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Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth leading cause of cancer-related mortality. Cancer stem cells
(CSCs) have been shown to be the drivers of pancreatic tumor growth, metastasis, and chemoresistance, but our understanding
of these cells is still limited by our inability to efficiently identify and isolate them. While a number of markers capable of
identifying pancreatic CSCs (PaCSCs) have been discovered since 2007, there is no doubt that more markers are still needed.
The anthrax toxin receptor 1 (ANTXR1) was identified as a functional biomarker of triple-negative breast CSCs, and PDAC
patients stratified based on ANTXR1 expression levels showed increased mortality and enrichment of pathways known to be
necessary for CSC biology, including TGF-β, NOTCH, Wnt/β-catenin, and IL-6/JAK/STAT3 signaling and epithelial to
mesenchymal transition, suggesting that ANTXR1 may represent a putative PaCSC marker. In this study, we show that
ANTXR1+ cells are not only detectable across a panel of 7 PDAC patient-derived xenograft primary cultures but ANTXR1
expression significantly increased in CSC-enriched 3D sphere cultures. Importantly, ANTXR1+ cells also coexpressed other
known PaCSC markers such as CD44, CD133, and autofluorescence, and ANTXR1+ cells displayed enhanced CSC functional
and molecular properties, including increased self-renewal and expression of pluripotency-associated genes, compared to
ANTXR1- cells. Thus, this study validates ANTXR1 as a new PaCSC marker and we propose its use in identifying CSCs in this
tumor type and its exploitation in the development of CSC-targeted therapies for PDAC.

1. Introduction

While pancreatic ductal adenocarcinoma (PDAC) currently
represents the fourth most frequent cause of cancer-related
deaths worldwide, it is expected to surpass both colorectal
cancer and lung cancer to become the second leading cause
of cancer-related deaths by 2030 [1]. These alarming statis-
tics are due to several key factors, including the lack of early
and specific symptoms that impedes timely detection and
diagnosis. As such, approximately 80% of patients present

with nonresectable advanced metastatic disease [2]. Like-
wise, the intrinsically high metastatic nature and resistance
of PDAC tumors to chemotherapy and radiation [2] make
treatment efforts essentially ineffective, resulting in a median
overall survival rate of less than 7 months and a 5-year sur-
vival rate of less than 7% [1]. These inherent and defining
PDAC characteristics are believed to be due in part to the
existence of a subpopulation of stem-like cells within the
tumor known as cancer stem cells (CSCs), which drive
tumorigenesis, metastasis, and chemoresistance [3–5].
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In an effort to isolate and better understand the biolog-
ical properties of these rare stem-like cells, which have been
identified across diverse solid tumors including brain, ovar-
ian, breast, colon, and liver cancers [6–9], researchers have
focused on identifying markers present on their cell sur-
face. In the context of pancreatic CSCs (PaCSCs), we and
others have made significant strides in identifying markers
that are capable of identifying PaCSCs in cell lines [10, 11]
and primary cultures established from patient-derived
xenografts (PDXs) [12–16], directly from primary patient
PDAC tumors [14, 16], and in blood [17]. Nonetheless,
appreciating that there likely exist many subpopulations
of PaCSCs, or hierarchies within specific PaCSC popula-
tions, it is still necessary to continue to search for addi-
tional PaCSC markers.

The anthrax toxin receptor 1 (ANTXR1) is a 564 amino
acid transmembrane protein encoded by the tumor endothe-
lial marker 8 (TEM8) gene [18] and is one of the three recep-
tors known to facilitate the entry of anthrax toxin into cells
[19]. ANTXR1 (or TEM8) specifically binds the nontoxic
protective antigen (PA) component of anthrax toxin [20].
In the context of cancer, ANTXR1/TEM8 was initially
shown by St. Croix et al. to be overexpressed on the tumor
vasculature and to play a role in tumor angiogenesis [18];
however, in 2001, a study by Duesbery et al. demonstrated
that in vitro treatment of V12 H-ras-transformed NIH 3T3
cells or in vivo injection of anthrax lethal toxin ((LeTx):
PA plus lethal factor (LF)) into athymic nude mice
implanted with ras-transformed cells led to a strong antitu-
mor response and, in some cases, caused complete tumor
regression of xenografts [21]. This study strongly suggested
that in addition to being expressed on the tumor vasculature
[18], ANTXR1 is also expressed on tumor cells allowing for
LeTx-mediated elimination of these cells. It would later be
confirmed that ANTXR1 is expressed on cancer cells of dif-
ferent tumor entities including breast, neuroblastoma, and
melanoma [22–24], and neuroblastoma and melanoma
xenografts are also sensitive to LeTx [23], highlighting the
broad role that this protein may play in cancer cell biology.
It is now appreciated that ANTXR1 or TEM8 can also bind
the cleaved C5A fragment of collagen alpha 3 (VI) [25, 26]
and interact with the Wnt signaling lipoprotein receptor-
related protein 6 (LRP6) [26], modulating collagen cleavage
[26] or downstream Wnt signaling [26, 27], respectively,
pathways important in the development of the tumor micro-
environment or in cancer cell “stemness.” It would not be
until 2013, however, that a study by Chen et al. would show
for the first time that ANTXR1 is expressed on metastatic
breast CSCs and functions in collagen signaling, as well as
Wnt signaling, ZEB1 expression, and CSC self-renewal,
invasion, tumorigenicity, and metastasis [26]. While this
highlights an important role for ANTXR1 in breast CSCs,
the expression of ANTXR1 on CSCs from other tumor enti-
ties, such as PDAC, has not been explored to date.

To bridge this gap, we used 3D sphere cultures estab-
lished from PDXs and enriched in PDAC CSCs to evaluate
the expression of ANTXR1 on PaCSCs alone or in combina-
tion with other known CSC markers, such as CD133, CD44,
or autofluorescence. We show not only that ANTXR1 is

enriched in PaCSC sphere cultures and coexpresses with
other known PaCSC markers but that ANTXR1-positive
cells have increased self-renewal capacity and an overall
higher expression of pluripotency-associated genes com-
pared to ANTXR1-negative cells. As such, these studies val-
idate ANTXR1 as a new PaCSC marker and we further
propose its use in identifying CSCs in PDAC and its exploi-
tation in the development of CSC-targeted therapies.

2. Materials and Methods

2.1. Gene Expression Datasets and GSEA Analyses. In addi-
tion to the TCGA gene expression dataset, the dataset from
Janky et al. [28] and that from Moffitt et al. [29] were
downloaded from GEO (GSE62165 and GSE71729); the
dataset from Jandaghi et al. [30] was downloaded from
ArrayExpress (E-MTAB-1791); the dataset from Bailey
et al. was included in a supplementary figure of their pub-
lished work [31], and the META dataset, containing data-
sets GSE15471, GSE16515, GSE22780, and GSE32688, was
generated as described in [32]. Patients were stratified
based on ANTRX1 expression using the optimal cutoff cal-
culated through http://www.kmplot.com [33], and survival
analysis was performed with R. Log-rank test was used to
determine statistical significance. Cox regression was used
to calculate the hazard ratio. The samples included in the
two groups were compared in GSEA, using the Hallmark
gene set collection of the MSigDB database. The GSEA
module of the GenePattern suite from the Broad Institute
was used, with 1000 permutations, and FDR < 25% was
considered statistically significant.

2.2. Primary Human Pancreatic Cancer Cells and
Macrophage-Conditioned Media. PDAC patient-derived
xenografts (PDXs) were obtained under a Material Transfer
Agreement with the Spanish National Cancer Centre
(CNIO), Madrid, Spain (reference no. I409181220BSMH).
Xenografts were processed as previously described [34] to
establish low-passage primary PDAC PDX-derived in vitro
cultures. PDAC PDX-derived cultures are referred to by a
random number designation (e.g., Panc185, Panc215,
Panc253, Panc286, PancB06, PancB023, and Panc354).
PDAC PDX-derived cultures and L3.6pl cells were main-
tained in RPMI media supplemented with 10% FBS and
50 units/ml penicillin/streptomycin and fungizone (all from
Thermo Fisher Scientific). All cultures were tested for myco-
plasma at least every 4 weeks, and microsatellite analysis was
performed to authenticate all cell lines used. Macrophage-
conditioned media were generated from MCSF-treated
blood monocyte-derived cultures from one healthy donor
as previously described [16].

2.3. Western Blot. For the analysis of TEM8 and Tubulin
protein levels, cultures were lysed with RIPA buffer (Sigma)
containing a protease inhibitor cocktail (Roche Applied
Science, Indianapolis, IN). Protein (50μg) was resolved by
SDS-PAGE and transferred to PVDF membranes (Amer-
sham Pharmacia, Piscataway, NJ). Membranes were then
blocked with blocking buffer (1x TBS; 5% BSA (w/v);
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0.5% Tween 20 (v/v)), incubated with a 1 : 500 dilution of rab-
bit anti-TEM8 (cat no. ab21270, Abcam) or a 1 : 5000 dilution
of mouse anti-Tubulin (cat no. T9026, Sigma) overnight at
4°C, washed 5 times with wash buffer (1x PBS; 0.5% Tween
20 (v/v)), incubated with horseradish peroxidase-conjugated
goat anti-rabbit or goat anti-mouse antibody (Amersham),
and washed again to remove unbound antibodies. Bound
antibody complexes were detected with SuperSignal chemilu-
minescent substrate (Amersham).

2.4. Flow Cytometry. Cells were analyzed with a 4-laser Attune
NxT Acoustic Cytometer (Thermo Fisher Scientific). Samples
were resuspended in FLOW buffer (1x PBS; 3mM EDTA
(v/v); 3% FBS (v/v)), and the following fluorescently tagged
antibodies were used to label cells for 30 minutes at 4°C:
mouse monoclonal anti-human CD133-PE (1 : 20, cat no.
130-110-962, Miltenyi), mouse monoclonal anti-human
CD44-PE (1 : 20, cat no. 130-095-180, Miltenyi), and mouse
monoclonal anti-human EpCAM-APC (1 : 20, cat no. 130-
113-260, Miltenyi). For ANTXR1 detection, cells were first
labeled with rabbit anti-human TEM8 (1 : 50, cat no.
ab21270, Abcam), washed three times with 1x PBS and subse-
quently incubated with goat-anti-rabbit (Alexa 647 1 : 500, cat
no. A27040, Invitrogen). DAPI was used to mark and exclude
dead cells, and data were analyzed using the software FlowJo
v9.3 (Tree Star Inc., Ashland, OR). Autofluorescent cells were
excited with blue laser 488nm and selected as the intersection
with the filters 530/40 and 580/30 as previously described [14].

2.5. Sphere Formation Assay. Spheres were generated by
culturing 2 × 103 PDAC cells per ml in ultralow attachment
plates (Corning, New York, NY) in suspension using
serum-free DMEM/F12 supplemented with B27 (1 : 50,
Invitrogen, Waltham, MA), 20 ng/ml bFGF, and 50 units/ml
penicillin/streptomycin for a total of 7 days, allowing
spheres to reach a size of >75μm, as previously described
[35]. To quantify spheres of >40μm, 1ml of sample volume
was analyzed with a CASY cell counter (Roche Applied Sci-
ences, Mannheim, Germany). The CASY cell counter mea-
suring principle is based on a capillary particle counter with
pulse area analysis that permits the determination of cell
count, cell concentration, cell volume (peak), and average
cell diameter, specifically diameters of 40-80μm, 80-
120μm, and >120μm.

2.6. RNA Preparation and Real-Time Quantitative PCR
(RTqPCR). The GTC method [36] was used to isolate total
RNA. Briefly, 1μg of purified RNA was used for cDNA syn-
thesis using the Maxima First Strand cDNA Synthesis Kit for
RT-qPCR with dsDNase (Thermo Fisher Scientific), followed
by SYBR green (PowerUp™ SYBR™ Green Master Mix,
Thermo Fisher Scientific) RTqPCR using an Applied Biosys-
tems StepOnePlus™ real-time thermocycler (Thermo Fisher
Scientific). The thermal cycling conditions used consisted of
the following: a predenaturation cycle (10min at 95°C)
followed by 40 cycles of denaturation (15 sec at 95°C) and
annealing/extension (1min at 60°C). To determine relative
mRNA copy numbers, standard curves comprised of serial
dilutions of plasmids containing the target coding sequences

were included. Cycle thresholds were normalized to β-actin
levels. Primers for the following human transcripts were used.
KLF4: forward, 5′-ACCCACACAGGTGAGAAACC-3′ and
reverse, 5′-ATGTGTAAGGCGAGGTGGTC-3′; SOX2: forward,
5′-AGAACCCCAAGATGCACAAC-3′ and reverse, 5′-CGGG
GCCGGTATTTATAATC-3′; OCT3/4: forward, 5′-CTTGCT
GCAGAAGTGGGTGGAGGAA-3′ and reverse, 5′-CTGCAG
TGTGGGTTTCGGGCA-3′; NANOG: forward, 5′-TGAACC
TCAGCTACAAACAGGTG-3′ and reverse, 5′-AACTGCATG
CAGGACTGCAGAG-3′; ANTXR1/TEM8: forward, 5′-ACAG
GGTCCTCTGCAGCTTCAA-3′ and reverse, 5′-GTCAGAACA
GTGTGTGGTGGTGAT-3′; and β-actin: forward, 5′-GCGA
GCACAGAGCCTCGCCTT-3′ and reverse, 5′-CATCATCCA
TGGTGAGCTGGCGG-3′.

2.7. Statistical Analyses. Results are presented as means ±
standard error of the mean (sem) unless stated otherwise.
Statistical analysis was performed using two-tailed Student’s
t-test or one-tailed Fisher’s test, and significance was
considered for p < 0 05. All analyses were performed using
GraphPad Prism version 5.0c (San Diego, California,
USA). Additional experimental details can be found in the
Supplementary Materials and Methods.

3. Results

3.1. ANTXR1/TEM8 Is Overexpressed in PDAC. While
ANTXR1/TEM8 overexpression has been observed in differ-
ent tumor entities [22, 23], its expression and putative role
in PDAC have not been rigorously examined to date. Using
the publicly available transcriptome datasets (Jandaghi et al.
[30], Janky et al. [28], META dataset [32], and Moffitt et al.
[29]), the transcriptional levels of ANTXR1 expression were
evaluated. We observed that ANTXR1 mRNA expression
was significantly elevated in whole pancreatic tumor sam-
ples versus adjacent normal tissue (Figure 1(a)) and tumors
of the basal subtype (Figure 1(b)), having worse prognosis,
expressed significantly higher levels of ANTXR1 compared
to classical subtype tumors. For the TCGA dataset and the
Bailey et al. series [31], well-annotated clinical data is available
and was used to determine if high levels of ANTXR1 expres-
sion correlated with decreased overall survival. As expected,
a clear deviation and significant decrease in median overall
survival of ANTXR1 high-expressing patients compared to
the ANTXR1 low-expressing patients were observed in the
TCGA dataset, and although not significant (p = 0 92), a sim-
ilar trend was observed with the Bailey et al. series
(Figure 1(c)). Next, we performed GSEA comparing the
patient samples expressing high levels of ANTXR1 (the top
75%) to those expressing low levels of ANTXR1 (bottom
25%) from the TCGA and Bailey et al. datasets. Using the
“Hallmark” gene set collection, we observed significantly and
commonly enriched pathways across both series, including
TGF-β, NOTCH, Wnt/β-catenin, and IL-6/JAK/STAT3 sig-
naling and epithelial to mesenchymal transition (EMT) gene
enrichment (Figures 1(d) and 1(e) and Supplementary
Figure S1A-B). Likewise, using the “Kegg” gene set
collection, enrichment of similar pathways, such as Wnt/β-
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Figure 1: ANTXR1/TEM8 is overexpressed in PDAC. (a) Boxplots showing the differential expression of ANTXR1 in PDAC samples versus
normal adjacent tissue in three independent series of transcriptomics data (Jandaghi: n = 13 adj. normal, n = 118 tumor; Janky: n = 70 adj.
normal, n = 108 tumor; META: n = 13 adj. normal, n = 118 tumor). (b) Boxplots showing the differential expression of ANTXR1 in
classical versus basal tumors from the Moffitt series (n = 89 classical, n = 36 basal). (c) Kaplan-Meier curves showing the overall survival of
PDAC patients, stratified based on high and low ANTRX1 expression using the optimal cutoff calculated through http://www.kmplot.com
for the TCGA and Bailey et al. datasets. The hazard ratio (HR) and number of patients at risk are shown. (d, e) Gene sets enriched in the
transcriptional profiles of tumors belonging to the top ANTXR1 high-expression group, compared with the bottom-expression group in
the TCGA dataset. A nominal p value of <0.05, FDR < 25% is considered statistically significant. Shown are the NES (normalized
enrichment score) values for each pathway using the Hallmark gene sets (d) and example enrichment plots for TGF-beta, EMT, NOTCH,
and IL-6/JAK6/STAT3 signaling (e).
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catenin, EMT, and TGF-β signaling, was observed in both
datasets (Supplementary Figure S1C-D). Moreover,
enrichment in pathways associated with collagen remodeling,
extracellular matrix, and adhesion were also enriched,
consistent with findings associating ANTXR1 with cleaved
C5A collagen binding (Supplementary Figure S1C-D) [25, 26].

3.2. ANTXR1/TEM8 Is Overexpressed in Pancreatic CSCs.
Since many pathways involved in CSC biology were enriched
in the ANTXR1 high population and considering the previ-
ously published association between ANTXR1 expression
and breast CSCs [26], we set out to determine if ANTXR1 is
overexpressed in PaCSCs. Using L3.6pl cells and a panel of
PDX-derived primary cultures, ANTXR1 protein and mRNA
expression was determined in adherent cultures (non-CSC
enriched) and in 3D sphere cultures (CSC enriched) by West-
ern blot and RTqPCR analysis, respectively (Figures 2(a) and
2(b)). Using both approaches, we observed increased expres-
sion of ANTXR1 in CSC-enriched sphere cultures versus
adherent monolayer controls. This increase was not only evi-
dent at the total protein and mRNA level, but ANTXR1 cell
surface expression was also significantly increased in CSC-
enriched sphere cultures (Figure 2(c)) across 5 out of 7 PDX
cultures tested (Figure 2(d)). Interestingly, although L3.6pl
cells have been shown to contain a CD133 and CXCR4
double-postive CSC population [13], these cells did not show
an increase in ANTXR1 cell surface expression upon culturing
as 3D spheres.

3.3. ANTXR1/TEM8-Positive Cells Are Detectable in Tumors
and Can Be Induced. To determine if ANTXR1+ cells could
be detected in freshly digested PDXs, three low-passage
PDXs were digested and the percentage of ANTXR1+ cells
was determined within the live (DAPI-negative) human
epithelial cell (EpCAM-positive) population. As shown in
Figure 3(a), ANTXR1+ cells were detectable in all three
PDXs tested, with Panc215 PDX containing the highest
percentage. These data would indicate that ANTXR1 expres-
sion is not a consequence of in vitro culture, but rather,
EpCAM+/ANTXR1+ cells are present within the tumor.

We previously published that the CSC compartment
can be activated and induced to expand upon treatment
with macrophage- (MF-) conditioned media (CM) from
monocyte-derived macrophages polarized to an M2 pheno-
type with MCSF [16]. To determine whether ANTXR1+

cells can also be induced to expand, Panc185 and Panc354
adherent monolayer cultures were treated with MF CM
from M2-polarized macrophages and flow cytometry analy-
sis was performed to detect the percentage of ANTXR1
cells following 48 hours of treatment. As expected, in both
primary cultures tested, the percentage of ANTXR+ cells
increased by 5.2- and 8.5-fold, respectively, (Figure 3(b)).

3.4. ANTXR1/TEM8 Is Coexpressed with the Pancreatic CSC
Markers CD133, CD44, and Autofluorescence. We reasoned
that if ANTXR1 identifies PaCSCs, these cells should also
coexpress other known CSC markers, such as CD44 or
CD133. To determine whether ANTXR1-postive cells coex-
press CD44 or CD133 together with ANTXR1, Panc253

and PancB023 cells were analyzed by flow cytometry. While
less than 1% of adherent monolayer cultures were CD44+/-
ANTXR1+ or CD133+/ANTXR1+ double-positive, in sphere
conditions, not only did ANTXR1 cell surface expression
increase but the CD44+/ANTXR1+ and CD133+/ANTXR1+

double-positive populations increased to 3.27% and 5.88%,
respectively, in Panc253 and to 2.42% and 9.02%, respec-
tively, in PancB023 cells, indicating that ANTXR1+ cells
also express known CSC markers (Figure 4). The fact that
only a fraction of the ANTXR+ cells coexpressed CD133
or CD44 was not surprising as we have shown that hierar-
chies exist within CSC populations [14]. Finally, using
autofluorescence, the recently discovered CSC marker that
is the result of riboflavin accumulation in ABCG2-coated
intracellular vesicles exclusively present in epithelial CSCs
[14], we assessed whether autofluorescent CSCs express
ANTXR1. Similar to CD133 and CD44, we could detect
autofluorescent-positive (Fluo+) cells within the ANTXR1+

population and this population increased when CSCs were
enriched in 3D sphere cultures (Figures 5(a) and 5(b)).
Likewise, within the Fluo+ population, a significant percent-
age of cells were also ANTXR+ (Figure 5(b)).

3.5. ANTXR1/TEM8-Positive PDAC Cells Possess CSC
Functional and Molecular Traits. Finally, to evaluate whether
ANTXR1+ cells share functional traits described for other CSC
populations [4], ANTXR1+ cells were isolated from PancB023,
Panc253, and Panc354 via FACS. The self-renewal capacity of
ANTXR1- and ANTXR1+ cells was assessed in a sphere forma-
tion assay. In line with increased self-renewal, ANTXR1+ cells
isolated from all three PDX-derived cell lines formed signifi-
cantly more spheres than ANTXR1- cells (Figure 6(a)). CSCs
have also been shown to have increased expression of
pluripotency-associated transcripts, which is necessary for
the maintenance of the CSC state. In ANTXR1-postive-
sorted PancB023 cells, KLF4, OCT3/4, and SOX2 expression
was significantly higher compared to ANTXR1-negative-
sorted cells. NANOG mRNA levels were not significantly
modulated, and as expected, ANTXR1/TEM8 mRNA levels
were 2-fold higher in ANTXR1-positive-sorted cells
(Figure 6(b)). The sum of these data supports the claim that
ANTXR1+ cells possess functional and molecular traits char-
acteristic of CSCs.

4. Discussion

The need for markers that specifically identify CSCs is driven
by the need to target and or eliminate these highly tumori-
genic and chemoresistant cells. Unfortunately, to date, no
universal marker that identifies CSCs across all tumor types
exists. This is likely due to the fact that different CSC clones
are present within a tumor, CSCs are a state rather than an
entity, and hierarchies exist within CSC subpopulations [5].
Thus, as we increase the number of markers available to iden-
tify and isolate these cells, we will increase our understanding
of their biology and role in cancer. In this study, we build
upon the observation that ANTXR1 is expressed on CSCs
by showing for the first time its expression on PaCSCs. Prior
to this work, Chen et al. identified ANTXR1 as a functional
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Figure 2: ANTXR1/TEM8 is overexpressed in pancreatic CSCs. (a) Expression of TEM8 detected by Western blotting, in total lysates from
L3.6pl or the indicated PDX-derived cell lines cultured in adherence (Adh) or as sphere (Sph). Tubulin was used as a loading control. Total
HepG2 cell lysate was used a positive control (+ Ctl). (b) RTqPCR analysis of ANTXR1 relative mRNA expression levels in L3.6pl or the
indicated PDX-derived cell lines cultured in adherence (Adh) or as sphere (Sph). mRNA expression levels for each target gene are
normalized to β-actin levels (n = 4 samples per group). Fold changes were calculated compared to Adh (set at 1.0). (c) Representative flow
cytometric analysis of TEM8 staining in Panc215, PancB023, or Panc354 cells cultured in adherence (Adh) or as sphere (Sph). Shown are
the percent-positive cells present within the single-cell live debris-free population. (d) Histogram summarizing the percent of ANTXR1-
postive cells present in L3.6pl or the indicated PDX-derived cell lines cultured in adherence (Adh) or as sphere (Sph). Fold changes were
calculated compared to Adh (set at 1.0) (triplicate samples and n = 3 − 4 experiments per cell line). ∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001.
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biomarker of normal stem cells and breast cancer stem-like
cells [26]; however, the presence of ANTXR1 on CSCs of
other tumor entities was lacking. We show that ANTXR1+

cells are present in PDX-derived cultures from 7 PDAC
patients and its expression significantly increases when cells
are cultured as 3D spheres. Since growth in anchorage-
independent serum-free conditions promotes the apoptosis
of differentiated cells and the enrichment of CSCs, the
observed and significant increase in ANTXR1 expression
on sphere-derived cells strongly suggested a CSC link. The
latter was confirmed by showing that ANTXR+ cells coex-
press the known CSC markers CD44 and CD133 [13], as well
as the recently discovered CSC marker autofluorescence [14].
Interestingly, when the highly aggressive L3.6pl cell line was
cultured as 3D spheres, no increase in ANTXR1 cell surface
expression was observed. L3.6pl cells were derived from
parental FG cells by multiple in vivo passaging to select for
highly metastatic cells [37], which have been shown to con-
tain CD133+/CXCR4+ metastatic CSCs [13]. The low levels
of ANTXR1 expression on L3.6pl spheres may suggest that
ANTXR1+ CSCs were lost during in vivo selection of this cell
line or that ANTXR1+ cells are not enriched in cell lines that

contain primarily metastatic PaCSC subpopulations [13].
Indeed, we have shown that hierarchies do exist within CSC
populations [14] and CSC markers are not always equally
enriched for across different conditions (e.g., sphere forma-
tion, tumor formation, or chemoresistance). For example,
using the CSC biomarker autofluorescence, we observed that
not all Fluo+CSCs express CD133 nor are all CD133+ cells
autofluorescent. Along those lines, not all ANTXR1+ cells
were positive for CD133, CD44, or autofluorescence and vice
versa. Therefore, the use of ANTXR1 in combination with
other CSC markers may be identifying a distinct CSC sub-
population, with a potentially different biological role. At
the functional and molecular level, however, ANTXR1+ cells
showed significantly higher self-renewal capacity and
increased expression of pluripotency-associated genes com-
pared to their ANTXR1- counterparts. Thus, ANTXR1+ cells
satisfy twomain CSC requirements, but more studies are nec-
essary to fully understand the stem-like state of ANTXR1+

cells. For example, in vivo assessment of the tumorigenic
and metastatic capacity of these cells is still needed.

It is important to note that ANTXR1 is not the only
anthrax receptor [19]. In addition to ANTXR1/TEM8, the
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Figure 3: ANTXR1/TEM8-positive cells are detectable in freshy digested PDXs and can be induced. (a) Representative flow cytometric
analysis of TEM8 staining in digested Panc185, Panc354, or Panc215 PDX tumors. Shown are the percent-positive cells present within the
single-cell, live, debris-free, and EpCAM+ population (n = 1 experiment). (b) Representative flow cytometric analysis of TEM8 staining in
Panc185 or Panc354 cells cultured in adherence and treated with control media or MF CM for 48 hours. Shown are the percent-positive
cells present within the single-cell live debris-free population (n = 2 experiments).
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capillary morphogenesis gene 2 (CMG2)/ANTXR2 can also
interact with LeTx. These two receptors, however, are bio-
logically and functionally different. For example, TEM8 has
been shown to play a role in the regulation of tubule forma-
tion and endothelial cell migration, while CMG2 may be
more specific to endothelial cell proliferation. In addition,
TEM8 and CMG2 appear to differentially bind collagen I
and collagen VI, respectively, or collagen IV and laminin,
respectively, [38]; however, CMG2 was recently shown to
also act as a receptor for collagen VI and mediate its

intracellular degradation [39], indicating that TEM8 and
CMG2 may have some overlapping functions. In the context
of cancer, contradictory roles for CMG2 have been described.
For example, while CMG2was shown to regulate prostate can-
cer cell adhesion and invasiveness [40], in breast cancer,
CMG2 inhibited breast cancer cell growth and was inversely
correlated with disease progression and prognosis [41]. Inter-
estingly, a recent 2018 publication by Ji et al. has shown for the
first time that CMG2 is not only expressed on gastric cancer
stem-like cell but is necessary to maintain the stem-like
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Figure 4: ANTXR1/TEM8 is coexpressed with pancreatic CSC markers CD133 and CD44. Representative flow cytometric analysis of TEM8,
TEM8 and CD44, or TEM8 and CD133 staining in (a) Panc253 or (b) PancB023 cells cultured in adherence or as spheres. Shown are the
percent-positive cells present within the single-cell, live, debris-free, and EpCAM+ population (n = 2 experiments).

9Stem Cells International



phenotype of these cells viaWnt/β-catenin pathway activation
[42]. It appears that Wnt/β-catenin signaling may be one of
the main signaling pathway downstream of the anthrax recep-
tor(s) in CSCs. Interestingly, we also observed that in patients
with high ANTXR1 expression, Wnt/β-catenin signaling was
enriched; however, more studies are necessary to determine
whether ANTXR1 present on the cell surface of PaCSCsmain-
tains “stemness” via Wnt/β-catenin signaling.

Finally, the facts that LeTx binds to ANTXR1, LeTx
can reduce tumor growth in vivo, and ANTXR1 is

expressed/enriched on the surface of CSCs suggest that
the antitumor effects observed with LeTx in the studies
published by Duesbery et al. [21] and Rouleau et al. [23]
were likely a consequence of CSC targeting. These studies
highlight the very real possibility that ANTXR1 could be
utilized to target CSCs in vivo as a means of treating can-
cer. Indeed, targeting the anthrax receptors for the pur-
poses of inhibiting tumor angiogenesis and tumor growth
has been extensively investigated (reviewed in [38]) and
the effects of LeTx and modified forms of PA administered
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Figure 5: ANTXR1/TEM8 is coexpressed with the pancreatic CSC marker autofluorescence. (a) Gating strategies for the detection of
autofluorescent-positive cells, ANTXR1-positive cells, and autofluorescent-positive cells within the ANTXR1-positive population in
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and n = 3 − 4 experiments). ∗p < 0 05.
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along with LF have shown strong and encouraging antian-
giogenic and antitumorigenic effects in preclinical cancer
models. Likewise, adapting PA and LF components to
increase their biological activity and minimize toxicity,
synthesizing mutant PA moieties with more potent antian-
giogenic and tumor growth properties [43], and develop-
ing anti-ANTXR1 antibodies have also been explored.
Regarding the latter, NCI researchers and Novartis were
the first to develop potent ANTXR1-specific mAbs using
phage display libraries and to test the anticancer efficacy
of these mAbs in preclinical xenograft mouse models of
colon cancer and in a syngeneic mouse model of mela-
noma [44]. The authors showed that antibodies developed
against the TEM8 extracellular domain not only had broad
antitumor activity but could also be used in combination with
anticancer chemotherapeutics without added toxicity. Since
this study was published in 2012, MMAE-linked anti-
ANTXR1 antibody drug conjugate (ADC) treatments have
been developed and shown to be well tolerated and capable
of inducing tumor regression or tumor eradication in multiple
solid tumor types, inhibiting metastatic growth and

prolonging overall in vivo survival [45]. Likewise, CAR T
cell-based immunotherapy targeting ANTXR1/TEM8 has
been developed and shown to have cytotoxic specificity for
tumor endothelial cells as well as ANTXR1-positive triple-
negative breast cancer cells [46] or gastric adenocarcinoma
cells [47]. Thus, in light of our findings showing that PaCSCs
express ANTXR1, the aforementioned ANTXR1-based thera-
pies should be tested in preclinical models of pancreatic
cancer.

In summary, we show in this study that ANTXR1 effi-
ciently identifies PaCSCs, ANTXR1+ cells coexpress other
known PaCSC markers such as CD44, CD133, and autofluo-
rescence, and ANTXR1+ cells display enhanced CSC func-
tional and molecular properties. Thus, we propose that
ANTXR1 should be added to the list of PaCSC markers and
utilized for the development of future anti-PaCSC-based ther-
apies. Finally, considering the aforementioned CMG2 findings
in gastric cancer stem-like cells, it is not unlikely that CMG2
may also be expressed on PaCSCs and the use of both
ANTXR1 and ANTXR2 may further facilitate the capacity to
enrich for/isolate a purer CSC population. Experiments
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Figure 6: ANTXR1/TEM8-positive PDAC cells possess CSC functional and molecular traits. (a) Sphere-forming capacity of ANTXR1+ and
ANTXR- cells sorted from PancB023, Panc253, and Panc354 cells following seven days in non-adherent culture conditions. Shown is the total
number of spheres determined/1ml categorized by size in μM (triplicate samples and n = 2 experiments). (b) RTqPCR analysis of relative
mRNA expression levels for the indicated genes in ANTXR1+ and ANTXR1- cells sorted from PancB023. mRNA expression levels for
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towards this end are underway. Without a doubt, the role of
anthrax toxin receptors appears to extend beyond that of
merely interacting with LeTx. Their roles in tumor vascula-
ture, in tumor angiogenesis, and now in tumor CSC biology
highlight the dynamic roles that these proteins play inmultiple
biological processes. Time will tell in what other processes they
participate in, but for now, their utility in cancer should be
fully exploited.
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