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Dipyridamole, an antiplatelet drug, has been shown to synergize with sta-

tins to induce cancer cell-specific apoptosis. However, given the polyphar-

macology of dipyridamole, the mechanism by which it potentiates statin-

induced apoptosis remains unclear. Here, we applied a pharmacological

approach to identify the activity of dipyridamole specific to its synergistic

anticancer interaction with statins. We evaluated compounds that pheno-

copy the individual activities of dipyridamole and assessed whether they

could potentiate statin-induced cell death. Notably, we identified that a

phosphodiesterase (PDE) inhibitor, cilostazol, and other compounds that

increase intracellular cyclic adenosine monophosphate (cAMP) levels poten-

tiate statin-induced apoptosis in acute myeloid leukemia and multiple mye-

loma cells. Additionally, we demonstrated that both dipyridamole and

cilostazol further inhibit statin-induced activation of sterol regulatory ele-

ment-binding protein 2, a known modulator of statin sensitivity, in a

cAMP-independent manner. Taken together, our data support that PDE

inhibitors such as dipyridamole and cilostazol can potentiate statin-induced

apoptosis via a dual mechanism. Given that several PDE inhibitors are

clinically approved for various indications, they are immediately available

for testing in combination with statins for the treatment of hematological

malignancies.

1. Introduction

The synthesis of cholesterol and other isoprenoids via

the mevalonate (MVA) pathway is tightly regulated to

maintain homeostasis. In many cancer cells, an increased

dependency on isoprenoid biosynthesis for growth and

survival confers sensitivity to the statin family of drugs,

which inhibits the rate-limiting enzyme of the MVA

pathway, HMG-CoA reductase (HMGCR) [1].

However, in normal cells and many cancer cells, treat-

ment with statins activates the transcription factor sterol

regulatory element-binding protein 2 (SREBP2), which

functions to upregulate genes involved in MVA metabo-

lism to restore homeostasis. Activation of this feedback

response has been associated with statin resistance in

cancer cells [2–4]. In contrast, subsets of cancer cells that

do not induce this feedback loop following statin treat-

ment readily undergo apoptosis [2,4].
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We previously demonstrated that inhibition of this

feedback response via RNAi-mediated knockdown of

SREBP2 potentiates statin-induced cell death in lung

and breast cancer cell lines [5]. Moreover, through a

drug screening approach, our laboratory identified that

the drug dipyridamole, an antiplatelet agent approved

for secondary stroke prevention, can synergize with

statins to induce apoptosis in acute myeloid leukemia

(AML) and multiple myeloma (MM) cells [6]. We fur-

ther demonstrated that dipyridamole inhibits statin-in-

duced SREBP2 cleavage and activation, thus

abrogating the restorative feedback loop of the MVA

pathway (Fig. 1) [6]. Since these initial observations in

AML and MM, dipyridamole has been shown to inhi-

bit statin-induced SREBP2 activation and potentiate

statin-induced cell death in breast [3] and prostate [4]

cancer; however, the mechanism by which dipyri-

damole inhibits SREBP2 and potentiates statin-in-

duced cancer cell death remains poorly characterized.

In this manuscript, we present data to suggest that

the synergistic anticancer interaction between statins

and dipyridamole is twofold. In part, the ability of

dipyridamole to function as a phosphodiesterase (PDE)

inhibitor and increase cyclic adenosine monophosphate

(cAMP) levels sensitizes cancer cells to statin-induced

apoptosis. Additionally, dipyridamole and another

cAMP-hydrolyzing PDE inhibitor, cilostazol, are able

to inhibit statin-induced SREBP2 activity, and thus

potentiate the proapoptotic activity of statins through a

second, cAMP-independent mechanism. Collectively,

these data warrant further investigation into the combi-

nation of a statin and cAMP-hydrolyzing PDE inhibi-

tor for the treatment of hematological malignancies.

2. Materials and methods

2.1. Cell culture and compounds

KMS11, LP1, OCI-AML-2, and OCI-AML-3 cell lines

were cultured as described previously [6]. S49 wild-type

(CCLZR352) and kin- (CCLZR347) cells were pur-

chased from the University of California, San Francisco

(UCSF) Cell Culture Facility and were cultured in Dul-

becco’s modified Eagle medium supplemented with

10% heat-inactivated horse serum, 100 units�mL�1

penicillin, and 100 lg�mL�1 streptomycin. Cell lines

were routinely confirmed to be mycoplasma-free using

the MycoAlert Mycoplasma Detection Kit (Lonza, Mis-

sissauga, Canada). Atorvastatin calcium (21CEC Phar-

maceuticals Ltd., Markham, Canada) and fluvastatin

sodium (US Biological, Burlington, Canada) were dis-

solved in ethanol. Dipyridamole (Sigma, Oakville,

Canada), cilostazol (Tocris Bioscience, Burlington,

Canada), S-(4-nitrobenzyl)-6-thioinosine (NBMPR)

(Tocris Bioscience), 4-{[30,40-(methylenedioxy)benzyl]

amino}-6-methoxyquinazoline (MBMQ) (Calbiochem,

Oakville, Canada), fasentin (Sigma), and forskolin

(Sigma) were dissolved in DMSO. Mevalonate and

dibutyryl-cAMP (db-cAMP) were purchased from

Sigma and dissolved in water. Geranylgeranyl

pyrophosphate (GGPP) (methanol : ammonia solution)

was purchased from Sigma.

2.2. Cell viability assays

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT) assays were performed as previously

described [7]. Briefly, cells were seeded at 15 000–
20 000 cells/well in 96-well plates and treated as indicated

for 48 h. Percent cell viability was calculated relative to

cells treated with solvent control(s). Fluvastatin dose–re-
sponse curves were plotted, and area under the dose–re-
sponse curve (AUC) values were computed using

GRAPHPAD PRISM v6 software (San Diego, CA, USA).

2.3. Cell death assays

Cells were seeded at 750 000 cells/well in 6-well plates

and treated as indicated for 48 h. For propidium

Fig. 1. Dipyridamole inhibits the sterol-regulated feedback loop of the

MVA pathway. Schematic representation of the MVA pathway.

Statins inhibit the rate-limiting enzyme of the pathway, HMGCR,

which catalyzes the conversion of HMG-CoA to MVA. MVA is

subsequently used to synthesize various metabolites that are

important for cell growth and survival, including GGPP and cholesterol.

Statin-mediated cholesterol depletion induces the cleavage and

activation of SREBP2, which in turn induces the transcription of genes

involved in MVA metabolism to restore homeostasis. We previously

identified that the drug dipyridamole can inhibit statin-induced

SREBP2 activation; however, the mechanism by which dipyridamole

inhibits SREBP2 cleavage remains poorly understood.
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iodide (PI) staining, cells were fixed in 70% ethanol

for at least 24 h, stained with PI, and analyzed by flow

cytometry for the % pre-G1 DNA population as a

measure of cell death, as previously described [2]. For

Annexin V staining, cells were processed and stained

using the Annexin V-FITC Apoptosis Kit (BioVision

Inc., Burlington, Canada) as per the manufacturer’s

protocol, or washed and stained as indicated in

Annexin V Binding Buffer (BD Biosciences, Missis-

sauga, Canada). Apoptosis assays using primary AML

cells were performed as described previously [6].

Patient samples were obtained with informed consent

under a protocol approved by the University Health

Network Research Ethics Board in accordance with

the Declaration of Helsinki.

2.4. CCLE data mining

RNA sequencing data for the selected AML and MM

human cell lines from the Cancer Cell Line Encyclope-

dia (CCLE) [8] were analyzed using the UCSC Xena

Functional Genomics Explorer (https://xenabrowser.

net/) [9].

2.5. CRISPR/Cas9-mediated gene knockout

Independent small guide RNAs (sgRNAs) that target

PRKACA were cloned into lentiCRISPR v2 (Addgene

plasmid #52961, Watertown, MA, USA). A sgRNA

targeting a random locus on chromosome 10 was used

as a negative control. HEK-293Tv cells were co-trans-

fected with the sgRNA constructs, pMD2.G and

psPAX2 using calcium-phosphate. LP1 cells were

transduced with the lentiviral supernatants in the pres-

ence of 8 lg�mL�1 polybrene, after which they were

selected with 1 lg�mL�1 puromycin. The sequences for

the sgRNAs were obtained from Ref. [10] and are as

follows:

gC10 Random: AAACATGTATAACCCTGCGC

gPRKACA #1: ACGAATCAAGACCCTCGGCA

gPRKACA #2: AGATGTTCTCACACCTACGG

2.6. Immunoblotting

For proteins other than HMGCR, immunoblotting

was performed as previously described [4], using the

following primary antibodies: SREBP2 (1 : 250; BD

Biosciences, 557037), Actin (1 : 3000; Sigma, A2066),

PKA C-a (1 : 1000; Cell Signaling Technology,

#4782), a-Tubulin (1 : 3000; Calbiochem, CP06), and

Ku80 (1 : 3000; Cell Signaling Technology, #2180).

For HMGCR immunoblots, cells were seeded at

750 000 cells/well in 6-well plates and treated as indi-

cated for 24 h. Whole cell lysates were prepared by

washing cells twice with cold PBS and lysing cells in

~ 80 lL of buffer (20 mM Tris pH 7.5, 150 mM NaCl,

1 mM EDTA, 1 mM EGTA, 0.5% Triton X-100, pro-

tease inhibitors) on ice for 30 min. Lysates were

cleared by centrifugation and protein concentrations

determined using the Pierce 660 nm Protein Assay Kit

(Thermo Fisher Scientific). Dithiothreitol (DTT) was

added to a final concentration of 1 M. 4x Laemmli

sample buffer was then added to the DTT-containing

lysates at room temperature. Samples were not boiled

to limit aggregation of membrane proteins. Blots were

probed with primary antibodies against HMGCR (A9)

(1 : 1000; prepared in-house) and actin.

2.7. Quantitative RT–PCR

Total RNA was isolated using TRIzol Reagent (Invit-

rogen, Mississauga, Canada). cDNA was synthesized

from 500 ng RNA using SuperScript III (Invitrogen),

or RNA was directly used for RT–PCR analysis using

the iTaq Universal Probe One-Step Kit (Bio-Rad, Mis-

sissauga, Canada), according to the manufacturer’s

instructions. Quantitative reverse transcription–PCR
(qRT–PCR) was performed using TaqMan probes

(Applied Biosystems, Mississauga, Canada) for the

following genes: HMGCR (Hs00168352), HMGCS1

(Hs00266810), INSIG1 (Hs01650979), and GAPDH

(Hs99999905).

2.8. Intracellular cAMP quantification

Intracellular levels of cAMP were measured using the

Cyclic AMP Chemiluminescent Immunoassay Kit (Cell

Technology, Hayward, CA, USA) as per the manufac-

turer’s protocol. Briefly, 1.5 9 106 cells/well (6-well

plate) were incubated with the compounds as indi-

cated, washed with PBS, and lysed in 150 µL of the

provided lysis buffer.

3. Results

3.1. The cAMP-hydrolyzing PDE3 inhibitor

cilostazol phenocopies dipyridamole to

potentiate statin-induced cancer cell death

Dipyridamole has been reported to have multiple tar-

gets and can function as an inhibitor of nucleoside

transport [11], glucose uptake [12], and PDEs [13]

(Fig. 2A). To test which, if any, of these reported

functions of dipyridamole are important for
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potentiating statin-induced cancer cell death, we

assayed additional compounds with similar activities

for their ability to phenocopy dipyridamole. For these

experiments, we evaluated the following compounds:

NBMPR [equilibrative nucleoside transporter 1

(ENT1) inhibitor], fasentin [glucose transporter 1

(GLUT1) inhibitor], MBMQ (PDE5 inhibitor), and

cilostazol (PDE3 inhibitor). AML (OCI-AML-2, OCI-

AML-3) and MM (KMS11) cells were treated with

each compound alone or in combination with atorvas-

tatin. The concentrations of each compound were cho-

sen such that they had minimal single-agent effects on

cell viability (< 20%), but were still within the range

known to inhibit the target under investigation [14–
20]. Of the four compounds evaluated, only the combi-

nation of atorvastatin and cilostazol was observed to

decrease AML and MM cell viability in all three cell

lines (Fig. 2B). We further demonstrated that these

effects were on-target and not specific to atorvastatin,

as a similar decrease in cell viability was observed

when cilostazol was combined with fluvastatin, another

statin drug (Fig. S1). Moreover, the addition of exoge-

nous MVA or GGPP was able to fully rescue the

decrease in cell viability caused by the statin–cilostazol
combination (Fig. S1), further supporting that these

effects were due to MVA pathway inhibition.

3.2. Compounds that increase cAMP levels

phenocopy dipyridamole to potentiate statin-

induced apoptosis

PDEs catalyze the hydrolysis of cAMP and cyclic gua-

nosine monophosphate (cGMP) (Fig. 2A), thereby reg-

ulating the intracellular concentrations of these

secondary messengers. There are 11 PDE proteins that

can be expressed in mammalian cells, which differ in

their cellular functions, structures, expression patterns,

and affinities for cAMP and cGMP [21,22]. Dipyri-

damole is known to inhibit multiple cAMP- and

cGMP-hydrolyzing PDEs with varying affinities

[13,22]. In contrast, cilostazol is reported to be a speci-

fic inhibitor of PDE3, which is a cAMP-hydrolyzing

PDE [13,21]. Given our observation that the statin–
cilostazol combination was uniquely able to decrease

the viability of AML and MM cells, we hypothesized

that inhibition of cAMP hydrolysis by dipyridamole

may be responsible, at least in part, for its ability to

synergize with statins to induce cancer cell death.

Indeed, dipyridamole treatment, at the concentration

used throughout this study (5 lM), resulted in a 2.5-

fold increase in intracellular cAMP levels (Fig. S2).

To evaluate whether the PDEs targeted by dipyri-

damole and cilostazol are expressed in AML and MM

cells, we mined the Cancer Cell Line Encyclopedia

(CCLE) database [8]. Indeed, multiple PDEs, including

isoforms of PDE3, PDE5, PDE6, PDE7, and PDE8,

are highly and consistently expressed in a panel of

AML and MM cell lines, including previously charac-

terized statin-sensitive (e.g., KMS11, OCI-AML-3) and

insensitive (e.g., LP1) cell lines (Fig. 3A) [6,23,24]. We

subsequently evaluated the ability of an adenylate

cyclase activator (forskolin) and cell-permeable analog

of cAMP (db-cAMP) to potentiate statin-induced

apoptosis in AML cells. The combination of fluvas-

tatin and dipyridamole, cilostazol, forskolin, or db-

cAMP significantly induced apoptosis in OCI-AML-2

and OCI-AML-3 cells, whereas no significant apopto-

sis was observed in response to treatment with each

cAMP-modulating compound on its own (Fig. 3B). To

determine whether primary cells were similarly sensi-

tive to the combination of a statin and PDE inhibitor,

we treated primary AML cells with fluvastatin and/or

cilostazol for 48 h, after which apoptosis was quanti-

fied by Annexin V staining using flow cytometry.

Indeed, the fluvastatin–cilostazol combination signifi-

cantly induced apoptosis in these cells (Fig. 3C). This

is consistent with our previous report that the statin–
dipyridamole combination can induce apoptosis in pri-

mary AML cells [6]. Notably, we evaluated the statin–
cilostazol combination in primary cells from three of

the same patients as in our previous report with

dipyridamole, and observed concordant results [6].

Collectively, these data suggest that elevating intracel-

lular levels of cAMP may be an effective way to

Fig. 2. The cAMP-hydrolyzing PDE3 inhibitor cilostazol phenocopies dipyridamole to potentiate statin-induced cancer cell death. (A)

Schematic representation of the reported targets of dipyridamole and additional compounds that target these proteins. ENT, equilibrative

nucleoside transporter; GLUT, glucose transporter; PDE, phosphodiesterase; PKA, protein kinase A. (B) OCI-AML-2, OCI-AML-3, and KMS11

cells were treated with atorvastatin (4, 2 and 4 µM for OCI-AML-2, OCI-AML-3, and KMS11 cells, respectively) � a glucose uptake inhibitor

(fasentin; 12.5, 6.3, and 12.5 µM for OCI-AML-2, OCI-AML-3, and KMS11 cells, respectively), ENT inhibitor (NBMPR; 20 µM), cGMP-

hydrolyzing PDE5 inhibitor (MBMQ; 10 µM), or cAMP-hydrolyzing PDE3 inhibitor (cilostazol; 25, 12.5, and 25 µM for OCI-AML-2, OCI-AML-3,

and KMS11 cells, respectively). After 48 h, cell viability was evaluated by MTT assays. Data are represented as the mean + SD. *P < 0.05

(one-way ANOVA with Tukey’s multiple comparisons test, where the indicated groups were compared to the other groups of that cell line).
#P < 0.05 (one-way ANOVA with Tukey’s multiple comparisons test, comparing the two indicated groups).
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sensitize hematological cancer cells to statin-induced

apoptosis.

3.3. Compounds that increase cAMP levels

differentially modulate sterol metabolism

We previously demonstrated that dipyridamole inhibits

statin-induced SREBP2 cleavage and activation, which

sensitizes cancer cells to statin-induced apoptosis [4,6].

To test whether compounds that increase cAMP levels

similarly inhibit the induction of sterol metabolism

gene expression in response to statin treatment, we

treated LP1 cells with fluvastatin as a single agent or

in combination with a PDE inhibitor (dipyridamole or

cilostazol), forskolin or db-cAMP, and then evaluated

the expression of three SREBP2 target genes by qRT–
PCR: HMGCR, HMG-CoA synthase 1 (HMGCS1),

and insulin-induced gene 1 (INSIG1). We chose LP1

A B

C

Fig. 3. Compounds that increase cAMP levels phenocopy dipyridamole to potentiate statin-induced apoptosis. (A) RNA expression of the

different PDEs in a panel of human AML and MM cell lines. Data were mined from the CCLE database. (B) OCI-AML-2 and OCI-AML-3

cells were treated with fluvastatin (4 µM for OCI-AML-2 and 2 µM for OCI-AML-3) � a PDE3 inhibitor (cilostazol; 20 µM), an adenylate

cyclase activator (forskolin; 10 µM) or db-cAMP (0.1 mM). After 48 h, cells were labeled with FITC-conjugated Annexin V and apoptotic cells

were quantified by flow cytometry. *P < 0.05 (one-way ANOVA with Dunnett’s multiple comparisons test, where the indicated groups were

compared to the solvent controls group of that cell line). Data are represented as the mean + SD. (C) Primary AML cells were cultured in

the presence of solvent controls, 5 µM fluvastatin, 20 µM cilostazol, or the combination. After 48 h, cells were labeled with FITC-conjugated

Annexin V and analyzed by flow cytometry. Data from four independent AML patient samples are represented as box plots with whiskers

depicting the maximum and minimum values. *P < 0.05 (one-way ANOVA with Dunnett’s multiple comparisons test, where the indicated

group was compared to the solvent controls group).
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cells for these experiments because we previously

demonstrated that this cell line robustly activates

SREBP2 in response to statin exposure, and cotreat-

ment with dipyridamole sensitizes them to statin-in-

duced apoptosis [6]. As expected, treatment of LP1

cells with fluvastatin resulted in the induction of all

three sterol-regulated genes, a response which was

completely blocked by dipyridamole cotreatment

(Fig. 4A). Cilostazol similarly inhibited fluvastatin-in-

duced expression of these SREBP2 target genes

(Fig. 4A). In contrast, forskolin and db-cAMP had

weaker, if any, effects on the expression of these

sterol-regulated genes in this cell line, and yet both

compounds potentiated statin-induced apoptosis

(Figs 3B and 4A, Fig. S3). Concordantly, only dipyri-

damole and cilostazol decreased statin-induced

HMGCR protein expression (Fig. 4B), which was

associated with the inhibition of SREBP2 cleavage fol-

lowing statin treatment (Fig. 4C).

cAMP can regulate several effectors, the most well

studied of which is cAMP-dependent protein kinase A

(PKA). PKA phosphorylates a multitude of proteins

with diverse roles in signal transduction, metabolism,

ion transport, and transcription regulation [25]. In par-

ticular, PKA has been shown to phosphorylate and

negatively regulate SREBP1 (the master transcriptional

regulator of fatty acid biosynthesis) in vitro at a resi-

due that is conserved between SREBP1 and SREBP2

[26]. However, given our observation that db-cAMP

did not inhibit statin-induced SREBP2 target gene

expression (Fig. 4A), we reasoned that the effects of

dipyridamole and cilostazol on SREBP2 were likely

independent of cAMP/PKA signaling. To validate this

model, we knocked out the alpha catalytic subunit of

PKA (PKA Ca, encoded by PRKACA) in LP1 cells

and evaluated the subsequent effects on dipyridamole

and cilostazol activity. Consistent with a cAMP/PKA-

independent mechanism, both dipyridamole and

cilostazol retained their ability to inhibit SREBP2 and

potentiate statin-induced cell death in PKA-depleted

LP1 cells (Figs S4 and S5).

To further confirm the above observation, we evalu-

ated dipyridamole and cilostazol activity in isogenic

wild-type and PKA-null (kin-) S49 cells [27]. S49 kin-

cells have no detectable PKA activity due to improper

cis-autophosphorylation at serine 338 during transla-

tion, which renders the catalytic subunit of PKA insol-

uble [28]. Indeed, dipyridamole and cilostazol

potentiated statin-induced cell death in both S49 wild-

type and kin- cells (Fig. S4).

Taken together, these data suggest that compounds

that increase cAMP levels, including PDE inhibitors

and forskolin, can sensitize hematological cancer cells

to statin-induced apoptosis. Furthermore, PDE inhibi-

tors such as dipyridamole and cilostazol further pos-

sess cAMP/PKA-independent activity against statin-

induced SREBP2 activation (Fig. 5).

4. Discussion

Our laboratory previously reported a novel role for

the drug dipyridamole as an inhibitor of the SREBP

family of transcription factors [4,6]. As a result, dipyri-

damole can sensitize certain cancer cells to statin-in-

duced apoptosis (Fig. 1) [4,6]. However, given the

polypharmacology of dipyridamole, the mechanism by

which it inhibits the SREBP proteins and synergizes

with statins remains to be fully understood. As a step

toward elucidating this mechanism, we evaluated indi-

vidual compounds that phenocopied the different

known functions of dipyridamole for their ability to

sensitize AML and MM cell lines to statin-induced cell

death. Through this approach, we were able to dissect

the polypharmacology of dipyridamole and implicate

its role as a cAMP-hydrolyzing PDE inhibitor in

potentiating statin-induced apoptosis.

Our study revealed that cAMP-hydrolyzing PDE

inhibitors, including dipyridamole and cilostazol, sensi-

tize hematological cancer cells to statin-induced apop-

tosis via a dual mechanism (Fig. 5). By inhibiting PDE

activity, dipyridamole and cilostazol increase intracel-

lular cAMP levels (Fig. S2) [18]. We demonstrated

Fig. 4. Compounds that increase cAMP levels differentially modulate sterol metabolism. (A) LP1 cells were treated with 4 lM

fluvastatin � 5 lM dipyridamole, 20 lM cilostazol, 10 lM forskolin, or 0.1 mM db-cAMP for 16 h, and RNA was isolated to assay for

HMGCR, HMGCS1 and INSIG1 expression by qRT–PCR. mRNA expression data are normalized to GAPDH expression. Data are

represented as the mean + SD. *P < 0.05 (one-way ANOVA with Tukey’s multiple comparisons test, where the indicated groups were

compared to the solvent controls group), #P < 0.05 (one-way ANOVA with Tukey’s multiple comparisons test, comparing the two indicated

groups). (B) LP1 cells were treated with 4 lM fluvastatin � 5 lM dipyridamole, 20 lM cilostazol, 10 lM forskolin, or 0.1 mM db-cAMP for

24 h, and protein was isolated to assay for HMGCR expression by immunoblotting. 1 = HMGCR oligomer, 2 = HMGCR monomer.

Immunoblots are representative of three independent experiments. (C) LP1 cells were treated with 4 lM fluvastatin � 5 lM dipyridamole or

20 lM cilostazol for 8 h, and protein was isolated to assay for SREBP2 cleavage (activation) by immunoblotting. F, full-length SREBP2; C,

cleaved SREBP2. Immunoblots are representative of three independent experiments.
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that other compounds that increase cAMP levels,

including forskolin, similarly sensitize cancer cells to

statin-induced cell death. Importantly, cotreatment

with a statin and cAMP-modulating agent was effec-

tive at potentiating cell death in both statin-sensitive

(e.g., KMS11, OCI-AML-3) and statin-insensitive

(e.g., LP1) cell lines (Fig. 3B, Figs S1, S3,and S4D).

Our data are consistent with a previous report, where

the combination of lovastatin and db-cAMP was

shown to enhance differentiation and cytotoxicity in

A

B C
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embryonal carcinoma and neuroblastoma cell lines

[29]. However, the critical cAMP-regulated effector

that modulates statin sensitivity in cancer cells remains

to be identified. In the present study, we found that

dipyridamole and cilostazol potentiate statin-induced

cell death in a PKA-independent manner (Fig. S4). In

addition to PKA, cAMP also regulates specific ion

channels and the EPAC (exchange protein directly

activated by cAMP) proteins, which are cAMP-depen-

dent guanine nucleotide exchange factors for the RAP

GTPases [30]. Future work is required to delineate the

mechanism by which elevated cAMP levels sensitize

cancer cells to statin-induced apoptosis.

We further demonstrated that the PDE inhibitors

dipyridamole and cilostazol inhibit the SREBP2-regu-

lated feedback mechanism of the MVA pathway via

an additional, cAMP-independent mechanism (Fig. 4).

Interestingly, cilostazol has previously been reported

to inhibit insulin-induced expression of SREBP1 [31],

but the potential involvement of cAMP signaling was

not explored. Data in the literature are conflicting as

to the effects of PDE inhibitors on lipid metabolism.

A recent study demonstrated that combined inhibition

of PDE4 and PDE8 in Leydig cells promotes SREBP2

signaling, cholesterol metabolism, and steroidogenesis

[32]. In contrast, data from a randomized controlled

trial in patients with type 2 diabetes revealed that

cilostazol treatment significantly lowered serum triglyc-

eride and low-density lipoprotein (LDL) cholesterol

levels [33]. The data we present here clearly show that

dipyridamole (a pan-PDE inhibitor) and cilostazol (a

PDE3 inhibitor) can abrogate SREBP2 cleavage and

activation in AML and MM cells exposed to a statin.

It is therefore possible that different PDEs play unique

roles in regulating SREBP2 signaling and sterol meta-

bolism and that PDE-mediated regulation of SREBP2

is tissue type- and context-dependent. In the context of

cancer, dipyridamole has been shown to inhibit statin-

induced SREBP2 cleavage and activation in AML,

MM, breast cancer, and prostate cancer cells [3,4,6],

suggesting similar regulation in many different cell

types. A rigorous analysis of the effects of different

PDE inhibitors on lipid metabolism and investigation

into the mechanism(s) by which these clinically

approved drugs act to modulate cancer cell metabo-

lism should be a focus of future studies. Interestingly,

unlike many other PDE inhibitors, dipyridamole and

cilostazol also inhibit adenosine uptake [11,34]. While

we did not observe enhanced cell death when the ade-

nosine reuptake inhibitor NBMPR was combined with

a statin (Fig. 2B), it remains possible that dipyri-

damole and cilostazol inhibit sterol metabolism via a

PDE-independent mechanism or through simultaneous

modulation of multiple targets.

The data presented here may have important clini-

cal implications, as many cAMP-hydrolyzing PDE

inhibitors are approved for several nononcology indi-

cations [21]. For example, cilostazol (marketed as Ple-

tal) is currently approved and widely used to treat

intermittent claudication. The overexpression of sev-

eral PDEs has been observed in solid and hematolog-

ical tumors, and the possibility of cAMP-hydrolyzing

PDE inhibition as an anticancer strategy has been

preclinically explored alone or in combination with

chemo- and targeted molecular therapies [35–40]. In

hematological malignancies, primary chronic lympho-

cytic leukemia patient samples were found to have

PDE7B overexpression and noted to be sensitive to

PDE7 inhibition in a cAMP-dependent manner [38].

Another study found a strong synergistic combinato-

rial effect between adenosine A2A receptor agonists

and cAMP-hydrolyzing PDE inhibitors in MM and

diffuse large B-cell lymphoma cell lines and primary

patient samples [41]. Given that a number of PDE

inhibitors are poised for repurposing and that statins

have demonstrated anticancer activity in early-phase

clinical trials [42–49], further studies are needed to

evaluate the therapeutic benefit of a statin-PDE inhi-

bitor combination for the treatment of cancer. As the

combination of cilostazol and statins has already

been evaluated clinically in healthy subjects [50,51]

and in patients with cardiovascular indications [52,53]

without added adverse effects, there is the possibility

of fast-tracking these agents to phase II trials in

AML and MM.

Fig. 5. Proposed model for how cAMP-hydrolyzing PDE inhibitors

potentiate statin-induced cancer cell death. Compounds that

increase intracellular cAMP levels, including PDE inhibitors (e.g.,

dipyridamole, cilostazol) and forskolin, can sensitize cancer cells to

statin-induced apoptosis. Dipyridamole and cilostazol also inhibit

statin-induced activation of SREBP2 through a cAMP-independent

mechanism, which abrogates the restorative feedback loop of the

MVA pathway and further sensitizes cancer cells to statin-induced

apoptosis.
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5. Conclusion

In summary, we propose a working model whereby

cAMP-hydrolyzing PDE inhibitors, such as dipyri-

damole and cilostazol, increase cAMP levels and inhibit

SREBP2 activation via independent mechanisms, both

of which converge to potentiate statin-induced apoptosis

in hematological cancer cells (Fig. 5). Given that statins

and a number of PDE inhibitors are already approved

for various nononcology indications, future studies are

needed to thoroughly evaluate the potential therapeutic

benefit of these agents for the treatment of hematologi-

cal malignancies. Moreover, our experimental approach

to dissect the polypharmacology of dipyridamole is one

that may be useful when interrogating novel functions

of other repurposed drugs.
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Fig. S1. Statin-cilostazol-induced cancer cell death can

be rescued by exogenous MVA or GGPP. KMS11 and
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OCI-AML-3 cells were treated as indicated with flu-

vastatin (2 µM for KMS11 and 0.5 µM for OCI-

AML-3 cells), cilostazol (12.5 µM), mevalonate (0.2

mM) and/or GGPP (2 µM). After 48 hr, cell viability

was evaluated by MTT assays. Data are represented as

the mean + SD. *p < 0.05 (one-way ANOVA with

Tukey’s multiple comparisons test, where the indicated

groups were compared to the other groups of that cell

line).

Fig. S2. Dipyridamole treatment increases intracellular

cAMP. OCI-AML-3 cells were treated with 2 lM flu-

vastatin � 5 lM dipyridamole for 15 min and intracel-

lular cAMP levels were quantified. Data are

represented as the mean + SD. *p < 0.05 (one-way

ANOVA with Dunnett’s multiple comparisons test,

where the indicated groups were compared to the sol-

vent controls group).

Fig. S3. Forskolin and db-cAMP sensitize LP1 cells to

fluvastatin-induced apoptosis. LP1 cells were treated

with 4 lM fluvastatin � 10 lM forskolin or 0.1 mM

db-cAMP for 48 hr, after which apoptotic cells (dou-

ble Annexin V-positive and 7AAD-positive cells) were

quantified by flow cytometry. Data are represented as

the mean + SD. *p < 0.05 (one-way ANOVA with

Dunnett’s multiple comparisons test, where the indi-

cated groups were compared to the solvent controls

group).

Fig. S4. Potentiation of statin-induced cancer cell

death by dipyridamole and cilostazol is independent of

PKA. (A) Immunoblot for PKA C-a expression in

LP1 cells expressing Cas9 and a sgRNA to a random

locus on chromosome 10 (gC10 Random) or one of

two different locations within PRKACA (representa-

tive of three independent experiments). (B) LP1 gC10

Random and gPRKACA sublines were treated with a

range of fluvastatin concentrations (0-24 µM) � 5 µM

dipyridamole or 10 µM cilostazol. After 48 hr, cell via-

bility was evaluated by MTT assays. The area under

each fluvastatin dose-response curve is plotted. Data

are represented as the mean + SD. *p < 0.05 (one-way

ANOVA with Dunnett’s multiple comparisons test,

where the indicated groups were compared to the flu-

vastatin alone group of that subline). (C) Immunoblot

for PKA C-a expression in S49 wildtype (WT) or kin-

(PKA-null) cells (representative of three independent

experiments). (D) S49 WT and kin- cells were treated

with 5 lM fluvastatin � 2.5 lM dipyridamole or 5

lM cilostazol for 48 hr, fixed in ethanol and assayed

for DNA fragmentation (% pre-G1 population) as a

marker of cell death by propidium iodide staining.

Data are represented as the mean + SD. *p < 0.05

(one-way ANOVA with Dunnett’s multiple compar-

isons test, where the indicated groups were compared

to the solvent controls group of that cell line).

Fig. S5. Dipyridamole and cilostazol inhibit the sterol-

regulated feedback loop of the MVA pathway inde-

pendent of PKA. (A) LP1 gPRKACA sublines were

treated with 4 lM fluvastatin � 5 lM dipyridamole or

20 lM cilostazol for 16 hr, and RNA was isolated to

assay for HMGCS1 expression by qRT-PCR. mRNA

expression data are normalized to GAPDH expression.

Data are represented as the mean + SD. *p < 0.05

(one-way ANOVA with Sidak’s multiple comparisons

test, where the indicated groups were compared to the

solvent controls group of that subline). (B) LP1 gC10

Random or gPRKACA #1 cells were treated with 4

lM fluvastatin � 5 lM dipyridamole or 20 lM
cilostazol for 8 hr, and protein was isolated to assay

for SREBP2 cleavage (activation) by immunoblotting.

F = full-length SREBP2, C = cleaved SREBP2. Immu-

noblots are representative of three independent experi-

ments.
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