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sis of carbonyl sulfide in blast
furnace gas over Sm-Ce-Ox@ZrO2 catalyst†
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Carbonyl sulfur (COS) is a prominent organic sulfur pollutant commonly found in the by-product gas

generated by the steel industry. A series of Sm-doped CeOx@ZrO2 catalysts were prepared for the

hydrolysis catalytic removal of COS. The results showed that the addition of Sm resulted in the most

significant enhancement of hydrolysis catalytic activity. The 3% Sm2O3-Ce-Ox@ZrO2 catalyst exhibited

the highest activity, achieving a hydrolysis catalytic efficiency of 100% and H2S selectivity of 100% within

the temperature range of 90–180 °C. The inclusion of Sm had the effect of reducing the acidity of the

catalyst while increasing weak basic sites, which facilitated the adsorption and activation of COS

molecules at low temperatures. Appropriate doping of Sm proved beneficial in converting active surface

chemisorbed oxygen into lattice oxygen, thereby decreasing the oxidation of intermediate products and

maintaining the stability of the hydrolysis reaction.
1. Introduction

Carbonyl sulde (COS) is widely present in the by-product gas
(blast furnace gas, coke oven gas, converter gas) of the iron and
steel industry.1–3 Its acidity and polarity are weaker than H2S,
but its properties are more stable, making the removal of COS
an important part of achieving gas ne desulfurization.4,5 COS
removal methods mainly include pyrolysis, hydrogenation,
hydrolysis, chemical absorption and so on.6,7 Pyrolysis is greatly
affected by temperature, so the hydrogenation conversion
method is widely used in industry, but the hydrogenation
method requires higher temperature, and is prone to side
reactions.8–10 The catalytic hydrolysis method has high conver-
sion efficiency and few side reactions. It is a hot research eld at
present and the core aspect is the research and development of
hydrolysis catalysts.11,12

COS hydrolysis catalyst are based on g-Al2O3, TiO2, ZrO2, etc.13–16

TheH2S produced by hydrolysis is easily oxidised tomonosulfur or
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further oxidised to sulphate, which is deposited on the surface of
the catalyst, thus clogging up the holes of the catalyst.17,18 g-Al2O3 is
strongly acidic, which reduces the surface alkalinity of aluminium-
based catalysts, making the catalysts inadequate in low-
temperature hydrolysis performance and stability.19 In contrast,
TiO2 has stronger resistance to sulfate, and TiO2 itself has better
catalytic hydrolysis ability for COS, but the relatively small specic
surface area of TiO2 will limit its application to some extent.20,21

Studies have shown that ZrO2 has higher hydrolysis catalytic
activity and stability than Al2O3 and TiO2. Previous studies found
that the hydrolysis activity of nano-TiO2 and ZrO2 is much higher
than that of commercial nano-Al2O3, and that the increase in the
activity is due to the decrease in surface hydrophilicity of the
catalyst and increase in free surface basic hydroxyl groups.22–24

However, the low-temperature hydrolysis activity of ZrO2 was
insufficient, and the loaded metal oxides were proved to be effec-
tive in enhancing the hydrolysis activity of the catalysts.25,26

Consequently, the catalyst for the hydrolysis catalytic removal of
carbonyl sulfur should be bifunctional, which means catalyst
should have both ox-red and acid–base sites. Moreover, acid sites
should bemedium strength. One of the ways of such type catalyst's
design is based on the application of oxide composites.

Alkali metals and alkaline earth metals regulate the alkali
content and alkali strength distribution on the catalyst surface,
but they do so in slightly different ways.27,28 Alkali metals have
a signicant modulating effect on alkali content, while alkaline
earth metals have a signicant modulating effect on alkali
strength. Rare earth elements such as La, Ce and Pr, which have
a unique 4f electron layer structure, are used as excellent cata-
lytic materials and co-catalysts, and they exhibit unique cata-
lytic properties in chemical reactions. When they are used in
RSC Adv., 2024, 14, 3135–3145 | 3135
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combination with components such as metals or their oxides,
they have obvious synergistic effects and show reaction activi-
ties that far exceed the expected ones.29–32

Consequently, this study utilized CeO2 as the primary active
component of the catalyst and ZrO2 as the catalyst carrier. The
aim was to evaluate various metal oxides (Sm, Y, Na, K) for
doping modication. Aer screening the optimal metal oxides
for doping, the doping amount was adjusted to determine the
most effective ratio. The morphology and structure of the
catalyst were characterized, and the reasons behind the
improvement in hydrolysis catalytic efficiency and anti-
poisoning ability were analyzed. Additionally, the preparation
conditions and process parameters of the catalyst were inves-
tigated to determine the optimal ones.
2. Experimental
2.1 Catalyst preparation

In this experiment, a specic quantity of nano-ZrO2 and
Ce(NO3)3$6H2O was carefully measured and placed in a beaker.
Deionised water was then added to the mixture, followed by
a certain amount of Sm2(NO3)3$6H2O, Y(NO3)3, Na2CO3, and
K2CO3, with a doping concentration of 1%. Themixture was stirred
at a temperature of 80 °C for a duration of 8 h. The dried solid
product was removed by spatula into a quartz crucible. Subse-
quently, the solid material was calcined in an air atmosphere at
600 °C for a period of 2 h, resulting in the formation of catalyst
samples. These catalysts were given the names Sm-CeOx@ZrO2, Y-
CeOx@ZrO2, Na-CeOx@ZrO2, and K-CeOx@ZrO2, respectively.
Furthermore, additional catalyst samples were prepared by adjust-
ing the amount of Sm2(NO3)3$6H2O, resulting in different doping
concentrations of Sm. These samples were designated as 1%
Sm2O3-Ce-Ox@ZrO2, 2% Sm2O3-Ce-Ox@ZrO2, 3% Sm2O3-Ce-
Ox@ZrO2, 4% Sm2O3-Ce-Ox@ZrO2, and 5% Sm2O3-Ce-Ox@ZrO2.
The detail qualication about the reagents was provided in ESI†.
2.2 Catalytic activity test and characterization

The detail information of characterization and catalytic activity
test was provided in ESI†.
Fig. 1 (a) COS conversion, (b) H2S selectivity of M-Ce-Ox@ZrO2 catalys
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3. Results and discussion
3.1 Screening catalysts

In order to optimize the performance of catalyst, an investiga-
tion was conducted to examine the inuence of doping with
rare earth metals Sm and Y, as well as alkali metals Na and K.
The experimental ndings presented in Fig. 1 illustrated the
COS conversion and H2S selectivity of the 1% MOx dopant on
a 15% CeOx@ZrO2 catalyst. The results clearly demonstrated
that, within the temperature range of 60 to 180 °C, the impact of
rare earth metal doping on the hydrolysis performance of the
catalyst surpassed that of alkali metals. Notably, Sm as a dopant
exhibited the most substantial enhancement in the hydrolysis
activity, achieving a hydrolysis efficiency of 100% at 180 °C. This
positive outcome could be attributed to the reinforcement of
the synergistic interaction between the active component of the
catalyst and the carrier through the addition of Sm, resulting in
an increased abundance of hydroxyl groups on the catalyst and
ultimately enhancing the hydrolysis efficiency.33
3.2 Catalytic properties of Sm-based catalysts

Fig. 2 presented the performance of catalysts containing
different amounts of Sm2O3-Ce-Ox@ZrO2. The evaluation was
based on COS conversion and H2S selectivity. The ndings
indicated that the catalytic activity was most favorable when the
doping amount of Sm2O3 constituted 3% of the carrier mass
fraction. Specically, the COS conversion of 3% Sm2O3-Ce-
Ox@ZrO2 is 13.7% higher than that of 1% Sm2O3-Ce-Ox@ZrO2

at 60 °C. Moreover, the H2S selectivity of 3% Sm2O3-Ce-
Ox@ZrO2 reaches 90.7% at 60 °C. This outcome was attributed
to the enhanced synergistic effect among Sm, Ce, and Zr metals
resulting from the increased doping amount of Sm.34

The dispersion state of the active component in the catalyst
and the interaction between the active component and the
carrier were greatly inuenced by the calcination temperature,
thus altering the catalytic activity of the catalyst.35,36 Fig. 3
showed the curves of the COS hydrolysis conversion and H2S
selectivity for 3% Sm2O3-Ce-Ox@ZrO2 catalysts calcined at
different temperatures. The results indicated that the optimal
ts.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 (a) COS conversion, (b) H2S selectivity of Sm-Ce-Ox@ZrO2 catalysts with different Sm contents.
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calcination temperature for the 3% Sm2O3-Ce-Ox@ZrO2 catalyst
was 600 °C. When the calcination temperature was increased
from 300 °C to 600 °C, the COS conversion and H2S selectivity of
the 3% Sm2O3-Ce-Ox@ZrO2 catalyst both increased. The COS
conversion increased from 71.1% to 94.9%, and the H2S selec-
tivity increases from 71.7% to 90.7% at 60 °C. However, when
the calcination temperature was 700 °C, the catalytic perfor-
mance of the 3% Sm2O3-Ce-Ox@ZrO2 catalyst decreased. This
might be attributed to the fact that excessively high calcination
temperatures were unfavorable for the dispersion of the active
component on the catalyst surface, while also leading to the
destruction of the catalyst structure, thereby resulting in
a decrease in the catalytic performance of the catalyst.37,38

The calcination time of catalyst had an impact on both the
COS conversion and H2S selectivity of the catalyst. Fig. 4 illus-
trated the catalytic performance and H2S selectivity of catalysts
prepared with different calcination times at 600 °C. It can be
observed that the hydrolysis activity of the catalyst rst
increased and then decreased with increasing calcination time.
The optimal calcination time for the catalyst was 2 h, with a COS
conversion of 94.9% at 60 °C and an H2S selectivity of 90.7%.
Fig. 3 (a) COS conversion, (b) H2S selectivity of 3% Sm2O3-Ce-Ox@ZrO

© 2024 The Author(s). Published by the Royal Society of Chemistry
Compared to a calcination time of 1 h, the hydrolysis efficiency
increased by 25.6% and the H2S selectivity increased by 23.1%.
The hydrolysis efficiency and H2S selectivity both remained at
100% aer 90 °C. This was because a too short calcination time
cannot form a Sm-Ce-Zr solid solution, reducing the redox
properties of the catalyst and subsequently affecting its acidity
and basicity. With further prolongation of the calcination time,
the COS conversion decreased to 82% at 60 °C when the calci-
nation time was 3 h, and further decreased to 78.4% when the
calcination time was 4 h. An excessively long calcination time
led to a decrease in COS conversion and a corresponding
decrease in H2S selectivity, possibly due to the destruction of
the pore structure caused by the prolonged calcination time,
resulting in a decrease in hydrolysis activity.

3.3 Efficiency of Sm-based catalysts

The stability of catalyst was one of the factors used to evaluate the
performance of a catalyst.39,40 Fig. 5 illustrated the stability test
results for different catalysts. From Fig. 1(a), it could be observed
that the 3% Sm2O3-Ce-Ox@ZrO2 catalyst exhibited the best stability,
maintaining 90%hydrolysis efficiency even aer continuous testing
2 catalysts under different calcination temperatures.

RSC Adv., 2024, 14, 3135–3145 | 3137



Fig. 4 (a) COS conversion, (b) H2S selectivity and of 3% Sm2O3-Ce-Ox@ZrO2 catalysts under different calcination time.
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for 20 h. This indicated that the addition of Sm enhanced the
stability of the CeOx@ZrO2 catalyst. Based on this, the stability of
the 3% Sm2O3-Ce-Ox@ZrO2 catalyst under different temperature
conditionswas investigated. Fig. 5(b) depicted the test curves for the
3% Sm2O3-Ce-Ox@ZrO2 catalyst at three different temperatures:
60 °C, 90 °C, and 120 °C. It can be seen that the COS conversion rate
dropped to 90% aer continuous testing for 7 h at 60 °C. This
might be attributed to the condensation of H2O in the reaction gas,
which covered the catalyst surface and reduced the hydrolysis
activity. The catalyst maintained a 90% COS conversion for 30 h at
120 °C, which demonstrated the signicant stability improvement
of the catalyst with increased temperature.

The 3% Sm2O3-Ce-Ox@ZrO2 catalyst demonstrated superior
catalytic performance in COS hydrolysis at lower temperatures
(<90 °C) compared to both Al-based catalysts and activated
carbon series catalysts (Table 1). This suggested that the addi-
tion of Sm2O3 effectively enhanced the basicity of the catalyst
surface, increasing the number of active sites. As a result, the
catalyst was able to promote the conversion of COS to H2S even
at lower reaction temperatures, with the hydrolysis reaction
playing a dominant role in the surface reaction.
Fig. 5 Stability of Sm2O3-Ce-Ox@ZrO2 catalyst: (a) different Sm conten
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3.4 Analysis of components

The X-ray diffraction patterns of different catalysts were presented
in Fig. 6. From the graph, it can be observed that the catalysts
exhibited diffraction peaks at 2q= 17.3°, 24.1°, 28.2°, 31.5°, 34.1°,
35.2°, 38.5°, 40.8°, 46.2°, 50.5°, 54.2°, 55.6°, 59.9°, 63.1°, and
65.8°. These peaks corresponded to the crystal planes (001), (110),
(−111), (111), (002), (−201), (120), (−112), (201), (−121), (221),
(−311), (−203), (113), and (023) of ZrO2 (PDF-ICDD 37-1484).45,46

The diffraction peak at 2q = 47.5° corresponded to the crystal
plane (220) of CeO2 (PDF-ICDD 43-1002).47However, characteristic
diffraction peaks of Sm2O3 were not observed in the XRD pattern
of the catalysts. This could be due to the low mass fraction of Sm
in the catalyst or the highly dispersed or amorphous nature of
Sm2O3 on the catalyst surface.

3.5 Specic surface area analysis

The N2 adsorption and desorption curves, pore size distribu-
tion, and specic surface area of ve catalyst groups were shown
in Fig. 7 and Table 2. According to Table 2, when the doping
amount was 3%, the specic surface area of the catalyst Sm2O3-
Ce-Ox@ZrO2 increased from 27 m2 g−1 to 30 m2 g−1. The larger
ts, (b) different reaction temperature.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 1 The summary results of published catalysts performance

Catalyst
Concentration
(ppm)

Temperature
(°C) GHSV (h−1)

Conversion
(%) Ref.

0.5% Pt/5% Ba/Al2O3 500–1000 200 7000 100 41
5% K/Mo-Al2O3 150 120 17 000 100 42
Fe1Cu4/AC 150 130 10 000 70 43
10Ni/AC 340 160 20 000 100 44

Fig. 6 XRD patterns of Sm2O3-Ce-Ox@ZrO2 catalysts with different
Sm contents.
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specic surface area increased the effective contact area
between the reactants and the catalyst, which was benecial for
the adsorption and diffusion of reactant molecules on the
catalyst surface. Meanwhile, the number of active sites of the
catalyst were increased, thereby enhancing the hydrolysis
activity of the catalyst. Although the catalysts with different Sm
additions had different average pore diameters, the average
Fig. 7 (a) N2 adsorption–desorption and (b) pore size distribution curve

© 2024 The Author(s). Published by the Royal Society of Chemistry
pore diameters of each catalyst were still much larger than the
molecular dynamic diameters of COS (0.34 nm) and H2O (0.27–
0.32 nm), which suggests that COS and H2O can enter the
internal pores of the catalysts for hydrolysis reactions.48
3.6 Microscopic morphology analysis

SEM images of catalysts with different Sm contents were shown
in Fig. 8. From Fig. 8(f), it can be observed that the catalysts
composed of a series of irregular nanospheres, all of which
exhibited irregular geometric shapes. Specically, the 1%
Sm2O3-Ce-Ox@ZrO2 catalysts agglomerated together to form
a block-like structure with a relatively large volume, thus
exhibiting a smaller specic surface area. With increasing Sm
doping level, the block-like structure of the catalysts became
smaller and more numerous, resulting in an increased specic
surface area. When the Sm2O3 doping level reached 3%, the
catalyst surface was enriched with a large number of spherical
particles, and more obvious large pores were observed between
the particles.49 When the Sm2O3 doping level reached 3%, the
catalyst surface was enriched with a large number of spherical
particles, and more obvious large pores were observed between
the particles. The porous structure contributed to an increased
specic surface area of the catalyst, which was also conrmed
by BET test results. A larger specic surface area facilitated the
adsorption and reaction of ue gas on the catalyst surface,
leading to improved hydrolysis activity. However, the 5%
Sm2O3-Ce-Ox@ZrO2 catalysts exhibited a signicantly increased
block-like volume and reduced quantity.
s of Sm2O3-Ce-Ox@ZrO2 catalysts with different Sm contents.

RSC Adv., 2024, 14, 3135–3145 | 3139



Table 2 Structural parameter of Sm2O3-Ce-Ox@ZrO2 catalysts with Sm contents

Sample BET surface area/(m2 g−1) Pore volume/(cm3 g−1)
Average pore
diameter/nm

1% Sm2O3-Ce-Ox@ZrO2 27 0.10 15.6
2% Sm2O3-Ce-Ox@ZrO2 27 0.10 14.1
3% Sm2O3-Ce-Ox@ZrO2 31 0.10 13.2
4% Sm2O3-Ce-Ox@ZrO2 30 0.100 13.2
5% Sm2O3-Ce-Ox@ZrO2 33 0.09 10.9

RSC Advances Paper
3.7 Surface element composition analysis

The X-ray photoelectron spectroscopy (XPS) spectra of the Ce 3d,
O 1s, and Zr 3d elements on different catalyst surfaces were
depicted in Fig. 9. Fig. 9(a) illustrated the tting curves of the Ce
3d peaks on different catalysts. The Ce 3d peaks can be divided
into Ce3+ (902.7 eV and 885.1 eV) and Ce4+ (916.4 eV, 907.5 eV,
900.5 eV, 898.1 eV, 888.9 eV, 882.1 eV).50 It can be observed that
the intensity of the Ce 3d peaks remained relatively unchanged
as the doping level increases. This might be due to the fact that
the relative concentration of Sm in the catalyst did not increase
signicantly in terms of overall content. Furthermore, accord-
ing to Table 3, the proportion of Ce3+ in the catalyst gradually
decreased with increasing Sm doping. This was because the
Fig. 8 SEM images of Sm2O3-Ce-Ox@ZrO2 catalysts with Sm2O3 conte

3140 | RSC Adv., 2024, 14, 3135–3145
relative content of Ce3+ decreased and some Sm was embedded
in the Ce lattice, altering the structure and morphology of
cerium oxide and forming a samarium–cerium solid solution,
thereby enhancing the catalytic redox performance.51 The
coexistence of Ce4+ and Ce3+ indicated a strong interaction
between Ce and Sm, increasing the number of oxygen vacancies
on the catalyst surface and promoting the redox cycling between
Ce4+ and Ce3+. Consequently, the Sm doping can enhance the
catalytic activity for hydrolysis.

Fig. 9(b) presented the peak tting curves of different cata-
lysts in the O 1s region. All catalysts exhibited peaks at 531.7 eV
and 529.6 eV, with the peak around 531.7 eV attributed to
chemisorbed surface oxygen (Oa) and the peak around 529.6 eV
nts (a) 1%, (b) 2%, (c) 3%, (d) 4%, (e) 5%, (f) 5%–200 nm.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 9 XPS profiles of Sm2O3-Ce-Ox@ZrO2 catalysts with different Sm contents (a) Ce 3d, (b) O 1s, (c) Zr 3d.

Table 3 Atomic distribution of Sm2O3-Ce-Ox@ZrO2 catalysts with
different Sm contents

Sample Ce3+/Cen+
Oa/(Oa +
Ob)

Ob/(Oa +
Ob)

1% Sm2O3-Ce-Ox@ZrO2 0.257 0.249 0.751
2% Sm2O3-Ce-Ox@ZrO2 0.254 0.167 0.833
3% Sm2O3-Ce-Ox@ZrO2 0.244 0.151 0.849
4% Sm2O3-Ce-Ox@ZrO2 0.238 0.161 0.839
5% Sm2O3-Ce-Ox@ZrO2 0.185 0.183 0.817
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attributed to lattice oxygen (Ob).52 With the introduction of Sm
dopant, the O 1s spectral peaks shied towards higher binding
energies, indicating a strong interaction between Sm and O,
which promoted catalytic activity. Chemisorbed surface oxygen
was the most active oxygen species in catalytic reduction reac-
tions, and studies had shown that oxygen adsorbed on the
catalyst surface can oxidize intermediates generated during the
hydrolysis of COS, leading to the formation of SO4

2−. A large
amount of sulfate species can poison the active sites on the
catalyst surface, thereby impeding the long-term progress of the
hydrolysis reaction. As shown in Table 3, the concentration of
chemisorbed surface oxygen initially decreased and then
increased with an increase in Sm doping concentration. When
the doping level was 3%, the catalyst exhibited the lowest
concentration of chemisorbed surface oxygen and the highest
concentration of lattice oxygen. This indicated that appropriate
Sm doping facilitated the conversion of active chemisorbed
surface oxygen into more stable lattice oxygen, thereby reducing
the oxidation of intermediate products and maintaining the
stability of the hydrolysis reaction. This also explained the
signicant improvement in low-temperature hydrolysis activity
and superior stability of the catalyst aer Sm doping.

Fig. 9(c) displayed the tted curves of the Zr 3d peaks for
different catalysts. The binding energy of approximately
© 2024 The Author(s). Published by the Royal Society of Chemistry
181.8 eV corresponds to the Zr 3d5/2 peak, while the binding
energy of approximately 184.2 eV corresponds to the Zr 3d3/2
peak. It can be observed from the graph that the intensity of the
Zr 3d spectral peaks decreases with an increase in the amount of
Sm doping, possibly due to a decrease in the relative content of
Zr in the catalyst.
3.8 Surface acid and alkaline analysis

NH3-TPD is a commonly used characterization method to
investigate the acidity of catalysts. The hydrolysis of COS was
a base-catalyzed reaction, therefore, the stronger the acidity of
the catalyst surface, the less favorable the adsorption of
RSC Adv., 2024, 14, 3135–3145 | 3141



Fig. 10 (a) NH3-TPD profiles and (b) acid quantity of Sm-Ce-Ox@ZrO2 catalysts with different Sm contents.

Fig. 11 CO2-TPD profiles of Sm2O3-Ce-Ox@ZrO2 catalysts with
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reactants on the catalyst surface. Fig. 10 showed the NH3-TPD
test results of ve groups of catalysts. All ve groups of catalysts
exhibited three NH3 desorption peaks within the temperature
range of 100 °C, around 300 °C, and 600–700 °C, which can be
attributed to weak acid sites, medium-strong acid sites, and
strong acid sites.53 Among them, the desorption peak area of
weak acid sites generally decreased with the increase of Sm
doping amount. This indicated that the doping of Sm can
effectively reduce the number of weak acid sites on the catalyst
surface, making it easier for acidic reactants to adsorb on the
catalyst surface, thereby improving the catalytic activity. The
integrated peak area of medium-strong acid sites and strong
acid sites was the smallest for the 3% Sm2O3-Ce-Ox@ZrO2

catalyst, indicating the lowest acidity on the catalyst surface.
The 3% Sm2O3-Ce-Ox@ZrO2 catalyst had the lowest acid
amount on the surface, which was benecial for the adsorption
and activation of COS molecules, thereby enhancing the cata-
lytic activity of the catalyst for the hydrolysis of COS. Therefore,
the 3% Sm2O3-Ce-Ox@ZrO2 catalyst exhibited the highest cata-
lytic activity for COS hydrolysis.

The enhancement of catalyst surface alkalinity was bene-
cial to the adsorption of COS molecules on the catalyst surface,
thereby improving the catalytic activity of hydrolysis reaction.
As shown in Fig. 11, two desorption peaks were observed for all
ve catalyst groups at around 90 °C and 300 °C. The desorption
peak around 90 °C was attributed to weak alkaline sites, which
were manifested by hydroxyl groups (–OH) on the oxide surface.
The desorption peak around 300 °C was attributed to medium-
strong alkaline sites, which were manifested by lattice oxygen
on the oxide surface. It was believed that the active centers for
COS hydrolysis were mainly weak alkaline centers. As clearly
seen from the gure, the desorption peak area of weak alkaline
sites was greater than that of medium-strong sites for all
samples, indicating that the number of weak alkaline centers in
the catalyst was greater than the number of medium-strong
alkaline centers, which also conrmed that weak alkaline
centers play a major role in catalytic activity. In addition, the
peak intensity of weak alkaline sites increased with the increase
3142 | RSC Adv., 2024, 14, 3135–3145
of Sm loading, indicating that the doping of Sm effectively
increased the number of weak alkaline centers in the catalyst
and improved the catalytic efficiency of hydrolysis. Therefore, it
can be concluded that the alkaline sites on the catalyst surface
played a key role in the hydrolysis of COS.
3.9 Redox performance analysis

In order to investigate the redox performance of catalysts, the
oxidation–reduction properties of ve catalyst groups were
characterized using H2-TPR. The characterization test results of
the ve catalyst groups were shown in Fig. 12. All catalysts
exhibited three hydrogen consumption peaks at around 380 °C,
510 °C and 660 °C. Firstly, the reduction peaks around 660 °C
should be attributed to the bulk oxygen reductions of CeO2.54

Furthermore, the obvious shape changes reected that the Sm
doping had signicant inuence on the states of oxygen species.
It is observed the shape changes of peaks around 380 and 510 °
different Sm contents.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 12 H2-TPR profiles of Sm2O3-Ce-Ox@ZrO2 catalysts with
different Sm contents.
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C, the peak coming to an end beyond 600 °C, which represented
that a small amount of oxygen species on the surface and in the
bulk could be reduced in the catalysts. In other words, appro-
priate amount of Sm doping was conductive to promoting the
evolution to the abundance subsurface oxygen species from the
surface or in the bulk. The intensity of the hydrogen
consumption peak around 380 °C showed an initial increase
followed by a decrease. This can be attributed to the reduction
of Sm species with different dispersion states on the ZrO2

particles. When the Sm2O3 doping amount was 3%, the inten-
sity of the hydrogen consumption peak reached its maximum.
Additionally, the hydrogen consumption peak shied to lower
temperatures (from 514 °C to 503 °C). Notably, 3% Sm2O3-Ce-
Ox@ZrO2 catalyst exhibited the lowest reduction peak temper-
ature and consumed more amount of hydrogen, indicating that
doping Sm improved the redox performance of the catalyst. This
was also one of the reasons why the 3% Sm2O3-Ce-Ox@ZrO2

catalyst exhibited the best activity.
4. Conclusions

This study involved the selection of rare earth metals Sm and Y,
as well as alkali metals Na and K, for doping in the CeOx@ZrO2

catalyst system. Results showed that when the doping amount
of Sm2O3 reached 3%, the COS conversion and H2S selectivity
both reached 100% at 90 °C. The introduction of Sm2O3 led to
an increase in the specic surface area of the catalyst and the
enlargement of some of its pores. Consequently, the adsorption
and activation of reactant molecules at low temperatures were
affected. Additionally, the doping of Sm reduced the number of
weak acid sites on the catalyst, while increasing the number of
weak basic sites. This change proved benecial for the adsorp-
tion and activation of COSmolecules at low temperature. Proper
doping of Sm facilitated the conversion of active surface
chemisorbed oxygen into more stable lattice oxygen, thus
© 2024 The Author(s). Published by the Royal Society of Chemistry
decreasing the oxidation of intermediate products and main-
taining the stability of the hydrolysis reaction.
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