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Abstract

Cross-frequency coupling is emerging as a crucial mechanism that coordinates the integration of

spectrally and spatially distributed neuronal oscillations. Recently, phase-amplitude coupling, a

form of cross-frequency coupling, where the phase of a slow oscillation modulates the amplitude

of a fast oscillation, has gained attention. Existing phase-amplitude coupling measures are mostly

confined to either coupling within a region or between pairs of brain regions. Given the availability

of multi-channel electroencephalography recordings, a multivariate analysis of phase amplitude

coupling is needed to accurately quantify the coupling across multiple frequencies and brain

regions. In the present work, we propose a tensor based approach, i.e., higher order robust

principal component analysis, to identify response-evoked phase-amplitude coupling across

multiple frequency bands and brain regions. Our experiments on both simulated and

electroencephalography data demonstrate that the proposed multivariate phase-amplitude coupling

method can capture the spatial and spectral dynamics of phase-amplitude coupling more

accurately compared to existing methods. Accordingly, we posit that the proposed higher order

robust principal component analysis based approach filters out the background phase-amplitude

coupling activity and predominantly captures the event-related phase-amplitude coupling

dynamics to provide insight into the spatially distributed brain networks across different frequency

bands.
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I. INTRODUCTION

NEURONAL oscillations and the interactions between them are believed to play a key role

in understanding the cognitive function of the brain [1], [2]. The interaction and

coordination between oscillations at different frequencies is defined as cross-frequency
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coupling (CFC) [3], [4]. CFC plays a fundamental role in large scale neuronal encoding and

communication by providing temporal and spatial dynamics necessary for routing

information through brain networks [3], [5]. CFC is an umbrella term to define a variety of

phenomena like phase-phase coupling (PPC), amplitude-amplitude coupling (AAC), and

phase-amplitude coupling (PAC).

One of the most studied forms of CFC is PAC, which quantifies the interplay between the

phase of a slower oscillation and the envelope of a faster oscillation [4]. PAC has been

reported to play a critical role in the execution of cognitive functions [6], attention selection

[7], long-term memory processing [8], and sensory signal detection [9]. Although a variety

of metrics have been developed to quantify PAC, most of these measures are bivariate in

nature, i.e., they quantify local PAC observed between different frequencies of the same

signal (within-channel PAC) or two different signals (cross-channel PAC). With the

availability of multi-channel EEG data, there is a growing need for methods that can

quantify neuronal couplings across the whole brain and across different frequency bands.

Recently, several methods have been introduced to quantify multivariate phase amplitude

coupling [10]–[12]. The existing methods are based on matrix factorization and as a result,

they model multivariate PAC for a pre-defined pair of frequencies rather than capturing the

variation of PAC across space and frequency, simultaneously. For example, phase coupling

estimation (PCE) is limited to quantifying CFC between one high frequency and N low

frequency signals. As such, PCE cannot capture the whole brain CFC dynamics. [11].

Generalized eigendecomposition (gedCFC), on the other hand, is based on generalized

eigendecomposition of multi-channel covariance matrices [10]. This is a hypothesis-driven

framework and requires a priori knowledge about the low and high frequency bands that are

coupled with each other. Thus, even though it is a multivariate PAC analysis method, it is

limited to two pre-determined frequency bands. In recent work [12], we have introduced a

tensor based framework using PARAFAC decomposition to identify multivariate PAC.

While this method can capture the multi-way nature of PAC across channels and frequency

bands, it is highly dependent on model order selection. Moreover, it identifies the phase and

amplitude providing channels separately rather than directly determining the coupled

channel pairs. Thus, this method requires additional significance testing of all possible

combinations of phase and amplitude providing channels identified through the outer

product of the extracted factors.

In this paper, we first compute bivariate PAC values across all phase and amplitude

providing channels, frequency bands, and subjects and then represent these pairwise PAC

values as a multi-way tensor. We propose a Higher order Robust Principal Component

Analysis (HoRPCA) based multivariate framework to capture the spatial and spectral

variation of the event-related PAC. HoRPCA decomposes an input tensor into low-rank and

spare parts and has been widely used in a variety of outlier detection applications such as

distinguishing sparse event-related EEG from the background non-task related brain activity

[13]–[15]. It has been previously reported that different behavioral tasks evoke distinct

patterns of PAC across the cortex [16]. For example, enhanced PAC in the temporal cortex

region is correlated with working memory maintenance tasks [17] whereas an increase in

PAC in the medial frontal cortex is related to error processing tasks [18]. During an event-
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related study, as all subjects perform the same task and respond to the same stimulus, we

assume a relatively similar PAC network structure exists for all subjects. A similar

assumption was previously made about within frequency synchronization networks [15],

[19]. Based on this assumption for event-related activity, HoRPCA based multivariate PAC

approach captures the background PAC network in the low-rank part of the tensor while the

sparse tensor captures the PAC activity associated with the event of interest. We evaluate the

performance of HoRPCA based multivariate PAC approach on synthetic EEG data with

varying signal parameters such as noise, subject variability, and volume conduction and

compare it with existing multivariate PAC approaches. Finally, we apply the proposed

method to EEG recordings collected during a cognitive control study to identify the spatial

and spectral dynamics of pairwise PAC associated with different response types and to

differentiate between the response types using multivariate analysis of PAC networks.

II. BACKGROUND

A. RID-Rihaczek Time-Frequency Distribution

RID-Rihaczek time-frequency distribution of a signal x(t) is defined as1 [20]:

C t, f = exp θτ 2

σ × exp j θτ
2 A θ, τ e− j θt + 2π f τ dτdθ, (1)

where exp(− θτ 2
σ ) corresponds to the Choi-Williams kernel, and exp( jθτ

2 ) corresponds to the

kernel function of the Rihaczek distribution [21], A(θ, τ) refers to the ambiguity function of

x(t) and is defined as:

A θ, τ = x(u τ
2)x (u τ

2)e jθudu . (2)

This is a complex-valued distribution that can be employed to extract the amplitude and

phase components of a given signal. In this paper, this time-frequency distribution will be

used to extract the phase of the low frequency and amplitude of the high frequency

oscillations to compute PAC as detailed in Section III-A.

B. Tensor Notation

A multidimensional array with N modes given as 𝒳 ∈ ℝ
I1 × I2 × … × IN is called a tensor,

where xi1,i2,..iN denotes the (i1, i2,..iN)th element. Column vectors obtained by fixing all

indices of the tensor except the one that corresponds to nth mode are called mode-n fibers.

The process of rearranging the tensor elements into a matrix is defined as unfolding or

matricization. The mode-n unfolding of the tensor 𝒳, which is denoted by X(n), can be

obtained by arranging the mode-n fibers as the columns of the resulting matrix. The

vectorization of 𝒳 is defined as vec(𝒳).

1All integrals are from −∞ to ∞ unless otherwise noted.
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III. METHODS

A. Time-Frequency PAC (t-f PAC)

PAC for a given signal is defined as the modulation between the amplitude Afa (t) of the high

frequency (fa) with the phase φfp (t) of the low frequency (fp) oscillations. The first step in

computing PAC between two neuronal oscillations, x(t) and y(t) (where the amplitude of x(t)
is coupled with the phase of y(t)) is to compute the RID-Rihaczek distributions Cx (t, f) and

Cy (t, f) following (1). The amplitude component of x(t) at the desired frequency fa is

extracted from the frequency constrained time marginal of Cx (t, f) as follows [22], [23]:

Ax
f a t =

f a1

f a2

Cx t f d f (3)

where fa1 and fa2 refer to the bandwidth around the high frequency of interest, fa. The phase

component of y(t) at the desired frequency fp is computed from the complex RID-Rihaczek

distribution Cy (t, f) as follows [22], [23]:

ϕy
f p t = arg

Cy(t, f p)
|Cy(t, f p)| . (4)

After quantifying the amplitude and phase components, bivariate PAC between x(t) and y(t)
can be computed using the amplitude normalized modulation index (MI) proposed by

Özkurt and Schnitzler [24] as follows:

MIx, y( f p, f a, t) = 1
K

k 1

K

Ax k
f a t e

jϕy k
f p t

k 1

K
Ax k

f a t
2

, (5)

where K is the number of trials, Ax, k
f a t  is the extracted amplitude component from x(t) at

high frequency fa for the kth trial and ϕy, k
f p t  is the extracted phase component at low

frequency fp from y(t) for the kth trial. This metric quantifies PAC as a function of time, low

frequency (fp) and high frequency (fa) and is between 0 and 1. As time-frequency based

phase and amplitude component estimates were used to compute MIx, y(fp, fa, t), for the

remainder of the paper, this PAC index will be referred to as t-f PAC to differentiate it from

conventional PAC metrics. MATLAB implementation of this metric is given in [25]. From

this t-f PAC, we compute time averaged PAC as: MIx, y f p, f a = t T
MIx y f p f a t

T , where

T is the time window of interest and |T| is the number of time points in that interval. This

time averaged PAC, which is constructed by averaging the multi-dimensional t-f PAC

estimate within a time window of interest, is used for constructing the PAC networks. As
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such, although t-f PAC itself is a time-varying metric, the PAC networks are not time-

varying.

B. Statistical Significance Testing

The significance of pairwise PAC values can be determined by surrogate data testing. The

surrogate data is generated by following the block swapping procedure suggested in [26]. In

this approach, a surrogate amplitude time series was generated by splitting the amplitude

time series at a random point and swapping the two obtained time series. This surrogate

amplitude time series was then associated with the original phase time series to compute

PAC values. This procedure was repeated 100 times to generate 100 random time averaged

surrogate PAC values for each frequency pair. Using these values, a threshold value, Thi,j(fp,
fa) is obtained at the 95% confidence interval for each low frequency (fp) - high frequency

(fa) combination between phase channel i and amplitude channel j. Time averaged PAC

values that surpass this threshold value are considered significant for that low-high

frequency pair and used for constructing the PAC network.

We also obtain a threshold Thi, j Fp, Fa , for all 1 ≤ i, j ≤ N channel pairs and low and high

frequency band pairs by averaging all the threshold values within those frequency bands,

i.e., Thi, j Fp, Fa =
f p Fp

f a Fa
Thi j f p f a

Fp Fa
, where Fp is the low frequency band of

interest, Fa is the high frequency band of interest, |Fp| is the number of frequencies in the low

frequency band Fp and |Fa| is the number of frequencies in the high frequency band Fa.

C. PAC Tensor Construction Across Frequency Bands and Subjects

For a channel and frequency band pair, we first compute the pairwise time averaged PAC

MIi, j (fp, fa) for all frequencies of interest, fp and fa and compare it with the threshold value

Thi, j(fp, fa). MIi, j (fp, fa) values that surpass the corresponding threshold values are

considered significant and used for computing the average PAC for that channel pair. After

quantifying the pairwise time averaged PAC for all EEG channels and across all frequencies,

a N × N weighted and directed connectivity network, AFp, Fa, is constructed where,

Ai j
Fp, Fa = MIi, j Fp, Fa , for all 1 ≤ i, j ≤ N. Here,

MIi, j Fp, Fa =
f p Fp

f a Fa
MI i j f p f a

Fp Fa
, where Fp is the low frequency band of

interest, Fa is the high frequency band of interest, |Fp| is the number of frequencies in the low

frequency band Fp, |Fa| is the number of frequencies in the high frequency band Fa and

MIi, j* f p, f a =

MIi, j f p, f a , if MIi, j f p, f a

> Thi, j f p, f a ,

0, otherwise .
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In this paper, we focus on four different low frequency bands (Fps), delta (1-3 Hz), theta (4-7

Hz), alpha (8-12 Hz), and beta (13-30 Hz) that may modulate the amplitude of the high

frequency (Fa) band gamma (31-100 Hz). After constructing these adjacency matrices for all

frequency bands of interest, the goal of multivariate PAC analysis is to detect the spatial and

spectral localization of the coupled channel pairs.

Given AFp,Fa, a 4-way tensor 𝒜 ∈ ℝN × N × M × S is constructed where the first mode

corresponds to N phase providing channels, second mode corresponds to N amplitude

providing channels, third mode corresponds to the M different low-high frequency band

pairs and the fourth mode of the tensor is included to capture the variation of PAC values

across S subjects.

D. PARAFAC-Based Multivariate PAC

In this paper, we compare our proposed approach with a previously proposed PARAFAC

based multivariate analysis. PARAFAC is a generalization of PCA for multi-way data and

has been commonly used to extract information from multi-channel EEG data [27]–[29]. For

PARAFAC based multivariate PAC, following [12], a 4-way PARAFAC decomposition is

used to express 𝒜 in terms of its factors across each mode. As 𝒜 is non-negative, a non-

negativity constraint was imposed on the PARAFAC factors as follows:

𝒜i jkl =
r 1

R
λrairb jrckrdlr (6)

where, air ≥ 0, bjr ≥ 0, ckr ≥ 0 and dlr ≤ 0 are the elements of the loading vectors across each

mode. The first mode factors ar ∈ ℝN × 1 provide the spatial loading for the different phase-

providing channels whereas br ∈ ℝN × 1 provide the spatial loading for the different

amplitude-providing channels. The third mode factors, cr ∈ ℝK × 1 correspond to the low

frequency bands that modulate the high frequency band. The factors for the fourth mode

dr ∈ ℝS × 1 contain the signature for each subject. As described in [12], the peaks in the

factors of the first two modes allow us to determine the spatial locations of the phase- and

amplitude-providing channels while the peaks in the factors of third mode provide the

coupled low-high frequency band pairs. In this analysis, the rank, R was determined using

DIFFerence in FIT (DIFFIT) method proposed in [30] as it was reported to be more suitable

for offline analysis [31].

E. HoRPCA-Based Multivariate PAC

For matrix or two-way data, the limitations of PCA associated with outliers and non-

Gaussian errors have been addressed using robust PCA (RPCA) [32]. In this method, a given

matrix is decomposed into a low-rank and a sparse matrix. The extension of RPCA to

higher-order data, i.e., tensors, has been proposed recently by Goldfarb and Qin [33]. In

HoRPCA, the nuclear rank of a matrix is altered by the Tucker rank (Trank) of a tensor. To

generalize RPCA to tensors, Trank and l0 norms are replaced with their convex surrogates

CTrank and l1 norm. Given a tensor, 𝒳, the corresponding optimization problem is given as:
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minℒ, 𝒮CTrank ℒ + λ 𝒮 1 subject to ℒ + 𝒮 = 𝒳, (7)

where ℒ is the low-rank part of the tensor and 𝒮 is the sparse part of the tensor and

𝒮 1: = vec 𝒮 1.

In this paper, we propose to employ HoRPCA [34]–[36] to capture the dynamics of

multivariate PAC. HoRPCA is applied to 𝒜 to obtain the estimates of low-rank component

ℒ and sparse component 𝒮. The low-rank tensor ℒ accounts for the background or task-

independent PAC network whereas the sparse component 𝒮 represents the task-relevant PAC

network.

For computing HoRPCA, we considered the Singleton model proposed in [33], which

evaluates the nuclear norm of the tensor as the sum of the nuclear norms of the mode-n

unfolding of the tensor, so CTrank L : =
i 1
4

L i . HoRPCA with the Singleton low-

rank tensor model can be written as the following convex optimization problem:

minℒ, 𝒮
i 1

4
L i λ 𝒮 1 subject to ℒ 𝒮 𝒜 (8)

The low-rank component ℒ and sparse component 𝒮 can be extracted from 𝒜 by solving (8)

using an alternating direction augmented Lagrangian (ADAL) method [33]. To apply

HoRPCA algorithm, we need to tune the regularization parameter λ, which controls the

trade-off between the sparse and low-rank parts of the tensor 𝒜. If λ is small, more data

points will be allowed to move from ℒ to 𝒮, and as λ increases fewer data points will be

considered anomalous. For this study, following [33], λ was set as λ ≡ 1
Imax

 where,

Imax = max N, N, M, S .

For multivariate PAC detection, we are interested in the sparse component 𝒮, as the nonzero

elements of this tensor will provide us the phase and amplitude providing channels. Each

row of 𝒮 : , : , m, l  will provide the phase providing channels while each column of 𝒮 : , : , m, l
will provide the amplitude providing channels for the mth frequency band and lth subject.

Fig. 1 illustrates the flowchart for the proposed HoRPCA based multivariate PAC detection

method. A toy example detailing how the proposed HoRPCA based multivariate t-f PAC

measure can detect coupled channel pairs and the frequency band pairs, simultaneously, is

provided in the supplementary material.

IV. DESCRIPTION OF DATASETS AND EXPERIMENTS

The proposed multivariate PAC approach was validated first on multiple synthesized data

sets, and then on EEG data collected during a cognitive control study.

Munia and Aviyente Page 7

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Synthesized Multi-Channel Data

To generate synthesized EEG data, time series data were created at 2, 004 dipole locations in

the brain. These dipole locations were based on the standard MRI brain. EEG data were

created by considering the fact that the spectrum of EEG data follow the power law, i.e.,

higher the frequency, weaker the amplitude (P( f ) ∼ ( 1
f β )). The rate of decay of the amplitude

is defined by the parameter β with β = 0, 1, and 2 indicating white noise, pink noise, and

Brownian (red) noise, respectively [37]. The frequency spectrum of the human brain has

been reported to be similar to Brownian noise [38], [39], hence EEG data was generated

from Brownian noise. Time series data from Brownian noise was generated at each of the 2,

004 uncorrelated dipole locations in the brain at a sampling frequency of Fs Hz. Cross-voxel

correlations were imposed across all the dipoles by generating a random dipole-to-dipole

correlation matrix. The new data matrix was constructed as Y = XTV D1/2, where V is the

eigenvector, D is the eigenvalue, and X is the data matrix. To project each dipole location to

the scalp EEG locations, the forward model was generated by following the openmeeg [40]

algorithm implemented in Brainstorm [41].

To introduce phase-amplitude coupling in the simulated data, first the dipole locations

corresponding to the high frequency amplitude component and low frequency phase

component were chosen. Brownian noise signal xB(t) was generated with a sampling

frequency of Fs Hz. Low frequency phase signal xfp (t) was generated by bandpass filtering

xB(t) at the phase providing frequency fp with a bandwidth of 2 Hz (fp ± 1 Hz). To create the

amplitude signal, xB (t) was bandpass filtered at the amplitude providing frequency fa with a

bandwidth of 10 Hz (fa ± 5 Hz) to ensure that the high frequency activity is broadband. PAC

was generated using the procedure described by Kramer and Eden [42]. The time locations

of relative maxima of the phase signal xfp (t) were detected. At each maxima, a DC shifted

Hanning window with a duration of 42 ms, was multiplied with the amplitude time series.

The amplitude signal xfa (t) with monophasic coupling was generated at high frequency fa

by multiplying the Hanning window with the filtered amplitude time series centered at the

relative maxima (peaks) of the phase signal xfp (t). The coupling intensity is controlled by

multiplying the Hanning window itself with a multiplier I, where I = 1 indicates full

coupling and I = 0 indicates no coupling. Finally, the time series of the chosen dipole

locations were replaced with xfp (t) for the low frequency and xfa (t) for the high frequency

signal. The whole procedure was repeated d times to generate d distinctly coupled neuronal

oscillations between 2d dipole locations (d phase providing dipoles and d amplitude

providing dipoles).

B. EEG Data

The EEG dataset used to assess the proposed PAC measure was collected during a cognitive

control-related error processing study. The experiment conducted was a letter version of the

speeded-reaction Flanker task [43]. The study was designed following the experimental

protocol and guidelines approved by the Institutional Review Board (IRB) of the Michigan

State University (IRB: LEGACY13-144). The data acquisition was performed following the

guidelines and regulations established by this protocol. Written and informed consent was

collected from each participant before data collection. A string of five letters, which could
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be congruent (e.g., SSSSS) or incongruent (e.g., SSTSS), was exhibited in front of each

participant for each trial. The participants have to select the center letter with a standard

mouse with respect to the Flanker letters. The trials began with a 35ms of flanking stimuli

(e.g., SS SS). Then, the target stimuli were embedded in the center of the flankers (e.g.,

SSSSS/SSTSS) and remained for 100 ms (total presentation time is 135ms) followed by an

inter-trial interval of varying duration ranging from 1200 to 1700 ms.

Continuous EEG responses were recorded using the ActiveTwo system (BioSemi,

Amsterdam, The Netherlands) by placing the 64 Ag–AgCl channels following the

international 10/20 system. All EEG signals were sampled at 512 Hz. The trials with

artifacts were removed, and volume conduction was minimized using the Current Source

Density (CSD) Toolbox [44]. The artifact removed data were considered for analysis in this

paper. The trials corresponding to the error and correct responses were separated from each

other for analysis. Each trial was one second long. A total of 20 participants were considered

for the ongoing study. The inclusion criteria were that the number of trials for error response

should be at least 20 or higher. Since the total number of correct/error response trials varies

for different participants, the number of trials considered for both responses were kept the

same for a fair comparison. The correct response trials were randomly sub-sampled from the

whole set of correct responses and the whole procedure was repeated 10 times to select the

correct response trials.

C. Synthesized Data Experiments

The proposed HoRPCA based multivariate PAC method is first tested on the synthesized

data set described in Section IV-A. Experiments were conducted to evaluate the robustness

of the proposed method against spurious coupling due to noise, subject variability and linear

mixing with respect to existing approaches. In these experiments, HoRPCA based method

was compared to three other methods, i.e., simple averaging, matrix factorization based

gedCFC [10] and PARAFAC based method [12]. For simple averaging method, we first

average the delta-gamma, theta-gamma, alpha-gamma and beta-gamma PAC networks for

each subject. We also average the thresholds for delta-gamma, theta-gamma, alpha-gamma

and beta-gamma networks obtained from the statistical significance testing described in

Section III-B for each subject. To detect the coupled channels, we compare the averaged

PAC network with the thresholds for each electrode pair. PAC values for gedCFC were

computed following the codes provided in [10]. As gedCFC computes PAC between two

pre-defined low and high-frequency bands, we compute gedCFC based PAC individually for

each frequency band pair combination. PARAFAC based analysis is conducted as described

in section III-D. For both gedCFC and PARAFAC based methods, to differentiate the

coupled channel pairs from background PAC values, the outputs of these two methods are

compared to the average threshold PAC value Thi, j Fp, Fa  for that channel pair obtained

through the statistical significance testing described in Section III-B.

In this section, we conducted two experiments. Experiment 1 focuses on whether the

methods can differentiate true coupling from no coupling whereas experiment 2 focuses on

the accuracy of the detected channel pairs. The performance evaluation metrics and the

description of the experiments are as follows.
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Performance evaluation metrics: The performance metrics are:

1. Precision = T P
T P + F P ,

2. Recall/sensitivity = T P
T P + F N ,

3. F−measure = 2 × precision × recall
precision + recall ,

4. G−mean = sensitivity × speci f icity,

where, Specificity = T N
T N + F P ,

where

• TP (true positive): coupled pairs detected as coupled.

• FP (false positive): uncoupled pairs detected as coupled.

• FN (false negative): coupled pairs detected as uncoupled.

• TN (true negative): uncoupled pairs detected as uncoupled.

1) Experiment 1: Evaluation of Detection Power of Different Approaches:  In this

experiment, we are interested in quantifying the ability of the different methods to

differentiate between multi-channel data with and without PAC for different noise levels.

This simulation is conducted to ensure that our method is robust against external noise, e.g.,

measurement or biological noise, and is able to differentiate true coupling from uncoupled

oscillatory activity. Two multi-channel EEG datasets were generated. First dataset was

generated with theta-gamma coupling (I = 0.7) between any two randomly selected dipole

locations. Signals for amplitude and phase providing dipoles were generated following the

procedure described in Section IV-A. For all other dipoles, the signals were time series data

generated from Brownian noise. This procedure was repeated 20 times to generate a dataset

with 20 subjects with different dipole locations and this dataset was referred to as ’dataset

with coupling’. For the second dataset, low and high frequency signals were generated at the

same dipole locations as the first dataset but the coupling intensity was set to zero (I = 0) to

generate no-coupling condition. This procedure was also repeated 20 times to generate a

dataset with 20 subjects and this dataset was referred to as ’dataset without coupling’. The

performance of each approach was determined by evaluating whether each method detected

any coupled pairs for each subject or not. Based on this evaluation, detection accuracy in

terms of precision, recall, F-measure and G-mean is quantified across subjects for varying

signal to noise ratio (SNR) levels (−6dB to 6dB). We repeat the whole experiment 20 times

to quantify the variability of each method.

2) Experiment 2: Performance Evaluation With Varying Signal Parameters:  We next

conduct experiments assessing the accuracy of the detected coupled channel pairs with

respect to various signal parameters, including noise, variability in dipole locations and

number of coupled channel pairs. As gedCFC cannot detect multiple channel pairs across

multiple frequencies, it was not included in these comparisons. For evaluating the

performance of the remaining three methods (HoRPCA, PARAFAC and averaging), for a
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fair comparison, the number of channel pairs detected by each method was fixed as the

actual number of coupled pairs in the data.

Robustness to noise: To evaluate the robustness of the proposed method, we generated

synthesized data with additive white Gaussian noise of varying SNR from −6dB to 6dB

added to all dipole locations. Assessing the robustness to noise is important as real EEG

signals are not simple linear combinations of dipole sources and noise can be generated by

both neural and external measurement systems. Eight coupled pairs (5 theta-gamma and 3

alpha-gamma) were generated for each subject between 16 dipole locations (8 phase

providing and 8 amplitude providing dipoles) following the steps described in Section IV-A.

The projections of these dipole locations are shown in Fig.2. This procedure was repeated

ten times to generate a dataset with ten subjects for each SNR level. The whole experiment

was repeated 20 times to quantify the variability of each method.

Robustness to subject variability: For multi-subject analysis, methods such as our

method which tries to identify coupled channels across subjects, variability across subjects is

natural. In this experiment, we evaluate the performance of the proposed method by

introducing variability in the location of the coupled channels to determine the robustness of

the method against variability across subjects. First, eight multivariate coupled pairs of

oscillations (5 theta-gamma and 3 alpha-gamma) were generated for each subject between

16 locations (8 phase providing and 8 amplitude providing) following the steps described in

Section IV-A and for the dipoles illustrated in Fig.2. Using this procedure, a dataset was

generated with ten subjects. SNR was fixed at 6dB for all subjects. Variability was

introduced by changing 5% to 25% of the dipole locations with a step size of 5% for

different datasets. We repeated the whole experiment 20 times to quantify the variability of

each method.

Robustness to volume conduction: The performance of the proposed measure was

also evaluated with increasing number of coupled channel pairs to determine the robustness

of the proposed method against volume conduction. Volume conduction is very commonly

encountered in EEG and refers to the phenomenon where nearby electrodes are highly

correlated with each other due to the conductivity of the scalp [45]. This is important as the

number of coupled dipoles increases there will be more interference across channels which

may make it harder to detect the truly coupled channels. Synthesized datasets (10 subjects in

each dataset with the same number of coupled pairs) were generated by varying the number

of coupled channel pairs from 4 to 20 following the steps described in Section IV-A. SNR

was fixed at 6dB for all subjects. 75% of the coupled channel pairs were theta-gamma

coupled while 25% were alpha-gamma coupled. The whole experiment was repeated 20

times to quantify the variability of each method.

D. EEG Data Experiments

1) Detection of PAC Networks: Using the average PAC within a frequency band and

time window of interest (MI) defined in section III-C, pairwise PAC values were computed

across all 64 electrodes for delta-gamma, theta-gamma, alpha-gamma and beta-gamma

frequency band combinations for each subject and response type, error and correct. As

Munia and Aviyente Page 11

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previous studies indicate increased synchronization associated with the ERN in the time

window 0-100 ms [46], the connectivity matrices were constructed by averaging the time-

varying PAC within this time window. This resulted in 𝒜error ∈ ℝ64 × 64 × 4 × 20 and

𝒜correct ∈ ℝ64 × 64 × 4 × 20.

HoRPCA is applied on both 𝒜error ∈ ℝ64 × 64 × 4 × 20 and 𝒜correct ∈ ℝ64 × 64 × 4 × 20 to

obtain the estimates of low-rank components ℒerror, ℒcorrect and sparse components 𝒮error,

𝒮correct. The sparse components indicate that the theta-gamma frequency band pairs have

the highest PAC for both EEG error and correct responses. The set of coupled channels for

error and correct responses for theta band across all subjects was determined for all 1 ≤ i, j ≤
N as:

Error response: Xer i, j =
i 1

20
𝟙

ℝ
𝒮error i j 2 l (9)

Correct response: Xcr i, j =
l 1

20
𝟙

ℝ
𝒮correct i j 2 l (10)

where, 𝟙
ℝ+ 𝒮error i, j, 2, l =

1, if 𝒮error i, j, 2, l > 0,

0, otherwise,

and 𝟙
ℝ+ 𝒮correct i, j, 2, l =

1, if 𝒮correct i, j, 2, l > 0 .

0, otherwise .

The detected channel combinations for error (Xer) and correct (Xcr) responses are referred to

as PAC networks for error and correct responses, respectively.

2) Classification Based on Detected PAC Network: A classification experiment

was conducted to determine if the detected multivariate PAC networks can be used as

features to discriminate between error and correct responses. As the proposed method uses

the sparse part of the tensor for classification and since this sparse part is data dependent, the

classification was performed by following the sparse representation classification (SRC)

approach described in [47], [48].

We first generate training and test samples from 𝒜error ∈ ℝ64 × 64 × 4 × 20 and

𝒜correct ∈ ℝ64 × 64 × 4 × 20 using 5-fold cross-validation. For each validation, we take I

subjects (both error and correct responses) to generate a test set

𝒜test ∈ ℝ64 × 64 × 4 × 2I = 𝒜errtest
, 𝒜crrtest

. We then compute HoRPCA for the remaining J
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= 20 − I subjects in the training set separately for error 𝒜errtrain
∈ ℝ64 × 64 × 4 × J and correct

responses 𝒜crrtrain
∈ ℝ64 × 64 × 4 × J to obtain two separate training feature matrices

corresponding to error and correct responses. The feature matrices are the fourth mode slices

of the sparse tensors 𝒮errtrain
∈ ℝ64 × 64 × 4 × J and 𝒮crrtrain

∈ ℝ64 × 64 × 4 × J corresponding

to each subject j ∈ {1, 2, …, J} in the training set. Next, for each subject and response type

in the test set 𝒴k = 𝒜test : , : , : , k , we concatenate the error and correct tensors with the

PAC tensor corresponding to each test sample 𝒴k  separately, i.e., we end up with two

tensors 𝒜errtrain
, 𝒴k ∈ ℝ64 × 64 × 4 × J + 1) and 𝒜crrtrain

, 𝒴k ∈ ℝ64 × 64 × 4 × J + 1). We

perform HoRPCA on each of these tensors and extract the sparse matrix corresponding to

the test sample. This results in two feature matrices for our test sample, one based on

projection with respect to the error training samples and the other based on projection with

respect to correct training samples. For each of these feature matrices, we compute the

distances between the feature matrix from the test sample and the feature matrices obtained

from the training data. The test sample is assigned to the class to which it has the smallest

distance, i.e., Nearest Neighbor (NN) classification. We repeat this procedure across all test

samples and multiple 5-folds and report the average accuracy. The overall procedure is

summarized in Algorithm 1.

Algorithm 1

Sparse Representation-Based Classification (SRC) of PAC Networks

Input : Training tensors: 𝒜errtrain
∈ ℝ64 × 64 × 4 × J

 and

  𝒜crrtrain
∈ ℝ64 × 64 × 4 × J

; Test tensor:

  𝒜test ∈ ℝ64 × 64 × 4 × 2I = 𝒜errtest
, 𝒜crrtest

, where,

  𝒜errtest
∈ ℝ64 × 64 × 4 × I, 𝒜crrtest

∈ ℝ64 × 64 × 4 × I .

Output: Label of test samples in 𝒜test .

1 Perform HoRPCA on 𝒜errtrain
 and 𝒜crrtrain

 using (8) to obtain training features 𝒮errtrain
 and 𝒮crrtrain

 .

2 for k = 1 to 2I do

3  𝒴k = 𝒜test : , : , : , k .

4  Using (8), perform HoRPCA on

𝒜errtrain
* = 𝒜errtrain

, 𝒴k , 𝒜crrtrain
* = 𝒜crrtrain

, 𝒴k
to obtain 𝒮errtrain

*  and 𝒮crrtrain
* .

5  𝒮errtest
k 𝒮errtrain

* : , : , 2, J + 1

6  𝒮crrtest
k 𝒮crrtrain

* : , : , 2, J + 1 .
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7  for l = 1 to J do

8   dk, err
l = 𝒮errtrain

: , : , 2, l − 𝒮errtest
k

2
9   dk, crr

l = 𝒮crrtrain
: , : , 2, l − 𝒮crrtest

k

2
10  end

11  Label 𝒴k = argminerr, crr dk, err
l , dk, err

l
 for all l.

12 end

We compare the classification performance of HoRPCA with simple averaging, gedCFC and

PARAFAC based methods. As simple averaging and gedCFC methods are not data

dependent, to classify the error and correct responses for these two methods, we employ

simple NN classifier without the SRC based algorithm. For simple averaging method, the

classification was performed using 5-fold cross-validation with an NN classifier. The feature

matrices in this case are the 64 × 64 PAC networks averaged across frequency bands

corresponding to each subject and response type. The classification for gedCFC was also

performed by using 5-fold cross-validation with NN classifier. In this case, the features are

the multivariate PAC values for the theta-gamma band extracted by gedCFC. For PARAFAC

based method, as it is also data dependent similar to HoRPCA, the classification was

performed following the SRC based NN-classifier approach described in Algorithm 1. For

all cases, the performance was evaluated in terms of precision, recall, F-measure and G-

mean.

V. RESULTS

A. Synthesized Data Results

1) Results for Experiment 1: The evaluation performance of the detection power for

the four methods for various SNR values is reported in Table I. From Table I, it can be seen

that the proposed HoRPCA based PAC approach outperforms gedCFC in all cases and can

detect the presence of PAC even for highly noisy data (−6dB) with a F-measure close to

0.85. The detection power of PARAFAC based approach was also high and comparable to

the proposed HoRPCA based approach. The high performance exhibited by the HoRPCA

and PARAFAC based methods indicates that the tensor based multi-way analysis takes full

advantage of the multi-linear structure of the data, which improves the classification

performance compared to matrix factorization-based methods like gedCFC. Averaging the

networks has the worst performance (i.e., performance around the chance level) for all SNR

levels indicating loss of information due to averaging.

2) Results for Experiment 2: The performance of the three approaches for various

SNR levels, variability in dipole locations and number of coupled channel pairs are depicted

in Tables II, III and IV, respectively. From Tables II, III and IV, we can see that the proposed

HoRPCA based method outperforms PARAFAC and the averaging based methods in all

cases. HoRPCA detected the coupled channels correctly with more than 80% precision and

recall even for high noise levels, e.g. −6dB, (Table II). HoRPCA is also shown to be more
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robust against subject variability (Table III). It is also less sensitive to the number of coupled

channel pairs (Table IV). While PARAFAC based multivariate PAC detection performs well

for low noise levels and less variability in the data, its performance deteriorates quickly as

the uncertainty in the data increases. For example, PARAFAC is unable to detect the correct

coupled channel pairs in the presence of variability across subjects. This can be explained by

the fact that PARAFAC based method detects the channel pairs which are common across all

subjects. In all cases, averaging the networks yielded the worst performance and was found

to be more sensitive to different signal parameters. This is due to the fact that averaging

cannot capture variability across subjects and frequency bands. The standard deviations

reported in these Tables reflect that the variability of the HoRPCA method is smaller than

others across multiple realizations of the experiments. This indicates the stability of the

proposed method.

B. EEG Data Results

1) PAC Network Detection Result: The low-rank and sparse networks extracted for

the theta band of error and correct responses averaged across subjects is shown in Fig.3. This

figure shows that the low-rank parts of the tensor for both response types are similar, while

the sparse parts illustrate the differences in the coupled brain regions for the two response

types.

This observation is also verified by statistical testing. A Wilcoxon Signed Rank Sum Test (p
< 0.05) with Bonferroni correction is conducted to determine the statistical significance of

the difference between ERN and CRN PAC networks across subjects. The statistical testing

revealed no significant difference between the low rank networks but significant difference

was observed between sparse networks. We constructed a p-value PAC network that shows

the channel pairs with significant difference between the sparse networks corresponding to

error and correct responses. The p-value PAC network is depicted in Fig.4.

From the extracted sparse networks, we detected the channel combinations for error (Xer)

and correct (Xcr) responses as shown in Fig.5 (a) and (b), respectively. The colormap shows

the number of subjects for which a channel combination was detected. The yellow pixels

indicate channel pairs with coupling across the majority of subjects, while the light blue

pixels correspond to channel pairs with coupling for only a few number of subjects.

The channel pairs (phase-amplitude coupled channels) detected for a majority of subjects for

error response are: FP1-POz, FP1-Pz, FP1-C4, F3-Oz, FT7-POz, FC1-P7, FC1-POz, FC1-

Pz, FC1-C4, FC1-P6, Fz-C4, Fz-P6, FCz-P7, FCz-POz, FCz-Pz, FCz-P6, C2-Pz, and C2-P6.

Similarly, for correct response the channel pairs (phase-amplitude coupled channels)

detected for a majority of subjects are: FP1-P7, FP1-P3, FP1-O2, F1-Pz, F5-PO4, FPz-P7,

FPz-P3, FPz-P8, FPz-C6, FPz-TP8, AFz-PO4 and C6-Pz. The resulting theta-gamma band

PAC networks for error and correct responses are shown in Fig.6(a) and (b) respectively.

2) Classification Experiment Result: Table V shows the comparison of classification

performance for 50 repetitions of the 5-fold cross-validation in terms of precision, recall, F-

measure and G-mean. From this Table, it can be seen that the proposed HoRPCA based

multivariate method results in very high accuracy (F-measure and G-mean > 0.98) compared
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to averaging (F-measure and G-mean close to 0.70) and matrix factorization-based gedCFC

(F-measure and G-mean close to 0.85). The discrimination power of PARAFAC was slightly

lower than the proposed method. The increased discrimination power of the tensor based

methods indicates that the tensor based multivariate t-f PAC approaches are more effective at

identifying the brain regions central to PAC.

VI. DISCUSSION

In this paper, a HoRPCA based approach was proposed to identify the spatial and spectral

components of multivariate PAC across all channels, frequency bands, and subjects. As

illustrated in Fig.5, HoRPCA can determine the coupled channel pairs directly from the row

and column indices of the non-zero elements of the sparse tensor component for a given

frequency band. This approach provides certain advantages over PARAFAC decomposition

of the same tensor. First, with the PARAFAC model, order selection is an open problem.

While the first factor across each mode can be used to identify the coupled channel pairs and

frequency bands, these factors are only effective at capturing the largest variance in the data

and are not necessarily robust to outliers and variations in the data such as the ones

considered in Tables II, III and IV. Second, PARAFAC identifies the amplitude and phase

providing channels individually rather than identifying the actual channel pairs. This results

in P × Q possible channel pairs, where P is the number of amplitude providing channels and

Q is the number of phase providing channels. In order to determine the actual coupled

channel pairs, one needs to do significance testing which is computationally expensive.

Estimation of coupled channel pairs from the indices of the sparse matrix in the HoRPCA

method overcomes these limitations. Based on the F-measure values reported for various

simulations, HoRPCA based method outperforms PARAFAC and averaging based method

and is more robust to varying signal conditions such as noise level, subject variability and

number of couplings. HoRPCA is also more robust to noise compared to gedCFC indicating

the advantage of tensor representation with respect to matrix factorization based methods

(Table I).

In the analysis of EEG data, the proposed approach detected event-related theta-gamma PAC

during error and correct responses with higher PAC for error response. This finding is

consistent with prior studies where theta-gamma coupling was reported during visual tasks

like working memory processing and serial memory recall [9]. Theta-gamma PAC was also

reported in an error processing MEG study [18] and in error/correct trial learning [49]. A

possible explanation for the presence of higher theta-gamma PAC during error response is

that error trials may reflect a miscoding of information, which leads to a large-scale

functional integration across theta-gamma frequency bands to improve the performance after

an error response [49].

Cross-frequency networks extracted through HoRPCA are sparse networks as the

background couplings are discarded (Fig.3, Fig.6). Analysis of the low-rank parts of the

tensors for both error and correct responses showed that there was no significant difference

between the two response types based on solely the low-rank tensor (Fig.3). This

observation justifies our hypothesis that the low-rank part of the tensor captures background

PAC activity while the sparse part corresponds to response-evoked PAC. Observation of the
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detected PAC networks shows that the networks corresponding to the correct response were

concentrated between frontal theta phase providing channels and parietal gamma amplitude

channels. On the other hand, networks for error response were concentrated between frontal-

central theta phase activity and parietal gamma activity. Comparison of ERN and CRN

networks through statistical significant testing revealed that the difference was centered

around the medial frontal cortex, which has been previously reported to be active during

error processing [18]. Prior studies also hypothesized that error-related negativity initiates

the medial frontal based top-down control mechanisms to improve the performance after an

error response [50], [51]. Thus, the PAC networks extracted by the proposed HoRPCA

approach are consistent with previous literature reflecting higher theta-gamma coupling in

the medial frontal cortex and relating this with error-related negativity. The high

classification accuracy achieved by HoRPCA based multivariate PAC also indicates that

multivariate PAC can be successfully employed to characterize cross-frequency connectivity

networks associated with error and correct responses.

Although the proposed multivariate approach is promising, there are some limitations. First,

the multivariate analysis was conducted by constructing the network with amplitude

extracted only from the gamma frequency band. The low-high frequency band combinations

were chosen based on the literature indicating the presence of PAC mainly between the low

frequency phase (typically 5–12 Hz) and high frequency amplitude (typically 30–100Hz)

[9]. However, other low-high frequency combinations such as delta-theta/alpha/beta, theta-

alpha/beta and alpha-beta can also be studied by adding those networks in 𝒜. Another

limitation is that the multivariate measure focuses on the average PAC values across a pre-

determined time window. However, there is growing empirical evidence that PAC is

dynamic, varying across time. Consequently, future work could include extending the

proposed measure to capture the temporal and spatial dynamics of PAC.

VII. CONCLUSION

In this study, we proposed a HoRPCA based multivariate PAC framework to capture the

dynamics of cross-frequency PAC across various brain regions and frequencies. The

empirical results obtained from the analyses of simulated and EEG data supported our

hypothesis that the sparse tensor extracted through HoRPCA can capture the spectral and

spatial dynamics of event-related multivariate PAC network while discarding the background

perturbations as part of the low-rank tensor. With these unique properties, the proposed

HoRPCA based multivariate approach can lead to obtaining a complete understanding of

connectivity across frequency bands and brain regions.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Illustration of the proposed method: (a) Generation of the high-order tensor 𝒜 by

concatenating the N × N PAC networks across ℳ various frequency bands and 𝒮 subjects.

(b) Low-rank (ℒ) and sparse tensor (𝒮) decomposition of 𝒜 through HoRPCA.
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Fig. 2.
The projections of the dipole locations to the scalp for the phase and amplitude components

of the synthesized data for the performance evaluation experiments with varying signal

parameters. (a) Theta band phase providing dipoles; (b) Gamma band amplitude providing

dipoles coupled with the theta phase providing dipoles; (c) Alpha band phase providing

dipoles; (d) Gamma band amplitude providing dipoles coupled with the alpha phase

providing dipoles.
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Fig. 3.
Low-rank and sparse networks extracted for the error and correct responses averaged across

subjects. (a) Average low-rank PAC network for error response; (b) Average low-rank PAC

network for correct response; (c) Average sparse PAC network for error response; (d)
Average sparse PAC network for correct response.
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Fig. 4.
PAC network of p-values showing significant difference between error and correct

responses. The color scale from white to black indicates the level of significance (Wilcoxon

Signed Rank Sum Test with p < 0.05). The arrows originate from phase providing channel.
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Fig. 5.
The detected channel combinations across all subjects for (a) error response (Xer); and (b)
correct response (Xcr) for theta frequency band.
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Fig. 6.
Theta-gamma PAC networks detected for (a) Error response and (b) Correct response. The

color scale from white to black indicates the number of subjects for which a channel pair

was detected. The arrows originate from phase providing channel.
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TABLE V

CLASSIFICATION OF EEG ERROR AND CORRECT RESPONSES BASED MULTIVARIATE PAC NETWORKS COMPUTED USING

AVERAGING, gedCFC, PARAFAC AND HoRPCA BASED METHODS

Method Precision Recall F-measure G-mean

Averaging 0.685±0.243 0.726±0.230 0.678±0.199 0.701±0.163

gedCFC 0.801±0.178 0.915±0.137 0.833±0.115 0.842±0.110

PARAFAC 0.906±0.141 1.000±0.00 0.945±0.0879 0.946±0.0797

HoRPCA 0.975±0.061 1.000±0.00 0.986±0.033 0.984±0.038
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