 4uC. The

dialyzate was loaded onto the anion exchange column and eluted

with 20 mM Tris-HCl pH 8, 1 mM EDTA pH 8, 0.1% (w/v)

CHAPS, 1 M NaCl buffer. The purity and quantification of

plant–made HA was determined by HPLC-FLD amino acid

residue analysis and SDS-PAGE.

Crude protein extraction
Crude protein was extracted by homogenising leaf material in

ice-cold extraction buffer [50 mM sodium phosphate, pH 6.6,

100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 1 mM PMSF

and Roche EDTA-free Complete Protease Inhibitor Cocktail

tablet] with two 3 mm tungsten carbide beads for 1 min at a

frequency of 28/s in a bench-top Qiagen Mixer Mill. Insoluble

material was removed by centrifugation at 13,000 rpm at 4uC for

5 min. HA content was quantified by capture ELISA.

HA-specific capture ELISA
Briefly, 96-well titre plates were plated with 50 mL per well of

diluted (1:10,000) goat-anti HA polyclonal antibody in phosphate

buffered saline with 0.05% Tween 20 (PBST). The plates were

sealed and incubated overnight at room temperature. All

subsequent incubations were performed at room temperature

and the plates were washed in PBST three times after each

incubation step. Plates were blocked with 5% dry milk (5%

PBSTM) for 90 min. A volume of 200 mL of crude plant extracts

or standard was added per well to the first row of the plate.

Samples and standards were serially diluted two-fold down the

plate using PBS and the plates were incubation for one hour. A

monoclonal mouse anti-HA antibody in PBS (100 mL of 1:2000

dilution) was added to each well and incubated for an hour. The

diluted goat anti-mouse IgG conjugated with horseradish

phosphatase (Sigma) (1:10000 dilution in PBS) was added to the

plates and further incubated for an hour. Detection was performed

using TMB Peroxidase EIA Substrate kit (Biorad) according to the

manufacturer’s directions. The amount of HA expressed in the leaf

was calculated by reference to a standard curve constructed using

purified HA (Benchmark Biolabs). Quantified ELISA data was

converted to microgram of HA per gram of fresh weight. Plant

lines with HA accumulation higher than 0.5 mg/g in fresh leaves

were chosen for further analysis.

SDS-PAGE and immunoblot analysis
Crude protein extracts from transgenic and wild type N. tabacum

plants were resolved by SDS-PAGE followed by western analysis.

Equal volumes of extracts were loaded on precast 10%

polyacrylamide gels (BioRad). 12 ng of purified plant-made HA

was used as the positive control. The separated proteins were then

transferred to a PVDF membrane (hybond-N, Amersham) before

being blocked with filtered 0.1% skim milk in PBS with 0.1%

Tween-20 for 16 hours at 4uC on a rocking platform. The

membrane was processed with Snap i.d (Millipore) according to

manufacturer’s instructions. The primary antibody used was a 1 in

2000 dilution of mouse anti-plant HA mAb in blocking buffer (as

described above). The secondary antibody was goat anti-mouse

IgG conjugated with horseradish phosphatase (HRP) (Sigma)

(1:10,000 dilution in blocking buffer). Detection of reactive protein

bands was performed using chemiluminescent substrate (ECL kit)

(Amersham) according to the manufacturer’s instructions.

Creation and analysis of transgenic interspecific hybrids
Hybridization between parental genotypes was performed with

plants grown in insect-free P2 greenhouse conditions with selected

T0 plants of HA–positive N. tabacum LAFC 53 plants serving as

female. Seed pods developed rapidly and several hundred fully

formed seeds were harvested approximately 3 weeks after

fertilization. Hybrid seed were selected for ammonium glufosinate

and kanamycin resistance to ensure the presence of both the HA

and the A622-RNAi constructs. Growth of plants in hydroponics

and alkaloid analysis of vegetative tissues was undertaken as

described previously [16,22,61]. Pollen viability in hybrid plants

and parental lines was estimated by incubating freshly dehisced

anthers in a few drop of 2% w/v acetocarmine solution and

determining the percentage of stained grains following microscopic

observation. Typically, viable pollen is deeply stained and rounded

whilst non-viable grains appear shrivelled and lightly stained [62].

The ability of fresh pollen grains to germinate in vitro was also

assessed using germination medium [63]. Observations were made

after several hours of incubation in medium at 25uC and pollen

tube growth was determined under light microscopy Axioskop

(Zeiss). Photographs were taken using a Zeiss Axiocam digital

camera using Axio Vision software.

Immunisation of mice with HA antigen
Inoculum preparation. Transgenic and wild type freeze

dried leaf powder was resuspended in PBS and centrifuged at

12,000 rpm in a Sorvall centrifuge on the immunization day. 20%

alum (aluminium hydroxide - Sigma) was added to the designated

extracts (Table 1) and incubated for 30 min on ice before dose

delivery. The HA vaccines contained 5 mg of purified HA (without
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alkaloid) or 5 mg of HA in crude leaf extract (containing zero, low

or normal levels of alkaloid). For crude leaf extract injection, doses

containing #50% LD50 of each alkaloid (,100 mg nicotine;

,3000 mg anabasine) [36,37] were delivered. An equivalent

amount of alkaloid was injected in the control wild type crude

leaf extract treatment. Mice were maintained under conditions

approved by the Animal Ethics Committee, School of Biological

Sciences, Monash University. Female C57BL/6J mice, six to

eight-weeks-old were used to test the immunogenicity of the plant-

made HA. Mice were housed in individual cages provisioned with

water and standard food and monitored daily for health and

condition. Mice were acclimatised for four days during which time

they were randomly assigned to ten groups comprising five to

seven mice each (Table 1). Groups of mice were subcutaneously

injected with 5 mg of purified HA or non-purified plant-made HA

leaf extract (with or without 20% of aluminium hydroxide as

adjuvant) on days 0, 7 and 14 in treatments as listed in Table 1.

After inoculation, mice were observed for any post-immunization

response before being returned to the animal house. Serum

samples were collected through tail tipping on days 24, 8, 15 and

cardiac puncture after CO2 inhalation on day 28. Blood samples

were allowed to clot at room temperature for one hour before

incubation at 4uC overnight. The samples were then centrifuged at

4uC for 10 min at 2500 rpm and the serum (top layer) removed to

a new centrifuge tube and stored at 220uC.

Analysis of the immunogenicity of plant-made HA in
mice

Endpoint titre ELISA was performed to determine the anti HA-

specific IgG response in mouse sera. High-binding 96-well ELISA

plates were coated with 50 mL of HA (1 mg/mL) in carbonate/

bicarbonate coating buffer (15 mM NaCO3, 35 mM NaHCO3,

0.02% NaN3, pH9.6). The plate was placed at room temperature

for one hour then further incubated at 4uC overnight. All

subsequent incubations were performed at 37uC and the plates

were washed in PBST three times after each incubation step.

Blocking buffer (5% skim milk in PBS with 0.05% Tween 20) was

added to the plate and incubated for 90 min. Serum samples were

diluted in 1:100 in sample buffer (1% skim milk in PBS with 0.05%

Tween 20) and added to the first row of the plate, followed by a

two-fold serial dilution in PBS down the plate and incubated for

2 hours. The diluted goat anti-mouse IgG conjugated with

horseradish phosphatase (Sigma) (1:5000 dilution in sample buffer)

was added to the plate and further incubated for an hour.

Detection was performed using TMB Peroxidase EIA Substrate kit

(Biorad) according to the manufacturer’s directions.

Rabbit anti-mouse class and subclass antibodies from mouse

monoAB ID kit (HRP) (Invitrogen) were used for isotyping mouse

immunoglobulins (IgG1 and IgG2a,) in sera samples as per the

manufacturer’s instructions. Absorbance was read at 405 nm using

a ThermoMax Microplate reader. Haemagglutination inhibition

(HI) assays were carried out as described [64] with some

modifications. Briefly, sera from immunized mice were diluted at

1:10 and heat inactivated in PBS at 56uC for 30 min. Chicken red

blood cells (CRBC) in Alsever’s solutions (kindly provided by Dr

Lori Brown, Melbourne University) were washed three times in

PBS and adjusted to the final concentration of 1% in PBS. The

purified split AIV virus (H5N9 Dow AgroSciences, Indianapolis,

USA) was diluted to four haemagglutinin units (HAU) in PBS as

standard antigen. In round-bottomed polystyrene 96-well micro-

titre plates, the diluted heat-inactivated mice sera were added to

the first well and two-fold serially diluted down to the final well of

the plate, then 4HAU of virus (1:1000) was added to all the wells

except the CRBC control wells. Plates were incubated at room

temperature for 30 min, and 1% CRBC in PBS was added to all

wells and further incubated for 30 min at room temperature.

Plates were then tilted at about 60u and wells were observed for

agglutination. The HI titre was defined as the reciprocal of the

greatest dilution of serum causing complete inhibition of

agglutination by 4 HAU of antigen.

Detection of cytokines production
Transgenic and wild type freeze dried leaf powder was

resuspended in PBS and centrifuged at 12,000 rpm. Cleared

supernatant was used for the analysis as described in [40]. Freshly

isolated peripheral blood mononuclear cells (PBMCs) from healthy

blood donors were plated in 150 uL RPMI medium supplemented

with 5% fetal calf serum and incubated for 4 hours at 37uC (150–

200,000 cells per well of a 96 well plate). 50 uL of plant extract

were added to each well and incubated for 18 hours. Supernatants

were subsequently collected and IFNa and TNFa levels quantified

using reported procedures with specific ELISA assays [40]. CL75

also known as 3M-002 (human TLR8 agonist and mouse TLR7

agonist, Thiazoquinoline) and Gardiquimod (human TLR7

agonist, imidazoquinoline), were purchased from Invivogen (San

Diego, CA) and used at a final concentration of 1 mg/mL (3M-002

and Gardiquimod).

Data transformation and statistical analysis
The starting point for the cut-off dilution determining a ‘‘no

response’’ was established by determining the first dilution point of

each pre-bleed sample where readings plateaued to a slope of less

than 0.05. The endpoint titre was estimated as the reciprocal of

the highest dilution of the sera that had $0.1 OD450 above the

non-treated (negative control) mouse sera. The geometric mean

titre (GMT) of these starting points was calculated for each

treatment group. GraphPad Prism 5 was used for all statistical

analyses performed in this study. Chi squared tests were used to

determine the statistical significance between means or medians

using probabilities of p,0.05 as the limit for observed differences

to be considered significant. A two-tailed unpaired t-test was

performed to evaluate the statistical difference between two groups

of plant or animal data.
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35. Béclin C, Boutet S, Waterhouse P, Vaucheret H (2002) A Branched Pathway for

Transgene-Induced RNA Silencing in Plants. Current Biology 12: 684–688.

36. Lee ST, Wildeboer K, Panter KE, Kem WR, Gardner DR, et al. (2006) Relative
toxicities and neuromuscular nicotinic receptor agonistic potencies of anabasine

enantiomers and anabaseine. Neurotoxicology and Teratology 28: 220–228.

37. Driscoll P (1972) The comparative toxicity for mice of five commonly used

nicotine preparations. Sozial- und Präventivmedizin/Social and Preventive
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63. Schlüpmann H, Bacic A, Read SM (1993) A novel callose synthase from pollen

tubes of Nicotiana. Planta 191: 470–481.
64. Noah DL, Hill H, Hines D, White EL, Wolff MC (2009) Qualification of the

Hemagglutination Inhibition Assay in Support of Pandemic Influenza Vaccine
Licensure. Clin Vaccine Immunol 16: 558–566.

Plant Platform for Production of Animal Vaccines

PLoS ONE | www.plosone.org 14 April 2012 | Volume 7 | Issue 4 | e35688


