
Journal of

Imaging

Article

Visible and Thermal Image-Based Trunk Detection with Deep
Learning for Forestry Mobile Robotics

Daniel Queirós da Silva 1,2,*,† , Filipe Neves dos Santos 1 , Armando Jorge Sousa 1,3 and Vítor Filipe 1,2

����������
�������

Citation: da Silva, D.Q.; dos Santos,

F.N.; Sousa, A.J.; Filipe, V. Visible and

Thermal Image-Based Trunk

Detection with Deep Learning for

Forestry Mobile Robotics. J. Imaging

2021, 7, 176. https://doi.org/

10.3390/jimaging7090176

Academic Editor: Raimondo Schettini

Received: 16 July 2021

Accepted: 28 August 2021

Published: 3 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 INESC Technology and Science (INESC TEC), 4200-465 Porto, Portugal; filipe.n.santos@inesctec.pt (F.N.d.S.);
asousa@fe.up.pt (A.J.S.); vfilipe@utad.pt (V.F.)

2 School of Science and Technology, University of Trás-os-Montes e Alto Douro (UTAD),
5000-801 Vila Real, Portugal

3 Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal
* Correspondence: daniqsilva1997@gmail.com
† Current address: Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal.

Abstract: Mobile robotics in forests is currently a hugely important topic due to the recurring
appearance of forest wildfires. Thus, in-site management of forest inventory and biomass is required.
To tackle this issue, this work presents a study on detection at the ground level of forest tree trunks in
visible and thermal images using deep learning-based object detection methods. For this purpose, a
forestry dataset composed of 2895 images was built and made publicly available. Using this dataset,
five models were trained and benchmarked to detect the tree trunks. The selected models were SSD
MobileNetV2, SSD Inception-v2, SSD ResNet50, SSDLite MobileDet and YOLOv4 Tiny. Promising
results were obtained; for instance, YOLOv4 Tiny was the best model that achieved the highest AP
(90%) and F1 score (89%). The inference time was also evaluated, for these models, on CPU and GPU.
The results showed that YOLOv4 Tiny was the fastest detector running on GPU (8 ms). This work
will enhance the development of vision perception systems for smarter forestry robots.

Keywords: deep learning; forest mobile robotics; forest trunk detection; object detection; SSD;
SSDLite; YOLO

1. Introduction

In recent years, the development of robotic solutions to operate in forestry areas is
becoming increasingly more important due to the regular appearance of wildfires. This
calamity is mostly triggered by poor management of forest inventory. With this in mind, we
study and compare several Deep Learning (DL) models for the purpose of forest tree trunk
detection. Then, the models can be utilized for autonomous tasks or inventory-related
tasks in forest contexts.

Forestry mobile robotics is a developing domain which has been growing in the last
decade. In 2008, BigDog, one of the first autonomous quadruped robot capable of walking
in rough and challenging terrains, appeared [1]. This robot was made of about 50 sensors
just to control its body motion. The authors reported that its longest continuous operation
lasted 2.5 h and consisted of a 10 km hike. Initially, this robot was controlled by a human
operator through a remote controller, but in 2010, the authors revealed an update most
related to the autonomy of BigDog [2]. To achieve the highest levels of autonomy, the
authors nurtured BigDog with a laser scanner, a stereo vision system, and navigation
algorithms, that enabled the robot to “see” its surroundings, detecting forest bio-products
such as trees and boulders, and steering itself to avoid these obstacles. This resulted in
BigDog performing autonomous navigation between goal positions in rough forest terrains
and unstructured environments with a high rate of success: the robot reached the goal
positions in 23 of 26 experiments, and one time it travelled about 130 m without operator
interference [2]. Another self-navigated Unmanned Ground Vehicle (UGV) appeared

J. Imaging 2021, 7, 176. https://doi.org/10.3390/jimaging7090176 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-9999-1550
https://orcid.org/0000-0002-8486-6113
https://orcid.org/0000-0002-0317-4714
https://orcid.org/0000-0002-3747-6577
https://doi.org/10.3390/jimaging7090176
https://doi.org/10.3390/jimaging7090176
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7090176
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7090176?type=check_update&version=2


J. Imaging 2021, 7, 176 2 of 24

in 2008 [3], in which the authors developed a control system on top of the Learning
Applied to Ground Robotics system developed at Carnegie Mellon. The UGV performed
three runs in extreme conditions and on harsh forest terrain, and completed the three
successfully in 150 s, with courses of on average 65 m and the UGV maintaining an average
speed of at least 0.43 m/s. Thus, the system outperformed the baseline method, proving
its robustness [3]. In 2010, a study was conducted on visual guidance for autonomous
navigation on rain forest terrain [4], where the authors concluded that visual perception is
a key factor for autonomous guidance in forests, despite some limitations that still exist,
such as uneven terrain and illumination, false positives, water bodies and muddy paths,
and unclassified terrain. Additionally, the authors also tested some approaches to tackle
the previous issues such as the detection of water puddles, ground, trees and vegetation [4].
Autonomous navigation in forests not only aims at small-scale vehicles, but also at high-
payload machines such as forwarders, as the authors in [5] indicate. The autonomous
forwarder weighs around 10,000 kg and was equipped with a high-precision Real-Time
Kinematic (RTK) Differential Global Positioning System (GPS) to measure the vehicle
position and heading and a gyroscope to compensate for the influence of the vehicle’s roll
and pitch [5]. All this setup was then used to make the forwarder follow paths. In such
tasks, the vehicle tracked two different paths, three times each, presenting average tracking
errors of about 6 and 7 cm; the error never exceeded 35 cm and, in most parts of the paths,
the error was less than 14 and 15 cm. Another application in a forwarder was carried
out in [6]. In this work, the authors proposed a method that detects trees (by means of
classification) and computes the distance to the trees for autonomous navigation in forests.
For tree detection, the forwarder was equipped with a camera and machine learning
classifiers—artificial neural network and k-nearest neighbours—were used along with
colour and texture features. Such a combination of features resulted in high classification
accuracies. The proposed method for measuring the distance to the trees works fairly
well if the ground is flat and if there are no overlapping objects in the scene [6]. Another
vehicle that was tested for the task of autonomous navigation was a robotic mower in
2019 [7]. In that study, the authors developed an autonomous navigation system using
visual Simultaneous Localization And Mapping (SLAM) and a Convolutional Neural
Network (CNN), without GPS. The system was tested only on forward and backward
movements, and the results were comparable with the ground-truth trajectories [7].

Autonomous navigation in forests is not only possible on land with UGVs, but also
in the air with Unmanned Aerial Vehicles (UAV). In 2016, a UAV with GPS, an inertial
measurement unit and a laser scanner was developed along with Kalman filter and Graph-
SLAM techniques to achieve autonomous flights in the forest [8]. An interesting approach
was taken in [9], where the authors proposed a method for autonomous flight of a UAV
based on following footpaths in forests. Using CNNs, the system was able to locate the
footpaths and select which one to follow, in case there are several, using a decision making
system. An update of an existing algorithm for UGVs, which calculates the distance to
obstacles [10] using image features, has been proposed in [11]. In this work, the algo-
rithm was used for UAVs and this new version of the algorithm provided significant
improvements relative to the original, working at 15 frames/s for frames with a size of
160 × 120 pixels [11]. Another UAV-based work aiming for autonomous flying was pre-
sented in [12]. In this work, an autonomous flight system was proposed that carries out
tree recognition using a CNN and then generates three possible results: free space, obstacle
close and obstacle very close. When the latter two are generated, the UAV “decides” which
side must be picked to perform the evasion manoeuvre. The system was tested in a real
environment and both tree recognition and the avoidance manoeuvre were carried out
successfully [12].

In agricultural contexts, there are some interesting works that combine mobile robotics
with visual systems. In [13], the authors proposed a system for phenotyping crops com-
posed of two parts: a terrestrial robot responsible for data acquisition and a data processing
module that performs 3D reconstruction of plants. The robot was mounted with an RGB-



J. Imaging 2021, 7, 176 3 of 24

D camera that captured images for further 3D reconstruction processing. The authors
concluded from the experiments that both a plant’s structure and environment can be re-
constructed for health assessment and crop monitoring. Another robotic platform that was
developed to monitor plant volume and health was introduced in [14]. Here, the authors
proposed a robotic platform equipped with lasers and crop sensors to perform reliable
crop monitoring. The experiments showed that the reconstruction of a volume model
of plants was successfully performed and the plants’ health was assessed by using the
crop sensors through the calculation of the normalized difference vegetation index. Then,
the volume-based model was merged with crop sensors’ data, enabling one to determine
the vegetative state of plants. A similar work to the previously mentioned one has been
proposed in [15]. In this work, the combination of laser data with crop sensors’ data was
used to detect plant stress and to map the vegetative state of plants. In [16], the authors
proposed a deep learning-based method for counting corn stands in agricultural fields. A
handheld platform was used to mount and test the hardware and software pipeline, which
the authors claim that can be easily mounted on carts, tractors or field robotic systems. The
pipeline utilizes a YOLOv3 architecture to detect the corn plants and a Kalman filter to
track and count the plants. The plant counting was performed with high accuracy.

In forestry and agricultural mobile robotics, the robot visual perception of the en-
vironment is a matter of the utmost importance, where several challenges can appear,
such as trees, bushes, boulders, holes and rough terrain (with mud, rocks, etc.). In the
agricultural context, there are plenty of works and studies related to image-based woody
trunk detection, specially for performing SLAM [17–20]. On the other hand, in the forestry
context, there are some works that focused on image-based forest tree detection. In [4],
the authors present a preliminary study on the detection of forest products such as green
vegetation, tree trunks, ground and water bodies. For this, they used a colour camera
and stereo camera, and through hue, saturation and value histograms they were able to
distinguish the aforementioned forest products. However, the authors did not present any
numerical results for further comparison with other works. In [9], an autonomous UAV is
proposed that relied on the detection of footpaths by a CNN so that the UAV could follow
them. Again, there are no numerical results in terms of trail detection or recognition in the
paper. In a similar way, a deep learning approach for flying autonomously in forests was
presented in 2018 [12]. The authors used a modified version of the AlexNet [21] CNN to
classify frames. Based on the proximity of existing objects, the network generated one of
three different outputs (classes): free space, obstacle is close, or obstacle is very close. With
these outputs the UAV performed some actions to avoid the objects. The CNN was trained
on a dataset formed by 9500 simulated and real images for each class. To test the CNN,
100 flights were made in a simulated environment and 10 in a real environment. The results
presented 85% and 100% success rates in the simulated and real environments, respectively.
In [6], the authors propose a vision application to drive a forwarder autonomously in the
forest. On top of the forwarder, a Charge-Coupled Device (CCD) camera was mounted to
acquire the forest images. Each image was analyzed in order to find forest tree trunks by
combining colour spaces and image descriptors with two classifiers—K-Nearest Neigh-
bours (KNN) and Artificial Neural Network (ANN). After the trunks were detected, they
were segmented, the distance to them was measured, and, if the distance was below a
proximity threshold, the vehicles stopped and waited for a command from the human
operator; otherwise, the vehicle continued the operation and the acquisition of images. The
results showed that KNN achieved better classification accuracy in all colour space-feature
combinations than ANN, with the highest accuracy being 94.7%. In [22], the authors
performed automatic tree detection using street images using YOLOv2 with two different
feature extractors: ResNet-50 and a four-layer CNN. They tested the models in a test dataset
composed of 69 trees and they claimed it could achieve 93% and 87% accuracies in the
same dataset with ResNet-50 and the four-layer CNN as feature extractors, respectively.
The detection of trees in street images was also carried out in [23]. In this work, the authors
proposed a part attention network for tree detection based on Faster R-CNN [24]. To assess



J. Imaging 2021, 7, 176 4 of 24

their approach they used a dataset composed of 2919 manually labelled images, from
which 500 were used to test the method, comprising 1464 trees. The best (lowest) miss rate
achieved was about 20.62%. The authors compared their method against four well-known
deep learning architectures, resulting in their method being superior to such models. An-
other work related to forest tree trunk detection, which uses fuzzy logic combined with
a contour transform was proposed in [25]. In this work, a CCD image is fused with an
infrared image to segment tree trunks in forests. The proposed method was evaluated
against other methods using nine metrics. The authors concluded that their method is
better at describing the reality of a scene and can be used for real-time applications. Despite
these works, more research is need, as there are no significant studies about this topic at
ground level which focus on the detection of tree trunks with deep learning models and
their evaluation with well-known metrics in the object detection domain. Furthermore, the
majority of works related to forest tree detection are focused on performing the detection
with Light Detection and Ranging (LiDaR) data alone [26–30], with aerial high-resolution
multispectral imagery alone [31–40] or with a combination of both [41–45].

As mentioned above, the detection of forest tree trunks can be made with data from
LiDaRs or image-based sensors. The advantages of LiDaR are: it provides 3D information
about a scene and, depending on the type of LiDaR, normally its data do not suffer from
light variations (in contrast to cameras). The most important advantages of cameras are:
they can be much less expensive than LiDaRs and they have much more resolution and
information on the field of view. In some cases, depth information can also be acquired
by multiple camera systems (for example, stereo vision), making the robot aware of the
distance to a point of interest.

In this work, we intend to further develop the domain of detection of forest tree
trunks by studying such detection with visible and thermal images to enable performing
of autonomous tasks, for navigation and inventory purposes, in forests during the day and
night. The night-time operational context of this study is particularly useful, in case one
wants to avoid humans wandering in the forest, intense heat or even wildfires, which can
potentially put lives and hardware at risk.

The main contributions of this work are:

• A publicly available dataset formed by manually annotated visible and thermal images
of two different tree species, taken in different forestry areas;

• The detection of forest trunks in visible and thermal images;
• The study and benchmarking of DL-based object detection models for the detection of

forest trunks, in different hardware platforms.

The remainder of this paper is structured as follows. Section 2 presents and describes
the state of the art in object detection, mainly the models that were used in this work.
Section 3 shows the followed methodology to acquire the data and their processing; the
DL models that were used in this work, their training configurations and the evaluation
format to assess them are also shown in this section. In Section 4, the results of this work
and a discussion are presented. This paper ends with Section 5, where the main discoveries
made with this work are described and some future work is proposed.

2. Deep Learning-Based Object Detection

This section presents the state-of-the-art of object detection through deep learning
methods, highlighting the architectures and models that were used in this work: SSD [46],
SSDLite [47], MobileNetV2 [47], ResNet50 [48], Inception-v2 [49], MobileDet [50], and
YOLOv4 Tiny [51]. In addition, a literature review of instance segmentation methods was
made, as well as a clarification about the preference of using object detection methods
instead of segmentation methods for this work.

2.1. Single-Shot Detector

A Single-Shot Detector (SSD) [46] is a fast object detector that is based on a feed-
forward CNN that generates a set of candidate bounding boxes along with their scores,



J. Imaging 2021, 7, 176 5 of 24

which assess the presence of an object of interest inside the boxes. This CNN has a base
network capable of high-quality image classification called VGG16 [52] and the authors
added an auxiliary structure that enables: detection at multiple scales, the prediction of a
set of detections using convolutional filters (that are on top of the SSD network), and the
association of default bounding boxes with each feature map cell, allowing one to discretize
in an efficient manner the possible shapes of the output boxes [46].

2.2. MobileNet and SSDLite

MobileNet [53] by itself is an image classification network, but when grouped, for
instance, with an SSD, forms a reliable and fast object detection model. This CNN relies on
depth-wise separable convolutions—factorized convolutions—that decrease the required
computation and the size of the model. Additionally, all convolutional layers of this neural
network are followed by a batch normalization and a Rectified Linear Unit (ReLU) non-
linearity, except the last fully connected layer which is directly connected to a softmax
classification layer. Although MobileNet is a lightweight and fast CNN, the authors also
consider two parameters to reduce the model’s size and speed: width multiplier (α), which
simply makes the network thinner uniformly, and a resolution multiplier (ρ), which changes
the input image resolution and the representation of every layer accordingly [53].

The second version of MobileNet (MobileNetV2) [47] came in 2018 and this version
mostly targeted mobile applications, since its basic structure provides memory efficient
inferences. The use of linear bottlenecks and inverted residuals improved the performance
of the first version. Along with MobileNetV2, the authors proposed a new object detection
framework called SSDLite [47]. This novel network is specially aimed at mobile inference
and it differs from the original SSD in the regular convolutions that were replaced by
separable convolutions in the prediction layers. In the end, SSDLite resulted in a mobile
version of SSD with a low parameter count and low computational cost.

In 2019, a third version of MobileNet (MobileNetV3) [54] appeared. MobileNetV3
came with a tuning for mobile phones by combining a network architecture search with
a fine-tuning technique that tunes the layers individually rather than globally. From this
version, two subversions emerged: MobileNetV3-Large and MobileNetV3-Small, for higher
and lower resource usage applications, respectively.

2.3. ResNet

ResNet [48] is a framework whose base is residual learning. Typically, feed-forward
neural networks are formed by stacked layers, where the outputs of a layer are directly
connected to the inputs of the next layer. Residual networks, on the other hand, add
shortcut connections to the usual networks that skip a number of layers. In ResNet, these
connections have the role of generating identity maps and their outputs are added to the
outputs of the network stacked layers [48]. The major advantages of these connections
are that they do not add computational complexity nor extra parameters. The authors of
ResNet proven that its deep residual network is easy to optimize and an increase in depth
does not cause higher training error, instead ResNet achieves accuracy improvements with
greater depth.

2.4. Inception

Inception [55] is a CNN that was proposed in 2014 whose design is based on stacked
Inception modules formed by 1× 1, 3× 3 and 5× 5 convolutions, and a 3× 3 max-pooling
operation. Between each Inception module occasionally appears a max-pooling layer. The
result of each operation is then concatenated, forming the module output.

The second version of Inception (Inception-v2) [49] appeared with a batch-normalization
feature that helps speed up the training process. This feature adds only two extra param-
eters per activation and was taken into consideration to tackle the covariate shift phe-
nomenon, which is known to complicate the training process of most machine learning



J. Imaging 2021, 7, 176 6 of 24

systems. Additionally, the use of batch normalization helped Inception-v2 outperform,
with fewer training steps, the state-of-the-art methods in image classification tasks.

Lastly, Inception-v3 [56]—the third version of Inception—appeared with the aim of
decreasing the computational complexity of the Inception network. This was achieved by
factorizing bigger convolutions such as 5× 5 and 7× 7, which are computational expensive,
into two stacked 3 × 3 convolutions, for instance. Another factorization operation that the
authors considered is an asymmetric one, i.e., an n× n convolutional would be replaced by
one n× 1 convolutional on top of a 1× n convolutional. These two types of factorization
reduce the computational cost of the network.

2.5. You Only Look Once

You Only Look Once (YOLO) [57] is a popular object detection system for real-time
applications that emerged in 2016. YOLO starts by resizing the input image, then the image
is divided into a S × S grid, and each grid cell is responsible for predicting only a single
object. After, for each grid cell and by using a single CNN, YOLO predicts B bounding
boxes, where each one has a confidence score, and C class probabilities for each box. The
final result is a tensor defined as S × S × (B × 5 + C).

At the time of writing this paper, YOLO already accounts 3 new versions: YOLOv2 [58],
YOLOv3 [59] and YOLOv4 [51]. The first two versions showed improvements mostly in
terms of detection accuracy and speed. The last version, which is also the last official
version of YOLO, is currently the object detector presenting highest frame-rate along with
accurate detections [51] in the object detection domain. YOLOv4 has a base composed
by CSPDarknet53 [60], a intermediary part made by SPP [61] and Path Aggregation Net-
work (PAN) [62], and an head corresponding to YOLOv3 [59]. In this work we used a
smaller version of YOLOv4, called YOLOv4 Tiny, that is more suitable for resource-limited
hardware applications such as Tensor Processing Units (TPU).

2.6. MobileDet

MobileDet [50] is a recent object detector whose main applicability is for mobile
accelerators. The authors wanted to study whether the predominant habit of using depth-
wise inverted bottlenecks as the main building block in mobile networks should be taken
without considering other approaches. They found out that full convolutions have the
potential to improve both accuracy and latency when placed in the most appropriate
locations inside the network. Such locations can be found through a neural architecture
search. As a result, MobileDets achieved very good detection results, outperforming the
majority of cutting-edge mobile methods.

2.7. Instance Segmentation Review

Instance segmentation is a domain of deep learning that, like object detection, locates
and recognizes objects in images but, instead of using bounding boxes, the detection of the
objects is carried out by associating a class label to each pixel of the image, resulting in the
objects being masked [63].

One of the first CNNs for instance segmentation was proposed in 2014 and it was
called R-CNN [64]. This network consists of the combination of AlexNet [21] with a
selective search technique. The training procedure of an R-CNN starts by computing class
region proposals using a selective search, followed by fine-tuning a pre-trained AlexNet
with the region proposals. After, a set of Support Vector Machine (SVM) classifiers are
trained with the extracted features from AlexNet, replacing the soft-max classifier that
was learned by fine-tuning. Then, using the features learned by AlexNet, a bounding box
regressor training is performed for each object class [64]. This network achieved impressive
results; nevertheless, it has some drawbacks related to time. The training of R-CNN
takes long time, as it is needed to train each stage of a multi-stage pipeline, and the SVM
classifiers and the bounding box regressor must also be trained. In terms of testing, R-CNN
is also slow due to the fact that AlexNet has to extract features for each object proposal in



J. Imaging 2021, 7, 176 7 of 24

every image. From these cons, two new improved versions of R-CNN were developed: Fast
R-CNN and Faster R-CNN. Fast R-CNN [65] replaced the multi-staged training pipeline of
R-CNN with an end-to-end training procedure by performing simultaneously the learning
of soft-max classifier and the class bounding boxes regression. This network remains in the
region proposals strategy, but a Region Of Interest (ROI) pooling layer was added to extract
features for every region proposal [65]. Such changes produced an impact on Fast R-CNN
in terms of efficiency. Comparatively with R-CNN, Fast R-CNN reduced by three times and
10 times the training and testing speeds, respectively. Even so, a newer version appeared
in 2017: Faster R-CNN [24]. This network differs from Fast R-CNN by the substitution of a
selective search by a CNN for production of region proposals named the Region Proposal
Network. This addition resulted in improvements in efficiency and accuracy. A further
development was made with the introduction of Mask R-CNN [66]. This CNN did not
bring any reduction in the computational cost of Faster R-CNN, but it adds a parallel object
mask prediction branch to the object bounding box prediction branch of Faster R-CNN.
Another advantage of Mask R-CNN is that it can be easily generalized for other tasks
beyond segmentation. MaskLab [67] is another instance segmentation framework that
improved Faster R-CNN and produces two additional outputs: semantic segmentation and
instance centre direction. The authors proposed a technique that removes the duplicate
background encoding and the direction prediction is used for separate several instances
of the same object. In 2019, some work was developed to improve Mask R-CNN without
losing the generality capacity of the network. In this way, Mask Scoring R-CNN [68]
appeared. The difference of this network is the ability of scoring its own masks to assess
the quality of them. So, a head module named MaskIoU was added that, along with the
typical structure of Mask R-CNN, predicts the level of overlapping between the input
mask and the ground-truth mask. This approach computes the alignment error among
the mask score and the mask quality, improving the performance of the segmentation task
by giving priority to better masks predictions. This network even outperformed Mask
R-CNN. PAN [62] is an upgraded version of a Feature Pyramid Network (FPN) [69], where
the authors applied bottom-up path augmentation, a process that consists of performing
localization in lower level layers, leading to shorter paths of information among the lower
layers and the top layers. Moreover, they proposed an approach called adaptive feature
pooling that generates a relationship between a grid of features and features at all levels.
These techniques introduced a small overhead in terms of computational cost and are easily
implemented. Lastly, a fast and simple model that was designed for real-time instance
segmentation is YOLACT [70]. This model is constructed in a fully convolutional topology
and is capable of running at 33 frames per second. To achieve such a result, the authors
divided the image segmentation into two subprocesses: the generation of prototype masks
and prediction of mask coefficients for every instance mask; then, the final instance masks
are produced by combining, linearly, the prototype masks with the coefficients.

Instance segmentation, despite being a very interesting approach that can totally
segment an object in all of its extension, still has some drawbacks: the training and testing
can be very slow, some models are very difficult to optimize, the majority of the models
are not suited for real-time applications, the need for large storage memory and high
computational power. These factors were considered and had weight in the decision not to
use methods of this type in this work.

3. Materials and Methods

In this section, the study areas in which the data were collected are presented, as well
as the species of forest trees existing in the dataset, and the cameras that were used to make
the local footage. Additionally, the dataset augmentation operations that were made before
any training are explained and the model configuration for training and evaluation metrics
are addressed.



J. Imaging 2021, 7, 176 8 of 24

3.1. Study Areas and Forests, and Image Acquisition Methodology

The collection of images was performed in Portugal in three different areas: Valongo
(41º11′22.09′′ N, 8º29′55.54′′ W), Vila do Conde (41º21′14.22′′ N, 8º44′30.66′′ W) and Lobão
(40º59′05.10′′ N, 8º29′17.41′′ W). These three forestry areas are mainly composed of two
tree species: eucalyptus and pinus.

The image acquisition was realized with four cameras: GoPro Hero6 (https://gopro.
com/en/gb/update/hero6, accessed at 10 July 2021), FLIR M232 (https://www.flir.eu/
products/m232, accessed at 10 July 2021), ZED Stereo (https://www.stereolabs.com/zed,
accessed at 10 July 2021) and Allied Mako G-125 (https://www.alliedvision.com/en/
products/cameras/detail/Mako%20G/G-125.html, accessed at 10 July 2021). The images
from Valongo were gathered with ZED Stereo camera (used as monocular camera) mounted
on AgRobV16—a ground robot that is presented in Figure 1, on left side; the images from
Vila do Conde were acquired with the Allied Mako G-125 also mounted on AgRobV16;
FLIR M232 and GoPro Hero6 took pictures in the forest of Lobão: the former was mounted
on AgRobV18—another ground robot that is presented in Figure 1, on the right side—and
the latter was transported by hand. The resolution of the cameras and the corresponding
spectrum of their images are presented further in Table 1.

Figure 1. Robotic platforms used to acquire the forest images: on the left side is shown AgRobV16
and on the right side is shown AgRobV18.

Table 1. Original dataset characteristics.

Camera Image
Spectrum Resolution Footage Local Number of Images

GoPro Hero6 Visible 1920 × 1080 Lobão 715
FLIR M232 Thermal 640 × 512 Lobão 866
ZED Stereo Visible 1280 × 720 Valongo 847

Allied Mako
G-125 Visible 1292 × 964 Vila do Conde 467

Total 2895

3.2. Dataset Preparation, Augmentation and Split

The images acquired in-site were pre-selected according to their suitability for the
task at hand—detecting forest trunks—i.e., images presenting any kind of defects such
as excessive blur or sun-related incandescent effects were eliminated. Then, they were

https://gopro.com/en/gb/update/hero6
https://gopro.com/en/gb/update/hero6
https://www.flir.eu/products/m232
https://www.flir.eu/products/m232
https://www.stereolabs.com/zed
https://www.alliedvision.com/en/products/cameras/detail/Mako%20G/G-125.html
https://www.alliedvision.com/en/products/cameras/detail/Mako%20G/G-125.html


J. Imaging 2021, 7, 176 9 of 24

manually annotated using Computer Vision Annotation Tool (CVAT) (https://github.
com/openvinotoolkit/cvat, accessed at 10 July 2021) with the Pascal Visual Object Classes
(VOC) format, a commonly known format related to Pascal VOC Challenge [71] where
each image file has a linked Extensible Markup Language (XML) file that holds the annota-
tions (examples of annotated images belonging to the dataset are shown in Appendix A
in Figure A1).

The original dataset resulting from the pre-selection is formed by 2895 images. The
characteristics of the images are presented in Table 1. An important aspect to be highlighted
is that the dataset not only contain images of visible spectrum, but also thermal images.
Figure 2 shows 4 distinct images taken by the cameras in different forests.

(a) Visible image captured by GoPro camera in Lobão. (b) Visible image captured by ZED camera in Valongo.

(c) Visible image captured by Mako camera in Vila do
Conde.

(d) Thermal image captured by FLIR camera in Lobão.

Figure 2. Illustrative images captured by the four cameras in different locations: (a) GoPro, (b) ZED, (c) Mako, and (d) FLIR.

Since the DL models require large amounts of data to achieve higher levels of accuracy,
the original dataset was augmented. The augmentation operations that were performed on
the original dataset are presented and described in Table 2.

Figure 3 presents the application of these augmentation operations to an image of
the dataset. In total, they formed a set of seven operations and eight transformations.
Therefore, it was expected that the number of images in the augmented dataset would be
8× 2895 + 2895 = 26,055; however, we also removed the non-annotated images (images
that did not contain any good trunk to annotate) figuring in the original dataset, because

https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat


J. Imaging 2021, 7, 176 10 of 24

these could compromise the model’s learning performance. Summing up, there were
205 images in the original dataset that were unconsidered, so the augmented dataset was
in turn formed by 9× (2895− 205) = 24,210 images. The original and augmented datasets
were made publicly available (https://doi.org/10.5281/zenodo.5213825, accessed at 17
August 2021).

Table 2. Augmentation operations.

Operation Value Description

Blur Random Blur the image
Flip - Flip the image horizontally

HueSatur Random Change image’s hue and saturation levels
Multiply Random Change image’s contrast level

Noise Random Add Gaussian noise to the image
Rotation −10º Rotate the image −10º
Rotation +10º Rotate the image +10º

Scale 1.2× Scaling the image

(a) Original image. (b) Image rotated by −10º. (c) Image rotated by +10º.

(d) Image with random blur. (e) Image flipped horizontally. (f) Image with random
changes in hue and saturation.

(g) Image with random
contrast change.

(h) Image with random noise. (i) Image scaled by 1.2×.

Figure 3. Augmentation operations in one image: (a) original image, (b) −10º rotation, (c) +10º rotation, (d) random blur,
(e) horizontal flip, (f) random hue and saturation changes, (g) random contrast changes, (h) random noise addition, and
(i) 1.2× scaling.

Before start training the DL models, the augmented dataset was split into three subsets:
train, validation and test. The train subset is used for training, the validation subset is
utilized to assess the training process and to verify if the model does not excessively

https://doi.org/10.5281/zenodo.5213825


J. Imaging 2021, 7, 176 11 of 24

over-fit, and the test subset is used to test and evaluate the models after the training. The
benchmarking of the DL models used in this study will be made with the test subset. The
split ratios that were chosen were 80%, 5% and 15% for the train, validation and test subsets,
respectively. Hence, this division originated a train subset of 19,369 images, a validation
subset of 1210 images and a test subset of 3631 images. The percentage of the validation
subset was this small because this made the training process highly efficient; larger ones
made the training time increase considerably.

3.3. DL Models Configuration and Training

The DL models selected in this work were: SSD MobileNetV2, SSD Inception-v2,
SSD ResNet50, SSDLite MobileDet and YOLOv4 Tiny. All the models were trained using
transfer learning with pre-trained weights from the Microsoft Common Objects in Context
(COCO) dataset [72].

The SSD-based DL models were collected from the model zoo of TensorFlow version
1 (https://github.com/tensorflow/models/blob/master/research/object_detection/g3
doc/tf1_detection_zoo.md, accessed at 10 July 2021), and they were trained using Ten-
sorFlow Object Detection API (https://github.com/tensorflow/models/tree/master/
research/object_detection, accessed at 10 July 2021) with Google Colaboratory (https:
//colab.research.google.com/, accessed at 10 July 2021) due to the easy access to Graphics
Processing Unit (GPU), which makes the training process faster. To train YOLOv4 Tiny,
was used Darknet (https://github.com/AlexeyAB/darknet, accessed at 10 July 2021), also
with Google Colaboratory.

The details related to the training of the DL models are shown in Table 3. The batch
sizes are different because the models have different architectures, and sometimes a bigger
batch size would make Google Colaboratory to crash. With respect to the learning rates,
were used the pre-defined ones.

Table 3. Training details of the DL models.

Model Learning Rate Batch Size Training Steps

SSD MobileNetV2 0.004 24 100,000
SSD Inception-v2 0.004 24 80,000

SSD ResNet50 0.004 8 120,000
SSDLite MobileDet 0.004 32 90,000

YOLOv4 Tiny 0.0026 64 25,000

The training processes were stopped when the training and validation loss curves
converged, i.e., when the curves presented minimal variation (≤5%). The SSD Mo-
bileNetV2 converged after 100,000 steps of training, SSD Inception-v2 converged after
80,000 steps, SSD ResNet50 converged after 120,000 steps, SSDLite MobileDet converged
after 90,000 steps and YOLOv4 Tiny converged after 25,000 steps, as can be seen in Table 3.

3.4. DL Models Evaluation Experiments, Conditions and Metrics

After training, the models were evaluated on the images of the test subset. Using this
subset of images, we have made three different experiments:

1. Division of the test data-subset into four sub-subsets (visible images in Lobão, visible
images in Valongo, visible images in Vila do Conde and thermal images) and run
inference in each sub-subset;

2. Division of the test subset into two sub-subsets (visible images and thermal images)
and run inference in each sub-subset;

3. Run inference in the entire test subset—with visible and thermal images mixed, and
with mixed forestry places.

The first experiment (experiment #1) will allow us to study the models performances
in single forests and to evaluate if there are any specific forest that reduces the models’

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://colab.research.google.com/
https://colab.research.google.com/
https://github.com/AlexeyAB/darknet


J. Imaging 2021, 7, 176 12 of 24

detection competence. The second experiment (experiment #2) will help us understand the
impact that thermal images can cause to the models performance, and whether or not is
possible to detect forest trunks in thermal images with high level of precision. The third
and last experiment (experiment #3) aims at a complete benchmark of the models using all
kinds of images, taken in different forestry areas. The evaluation sets that are part of these
experiments are detailed in Table 4. The names of the evaluation sets that are shown in the
table will be used later on to present and discuss the results collected from the image sets.

Table 4. Evaluation image sub-subsets for DL inference for each evaluation experiment.

Experiment Evaluation Set Name Forests Involved Image Spectrum Number of Images

#1

VC_VISIBLE Vila do Conde Visible 646
LB_THERMAL Lobão Thermal 915

LB_VISIBLE Lobão Visible 939
VG_VISIBLE Valongo Visible 1131

#2 ONLY_THERMAL Lobão Thermal 915
ONLY_VISIBLE Lobão, Valongo, Vila do Conde Visible 2716

#3 ALL Lobão, Valongo, Vila do Conde Visible, Thermal 3631

It is important to consider that all methods have a Non-Maximum Suppression (NMS)
post-processing operation configured with a confidence threshold of 30% and an overlap-
ping threshold of 60%. This way, only detections with confidence scores above 30% are
considered for the NMS step. Additionally, all models were evaluated in terms of accuracy,
and inference time in two different hardware platforms, one of them is based on a four-core
Central Processing Unit (CPU) and the other one has a GPU with a compute capability of
7.5. The two platforms are specified in Table 5.

Table 5. Hardware platforms specifications for DL inference.

Processing Unit Platform Memory

CPU—Intel i7 4 × 2.40 GHz HP Notebook personal computer 4 GB
GPU—NVIDIA Tesla T4 Google Colaboratory hosted runtime 12 GB

The metrics that are usually used to evaluate object detection methods are based on
True Positives (TP), correctly detected objects, False Positives (FP), incorrectly detected
objects, and False Negatives (FN), which represents incorrectly undetected objects. From
these concepts, two metrics called Precision (P) and Recall (R) emerge. Precision measures
how many detections are objects, and depends on the number of True Positives and False
Positives, as can be seen in (1). Recall measures how many objects are detected, and
depends on the True Positives and False Negatives, as can be seen in (2).

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

Based on the two previous metrics, Precision × Recall curve is another way of mea-
suring the performance of a detector and corresponds to a trade-off between Precision
and Recall [73]. This curve is useful for computing Area Under the Curve (AUC). This
metric tells us that our method is good if it presents an high AUC. To maximize AUC, the
Precision must stay high while the Recall increases. However, measuring AUC is quite
difficult due to the zigzag behaviour of Precision × Recall curve, so a metric called Average
Precision (AP) is capable of calculating it, summarizing the curve shape by the average of



J. Imaging 2021, 7, 176 13 of 24

the maximum Precision values at each Recall level [73], interpolating through all points in
the following fashion:

AP = ∑
n
(Rn+1 − Rn)Pinterp(Rn+1), (3)

with
Pinterp(Rn+1) = max

R̃:R̃≥Rn+1

P(R̃) (4)

where P(R̃) is the Precision measured at Recall R̃.
Another metric to assess and compare the models performances is F1 score. F1 score

is simply the harmonic mean of Precision and Recall, which allows maximizing these two
at the same time, and is defined by:

F1 = 2× P× R
P + R

(5)

In object detection tasks, the previous metrics require another metric to distinguish
a correct detection from an incorrect one. That metric is Intersection over Union (IoU).
This metric is defined in (6) and it measures the overlapping area between a ground-truth
bounding box (Bgt) and a detected bounding box (Bdet). Then, this area is compared with a
given threshold and if it lies above or under the threshold, the detection is considered as
correct or incorrect, respectively [73,74].

IoU =
area(Bgt ∩ Bdet)

area(Bgt ∪ Bdet)
(6)

4. Results and Discussion

This section presents the results, and their discussion, gathered in this work, which
are related to the performance aspects of the trained models for each experiment presented
by Table 4 in Section 3.4. All models were evaluated according to AP, F1 score and the
Precision × Recall curve. Additionally, they were also tested on CPU and GPU to assess
their inference times. To evaluate the detection performance of the models, an IoU threshold
of 50% was considered, as this is one of the most common values [73]. A detail that should
be mentioned is that all models were trained and tested using their default input resolutions.
Lastly, and for simplicity, we consider the confidence threshold that includes all detections
as 0%, but in our case this threshold is actually 30%, since we ignored the predictions with
confidence scores below this last value, as was mentioned in Section 3.4.

4.1. Results of Experiment #1

Experiment #1 is about performing inference with the trained models in each of four
evaluation sets: visible images from Vila do Conde (VC_VISIBLE), thermal images from
Lobão (LB_THERMAL), visible images from Lobão (LB_VISIBLE) and visible images from
Valongo (VG_VISIBLE). The evaluation results are focused on the AP and F1 score that
the models achieved on the evaluation sets previously mentioned. The results of this
experiment are presented in Table 6.

From Table 6, it can be seen that in general all models achieved the best AP and
F1 results in the VG_VISIBLE evaluation set. In the LB_THERMAL and VC_VISIBLE
evaluation sets, the models attained similar results in each set, and the worst results were
collected when the models ran in the LB_VISIBLE set. In addition to that, YOLOv4 Tiny
was the best detector in every evaluation set, and SSDLite MobileDet was the worst. Lastly,
it should be concluded that the data subset that provokes more errors in the models is the
one with visible images from Lobão.



J. Imaging 2021, 7, 176 14 of 24

Table 6. Evaluation results for experiment #1 in terms of AP and F1 score considering all detections
(confidence threshold of 0%).

Evaluation Set Model AP (%) F1 (%)

VC_VISIBLE

SSD MobileNetV2 73.19 80.56
SSD Inception-v2 76.40 84.72

SSD ResNet50 75.90 82.69
SSDLite MobileDet 71.92 74.76

YOLOv4 Tiny 90.96 90.08

LB_THERMAL

SSD MobileNetV2 77.07 83.02
SSD Inception-v2 74.93 83.96

SSD ResNet50 78.63 81.66
SSDLite MobileDet 73.45 74.71

YOLOv4 Tiny 86.73 85.82

LB_VISIBLE

SSD MobileNetV2 64.36 71.40
SSD Inception-v2 66.90 77.93

SSD ResNet50 70.61 79.90
SSDLite MobileDet 57.93 65.98

YOLOv4 Tiny 84.76 85.08

VG_VISIBLE

SSD MobileNetV2 77.10 84.34
SSD Inception-v2 80.88 87.71

SSD ResNet50 83.87 89.21
SSDLite MobileDet 72.57 78.01

YOLOv4 Tiny 93.59 93.23

4.2. Results of Experiment #2

The objective of experiment #2 is to run inference using the trained models on the two
evaluation sets of the second experiment: thermal images only (ONLY_THERMAL) and
visible images only (ONLY_VISIBLE). The evaluation results are focused on the AP and F1
score that the models attained on the aforementioned evaluation sets. The results of this
experiment are presented in Table 7.

Table 7. Evaluation results for experiment #2 in terms of AP and F1 score considering all detections
(confidence threshold of 0%).

Evaluation Set Model AP (%) F1 (%)

ONLY_THERMAL

SSD MobileNetV2 77.07 83.02
SSD Inception-v2 74.93 83.96

SSD ResNet50 78.63 81.66
SSDLite MobileDet 73.45 74.71

YOLOv4 Tiny 86.73 85.82

ONLY_VISIBLE

SSD MobileNetV2 72.04 80.40
SSD Inception-v2 75.34 83.99

SSD ResNet50 78.20 85.25
SSDLite MobileDet 67.29 73.34

YOLOv4 Tiny 90.27 89.93

From Table 7, it can be seen that the results obtained from experiment #2 are equally
distributed by the evaluation sets: some models collected clearly better AP and F1 results
on the thermal image-based set (ONLY_THERMAL), for instance, SSD MobileNetV2 and
SSDLite MobileDet; others got clearly better AP and F1 results on the visible image-based
set (ONLY_VISIBLE), such as YOLOv4 Tiny; lastly, SSD Inception-v2 and SSD ResNet50
presented very similar results for both evaluation sets. Again, YOLOv4 Tiny was the best
detector in the two evaluation sets, and SSDLite MobileDet was the worst. The similarity
of the results gathered on the two evaluation sets proves that the detection of forest tree



J. Imaging 2021, 7, 176 15 of 24

trunks in thermal images is surely possible and was performed with high values of AP and
F1 in this work.

4.3. Results of Experiment #3

Experiment #3 consisted in using the ALL evaluation set (detailed in Table 4) to run
inference with the trained models. This evaluation set is equal to the test subset mentioned
in Section 3.2 and includes visible and thermal images. The results obtained from this
experiment will be analyzed focusing on the detection performance of the models, on
the impact of increasing the confidence level in the AP and F1 of the models, and on the
temporal performance of the models in different hardware platforms (CPU and GPU).

4.3.1. Detection Performance of the Models

Table 8 presents the AP and F1 results, where all predictions were considered, i.e., the
values present in the table are the ones related to a confidence threshold of 0%.

Table 8. Results of AP and F1 obtained from experiment #3 considering all detections (confidence
threshold of 0%).

Evaluation Set Model AP (%) F1 (%)

ALL

SSD MobileNetV2 72.68 80.74
SSD Inception-v2 75.29 83.98

SSD ResNet50 78.19 84.75
SSDLite MobileDet 68.08 73.53

YOLOv4 Tiny 89.84 89.37

From Table 8, it can be said that notoriously YOLOv4 Tiny is by far the best trunk
detector in AP and F1 on GPU, as it gathered 89.84% AP and 89.37% F1. The second best
trunk detector is SSD ResNet50, which presented a 78.19% AP and 84.75% F1. Next is SSD
Inception-v2 with a 75.29% AP and 83.98% F1, followed by SSD MobileNetV2 that achieved
72.68% AP and 80.74% F1. Lastly, SSDLite MobileDet was the detector that presented the
worst AP (68.08%) and F1 (73.53%) performances.

The AP values of the previous table can be correlated with the AUC of the detectors.
For this, in Figure 4, the Precision × Recall curves of the detectors are presented.

Figure 4. Precision × Recall curves of all models for a 0% confidence level. The dashed black curve
represents the linear interpolation between 1.0 Precision and 1.0 Recall.



J. Imaging 2021, 7, 176 16 of 24

The previous figure tells us about the accordance between the previously found AP
values with the AUC of the detectors, since YOLOv4 Tiny have the best AP and, according
to Figure 4, also seem to have the highest AUC. The same can be said to remaining detectors
and the correlation of their APs and AUCs: SSD ResNet50 seem to have the second highest
AUC, followed by SSD Inception-v2, SSD MobileNetV2 and SSDLite MobileDet. Figure 5
shows four detection examples using SSD ResNet50.

(a) (b)

(c) (d)

Figure 5. Examples of detection using SSD ResNet50 in (a–c) three visible images and (d) in one thermal image.

4.3.2. AP and F1 versus Confidence

To verify the evolution of both AP and F1 score over the full interval of confidence
(from 0% to 100%), we present Figure 6.

From Figure 6, YOLOv4 Tiny is the best forest trunk detector, in AP and F1, with
nearly 68% confidence. From that point onwards, SSD Inception-v2 was the best detector,
followed by SSD MobileNetV2. SSD ResNet50 was the second best detector until around
35% confidence, from which it started decreasing (in AP and F1) and, when it reached
the 60% confidence level, it became the worst detector overall, falling behind SSDLite
MobileDet, that in turn until this point was the worst trunk detector.



J. Imaging 2021, 7, 176 17 of 24

(a) Evolution of AP for all detectors. (b) Evolution of F1 for all detectors.

Figure 6. Results of the evolution of AP (a) and F1 (b) metrics over the full range of confidence levels.

In general, all detectors showed decreasing AP and F1 when the confidence level
increased. To assess this deterioration of the results, we checked the absolute decrease the
models suffered from 0% to 95% confidence. The absolute values are presented in Table 9.

Table 9. AP and F1 absolute reduction from 0% to 95% confidence.

Model AP (%) F1 (%)

SSD MobileNetV2 9.62 4.06
SSD Inception-v2 9.13 4.86

SSD ResNet50 65.19 61.72
SSDLite MobileDet 37.68 25.89

YOLOv4 Tiny 67.61 52.94

The detectors that showed smallest AP and F1 decreases from 0% to 95% were SSD
Inception-v2 with 9.13% in AP and 4.86% in F1, and SSD MobileNetV2 with 9.62% in AP
and 4.06% in F1—proving that they are reliable forest trunk detectors, since the confidence
increment does not affect them massively as it does to the remaining detectors. SSDLite
MobileDet is the third model in terms of its AP and F1 reduction—it decreased 37.68%
and 25.89% in AP and F1, respectively. Lastly, YOLOv4 Tiny and SSD ResNet50 were the
detectors that presented major decrements: YOLOv4 Tiny decreased 67.61% in AP and
52.94% in F1, and SSD ResNet50 decreased 65.19% in AP and 61.72% in F1.

4.3.3. Temporal Results of Inference

To assess the speed of the detectors, the inference times of the experiments made on
the two types of hardware (CPU and GPU) are shown in Table 10, where the time values
correspond to average inference times per image.

Table 10. Average inference times of the detectors on different hardware platforms.

Model CPU (ms) GPU (ms)

SSD MobileNetV2 58 15
SSD Inception-v2 118 19

SSD ResNet50 1789 50
SSDLite MobileDet 85 17

YOLOv4 Tiny 95 9



J. Imaging 2021, 7, 176 18 of 24

From the previous table, it can be seen that, on CPU, the fastest model was SSD
MobileNetV2 with an inference time of 58 ms. The slowest method on CPU was SSD
ResNet50, taking on average 1789 ms to compute a detection result; on GPU, the detector
that takes the least time to run through each image was YOLOv4 Tiny with 9 ms. Again,
SSD ResNet50 was time-wise the worst method, averaging 50 ms per image on GPU.

4.4. Discussion

The results gathered from the experiments made in this work show that the detection
of forest tree trunks at ground level can be performed with high accuracy and reliability.
Additionally, it was proven that with right amount of relevant data, several DL models can
be used for this task, as they are capable of yielding impressive detection results, even in
thermal images, as was proven with experiment #2. The remainder of this section presents
the discussion of the results obtained in experiment #3.

The work made in [22] can be compared with ours, as the authors assessed the
detection of trees at ground level, although their images were taken from the street, instead
of being captured in forestry locations. Nonetheless, comparing our results to [22], it can
be said that we obtained extremely good results considering the best model that was used
(YOLOv4 Tiny with 89.84% AP and 89.37% F1) and considering our testing conditions: the
models were tested on a test set made of by 3632 images in forestry areas, that by itself
makes the detection even more difficult due to strong shadowing (an example of this is
shown in Figure 5c) and the existence of many more trees, whereas in [22] the test set only
contained 89 images, certainly in each image there are fewer trees than in one of our test
images, and the images are from the street, which makes the trees easier to detect. Even
so, the authors in [22] claimed that they achieved an AP of 98% using YOLOv2 with a
pre-trained ResNet50 as the feature extractor. In [25], the authors used a occlusion-aware
R-CNN for detecting trees in street images. They stated that their implementation achieved
the best miss rate of 20.62%. So, even though the evaluation metric is not the same as ours,
we believe that comparing to this work, our models behaved excellent given that our ALL
test dataset is around seven times larger than theirs.

An important thing to mention is that, regarding the performance drop that YOLOv4
Tiny, SSDLite MobileDet and SSD ResNet50 suffered with the increase in confidence, it can
be fought by training these detectors longer, as more training time can increase a detector
confidence in its detections.

To compare the models in global terms, three different variables were used: accuracy,
speed and memory. The accuracy was assessed using the results from Table 8; to evaluate
the speed, Table 10 was used; and memory was calculated considering the occupied
memory by the models. For the evaluation, a grading system from zero to four (0–4)
was considered. So, if a model was the most accurate, the fastest and occupied the least
amount of memory, it would obtain the grade four in each variable. On the contrary, if
a model was the least accurate, the slowest and occupied the most memory, it would be
graded zero in each variable. Table 11 presents a comparison of the models according to
the aforementioned grade system.

Table 11. Global comparison between the models.

Model Accuracy Speed Memory Overall

SSD MobileNetV2 1 3 3 7
SSD Inception-v2 2 1 1 4

SSD ResNet50 3 0 0 3
SSDLite MobileDet 0 2 4 6

YOLOv4 Tiny 4 4 2 10

After analyzing the previous table, one can say that, overall, YOLOv4 Tiny was the
best model and SSD ResNet50 the worst one. In terms of accuracy, YOLOv4 Tiny was the
best and SSDLite MobileDet the worst; in terms of speed, YOLOv4 TIny was the best and



J. Imaging 2021, 7, 176 19 of 24

SSD ResNet50 the worst; and in terms of memory, SSDLite MobileDet was the best and
SSD ResNet50 the worst.

5. Conclusions

In this work, a benchmarking study was made aiming at the image-based detection of
forest tree trunks at ground level using deep learning methods, specifically object detection
CNNs. The tree trunk detection was carried out not only on visible images, but also
on thermal images, an approach that at first was not guaranteed to work. The use of
thermal images allows the execution of in-field forestry operations during the day and
night, meaning that this is a very important and innovative advance in the forestry domain,
for navigation and inventory purposes. For this, a dataset composed of visible and thermal
images was built, totalling 2895 images that were taken by four different cameras in three
different places, and comprising two tree species: eucalyptus and pinus. All images were
manually annotated following the Pascal VOC format [71], and the original dataset was also
augmented, as DL models require large amounts of data to achieve better performances,
resulting in an augmented dataset of 24,210 images.

The DL detectors that were used in this work were: SSD MobileNetV2, SSD Inception-
v2, SSD ResNet50, SSDLite MobileDet and YOLOv4 Tiny, and all of them were trained using
transfer learning from pre-trained weights from the COCO dataset [72]. After training,
three experiments were conducted using the trained models. The first experiment allowed
us to conclude that the visible images from Lobão forest induce the most errors to the
models; with the second experiment, it was possible to conclude that the detection of forest
tree trunks in thermal images is possible and can be achieved with a high level of precision.
The third and last experiment corresponds to a global evaluation of the models using
different types of images from different forests. More specifically, this experiment aimed at
evaluating the detection performance of the models with some metrics and their temporal
performances by running inference on different hardware platforms: CPU and GPU. The
results of the third experiment showed that YOLOv4 Tiny was the model that attained
the highest AP and F1, with 89.84% and 89.37%, respectively. On the other hand, SSDLite
MobileDet was the method that yielded the lowest results with a AP of 68.08% and an F1
of 73.53%. With respect to the variation of AP and F1 of the methods with the increase in
confidence, SSD Inception-v2 and SSD MobileNetV2 were the best detectors, presenting
the lowest variations among all detectors: from 0% to 95% confidence, SSD Inception-v2
decreased 9.13% in AP and 4.86% in F1, and SSD MobileNetV2 decreased 9.62% in AP and
4.06% in F1. The method that was more affected by the increasing confidence levels was
SSD ResNet50, with a decrease of 65.19% and 61.72% in AP and F1, respectively. In terms
of inference time per image, SSD MobileNetV2 was the fastest model running on CPU with
an average inference time of 58 ms; SSD ResNet50 was the slowest one, taking 1789 ms to
complete an inference. On GPU, YOLOv4 Tiny took 8 ms on average to infer, being the
fastest in this hardware platform, whilst SSD ResNet50 was again the model taking more
time to run inference with an average time of 50 ms.

After this work, it may be concluded that YOLOv4 Tiny is the best model, from the
set of models used in this work, for detecting forest trunks if confidence levels could be
ignored; otherwise, SSD Inception-v2 or SSD MobileNetV2 are the detectors to use.

Future work includes, studying the impact of using the same input resolution in the
models; training the models with quantization-aware procedures to further enable running
them on edge devices and TPUs, as the inference time on these can be even lower, and it
would be interesting to compare those results to the ones presented in this work; increasing
the dataset by the addition of depth images, since this type of image is robust to light
variations which happens a lot in forests and can compromised the performance of the
detectors; increasing the dataset with image samples containing more forest objects to be
detected instead of just tree trunks; integrating these models in existing forestry robots to
perform autonomous navigation or inventory-related tasks relying on the detections of the
models; perform experiments using images acquired at night, with artificial illumination,



J. Imaging 2021, 7, 176 20 of 24

to study fluorescent techniques to detect tree trunks; and train and test more models to
conduct an even broader study and benchmark.

Author Contributions: Conceptualization, D.Q.d.S. and F.N.d.S.; methodology, D.Q.d.S. and F.N.d.S.;
software, D.Q.d.S.; validation, D.Q.d.S., F.N.d.S., A.J.S. and V.F.; formal analysis, D.Q.d.S.; investi-
gation, D.Q.d.S.; resources, D.Q.d.S.; data curation, D.Q.d.S.; writing—original draft preparation,
D.Q.d.S.; writing—review and editing, D.Q.d.S., F.N.d.S., A.J.S. and V.F.; supervision, F.N.d.S., A.J.S.
and V.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work is co-financed by the ERDF—European Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation—COMPETE 2020 under
the PORTUGAL 2020 Partnership Agreement, as a part of project «Project Replant—POCI-01-0247-
FEDER-046081».

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets presented in this study are publicly available in Zenodo
at https://doi.org/10.5281/zenodo.5213825, accessed at 17 August 2021.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
AP Average Precision
AUC Area Under the Curve
CCD Charge-Coupled Device
CNN Convolutional Neural Network
COCO Common Objects in Context
CPU Central Processing Unit
CVAT Computer Vision Annotation Tool
DL Deep Learning
FN False Negatives
FP False Positives
FPN Feature Pyramid Network
GPS Global Positioning System
GPU Graphics Processing Unit
IoU Intersection over Union
KNN K-Nearest Neighbours
NMS Non-Maximum Suppression
PAN Path Aggregation Network
R-CNN Regions with CNN features
ReLU Rectified Linear Unit
R-FCN Region-based Fully Convolutional Networks
ROI Region Of Interest
RTK Real-Time Kinematic
SLAM Simultaneous Localization And Mapping
SSD Single-Shot MultiBox Detector
SVM Support Vector Machine
TP True Positives
TPU Tensor Processing Unit
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
VOC Visual Object Classes
XML Extensible Markup Language
YOLO You Only Look Once

https://doi.org/10.5281/zenodo.5213825


J. Imaging 2021, 7, 176 21 of 24

Appendix A

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A1. Examples of images with manual annotations: (a,b) are visible images from Lobão, (c,d) are visible images from
Valongo, (e,f) are visible images from Vila do Conde, and (g,h) are thermal images from Lobão.



J. Imaging 2021, 7, 176 22 of 24

References
1. Raibert, M.; Blankespoor, K.; Nelson, G.; Playter, R. BigDog, the Rough-Terrain Quadruped Robot. IFAC Proc. Vol. 2008,

41, 10822–10825. [CrossRef]
2. Wooden, D.; Malchano, M.; Blankespoor, K.; Howardy, A.; Rizzi, A.A.; Raibert, M. Autonomous navigation for BigDog. In

Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010;
pp. 4736–4741. [CrossRef]

3. Alberts, J.; Edwards, D.; Soule, T.; Anderson, M.; O’Rourke, M. Autonomous Navigation of an Unmanned Ground Vehicle in
Unstructured Forest Terrain. In Proceedings of the 2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic
Systems (LAB-RS), Edinburgh, UK, 6–8 August 2008; pp. 103–108. [CrossRef]

4. Teoh, C.; Tan, C.; Tan, Y.C.; Wang, X. Preliminary study on visual guidance for autonomous vehicle in rain forest terrain. In
Proceedings of the 2010 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 28–30 June 2010; pp. 403–408.
[CrossRef]

5. Ringdahl, O.; Lindroos, O.; Hellström, T.; Bergström, D.; Athanassiadis, D.; Nordfjell, T. Path tracking in forest terrain by an
autonomous forwarder. Scand. J. For. Res. 2011, 26, 350–359. [CrossRef]

6. Ali, W.; Georgsson, F.; Hellstrom, T. Visual tree detection for autonomous navigation in forest environment. In Proceedings of the
2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 560–565. [CrossRef]

7. Inoue, K.; Kaizu, Y.; Igarashi, S.; Imou, K. The development of autonomous navigation and obstacle avoidance for a robotic
mower using machine vision technique. IFAC-PapersOnLine 2019, 52, 173–177.

8. Cui, J.Q.; Lai, S.; Dong, X.; Chen, B.M. Autonomous Navigation of UAV in Foliage Environment. J. Intell. Robot. Syst. 2016,
84, 259–276. [CrossRef]

9. Zhilenkov, A.A.; Epifantsev, I.R. System of autonomous navigation of the drone in difficult conditions of the forest trails. In
Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
Moscow and St. Petersburg, Russia, 29 January–1 February 2018; pp. 1036–1039. [CrossRef]

10. Michels, J.; Saxena, A.; Ng, A.Y. High Speed Obstacle Avoidance Using Monocular Vision and Reinforcement Learning. In
Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 593–600.
[CrossRef]

11. Mannar, S.; Thummalapeta, M.; Saksena, S.K.; Omkar, S. Vision-based Control for Aerial Obstacle Avoidance in Forest
Environments. IFAC-PapersOnLine 2018, 51, 480–485.

12. Dionisio-Ortega, S.; Rojas-Perez, L.O.; Martinez-Carranza, J.; Cruz-Vega, I. A deep learning approach towards autonomous flight
in forest environments. In Proceedings of the 2018 International Conference on Electronics, Communications and Computers
(CONIELECOMP), Cholula, Mexico, 21–23 Febuary 2018; pp. 139–144. [CrossRef]

13. Sampaio, G.S.; Silva, L.A.; Marengoni, M. 3D Reconstruction of Non-Rigid Plants and Sensor Data Fusion for Agriculture
Phenotyping. Sensors 2021, 21, 4115. [CrossRef]

14. Bietresato, M.; Carabin, G.; D’Auria, D.; Gallo, R.; Ristorto, G.; Mazzetto, F.; Vidoni, R.; Gasparetto, A.; Scalera, L. A tracked
mobile robotic lab for monitoring the plants volume and health. In Proceedings of the 2016 12th IEEE/ASME International
Conference on Mechatronic and Embedded Systems and Applications (MESA), Auckland, New Zealand, 29–31 August 2016;
pp. 1–6. [CrossRef]

15. Ristorto, G.; Gallo, R.; Gasparetto, A.; Scalera, L.; Vidoni, R.; Mazzetto, F. A mobile laboratory for orchard health status monitoring
in precision farming. Chem. Eng. Trans. 2017, 58, 661–666. [CrossRef]

16. Wang, L.; Xiang, L.; Tang, L.; Jiang, H. A Convolutional Neural Network-Based Method for Corn Stand Counting in the Field.
Sensors 2021, 21, 507. [CrossRef]

17. Mendes, J.; Neves dos Santos, F.; Ferraz, N.; Couto, P.; Morais, R. Vine Trunk Detector for a Reliable Robot Localization System.
In Proceedings of the 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), Bragança,
Portugal, 4–6 May 2016; pp. 1–6. [CrossRef]

18. Aguiar, A.S.; Santos, F.N.D.; De Sousa, A.J.M.; Oliveira, P.M.; Santos, L.C. Visual Trunk Detection Using Transfer Learning and a
Deep Learning-Based Coprocessor. IEEE Access 2020, 8, 77308–77320. [CrossRef]

19. Pinto de Aguiar, A.S.; Neves dos Santos, F.B.; Feliz dos Santos, L.C.; de Jesus Filipe, V.M.; Miranda de Sousa, A.J. Vine-
yard trunk detection using deep learning—An experimental device benchmark. Comput. Electron. Agric. 2020, 175, 105535.
doi:10.1016/j.compag.2020.105535. [CrossRef]

20. Aguiar, A.S.; Monteiro, N.N.; Santos, F.N.D.; Solteiro Pires, E.J.; Silva, D.; Sousa, A.J.; Boaventura-Cunha, J. Bringing Semantics to
the Vineyard: An Approach on Deep Learning-Based Vine Trunk Detection. Agriculture 2021, 11, 131. [CrossRef]

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings
of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012;
pp. 1097–1105.

22. Itakura, K.; Hosoi, F. Automatic Tree Detection from Three-Dimensional Images Reconstructed from 360° Spherical Camera
Using YOLO v2. Remote Sens. 2020, 12, 988. [CrossRef]

23. Xie, Q.; Li, D.; Yu, Z.; Zhou, J.; Wang, J. Detecting Trees in Street Images via Deep Learning With Attention Module. IEEE Trans.
Instrum. Meas. 2020, 69, 5395–5406. [CrossRef]

http://doi.org/10.3182/20080706-5-KR-1001.01833
http://dx.doi.org/10.1109/ROBOT.2010.5509226
http://dx.doi.org/10.1109/LAB-RS.2008.25
http://dx.doi.org/10.1109/RAMECH.2010.5513161
http://dx.doi.org/10.1080/02827581.2011.566889
http://dx.doi.org/10.1109/IVS.2008.4621315
http://dx.doi.org/10.1007/s10846-015-0292-1
http://dx.doi.org/10.1109/EIConRus.2018.8317266
http://dx.doi.org/10.1145/1102351.1102426
http://dx.doi.org/10.1109/CONIELECOMP.2018.8327189
http://dx.doi.org/10.3390/s21124115
http://dx.doi.org/10.1109/MESA.2016.7587134
http://dx.doi.org/10.3303/CET1758111
http://dx.doi.org/10.3390/s21020507
http://dx.doi.org/10.1109/ICARSC.2016.68
http://dx.doi.org/10.1109/ACCESS.2020.2989052
http://dx.doi.org/10.1016/j.compag.2020.105535
http://dx.doi.org/10.3390/agriculture11020131
http://dx.doi.org/10.3390/rs12060988
http://dx.doi.org/10.1109/TIM.2019.2958580


J. Imaging 2021, 7, 176 23 of 24

24. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Proceedings of the Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015.

25. Yu, Z.; Yan, L.; Han, N. A region-based image fusion algorithm for detecting trees in forests. Open Cybern. Syst. J. 2014, 8, 540–545.
[CrossRef]

26. Wan Mohd Jaafar, W.S.; Woodhouse, I.H.; Silva, C.A.; Omar, H.; Abdul Maulud, K.N.; Hudak, A.T.; Klauberg, C.; Cardil, A.;
Mohan, M. Improving Individual Tree Crown Delineation and Attributes Estimation of Tropical Forests Using Airborne LiDAR
Data. Forests 2018, 9, 759. [CrossRef]

27. Dersch, S.; Heurich, M.; Krueger, N.; Krzystek, P. Combining graph-cut clustering with object-based stem detection for
tree segmentation in highly dense airborne lidar point clouds. ISPRS J. Photogramm. Remote Sens. 2021, 172, 207–222.
doi:10.1016/j.isprsjprs.2020.11.016. [CrossRef]

28. Eysn, L.; Hollaus, M.; Lindberg, E.; Berger, F.; Monnet, J.M.; Dalponte, M.; Kobal, M.; Pellegrini, M.; Lingua, E.; Mongus, D.; et al.
A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space. Forests
2015, 6, 1721–1747. [CrossRef]

29. Dong, T.; Zhou, Q.; Gao, S.; Shen, Y. Automatic Detection of Single Trees in Airborne Laser Scanning Data through Gradient
Orientation Clustering. Forests 2018, 9, 291. [CrossRef]

30. Yu, X.; Litkey, P.; Hyyppä, J.; Holopainen, M.; Vastaranta, M. Assessment of Low Density Full-Waveform Airborne Laser Scanning
for Individual Tree Detection and Tree Species Classification. Forests 2014, 5, 1011–1031. [CrossRef]

31. Wu, B.; Liang, A.; Zhang, H.; Zhu, T.; Zou, Z.; Yang, D.; Tang, W.; Li, J.; Su, J. Application of conventional UAV-based high-
throughput object detection to the early diagnosis of pine wilt disease by deep learning. For. Ecol. Manag. 2021, 486, 118986.
doi:10.1016/j.foreco.2021.118986. [CrossRef]

32. Lou, X.; Huang, Y.; Fang, L.; Huang, S.; Gao, H.; Yang, L.; Weng, Y.; uai Hung, I.K. Measuring loblolly pine crowns with drone
imagery through deep learning. J. For. Res. 2021, 32, 1–12. [CrossRef]

33. Li, W.; Fu, H.; Yu, L. Deep convolutional neural network based large-scale oil palm tree detection for high-resolution remote
sensing images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort
Worth, TX, USA, 23–28 July 2017; pp. 846–849. [CrossRef]

34. Hirschmugl, M.; Ofner, M.; Raggam, J.; Schardt, M. Single tree detection in very high resolution remote sensing data. Remote
Sens. Environ. 2007, 110, 533–544.

35. Klein Hentz, A.; Silva, C.; Corte, A.; Netto, S.; Strager, M.; Klauberg, C. Estimating forest uniformity in Eucalyptus spp. and Pinus
taeda L. stands using field measurements and structure from motion point clouds generated from unmanned aerial vehicle (UAV)
data collection. For. Syst. 2018, 27, e005. [CrossRef]

36. Fujimoto, A.; Haga, C.; Matsui, T.; Machimura, T.; Hayashi, K.; Sugita, S.; Takagi, H. An End to End Process Development for
UAV-SfM Based Forest Monitoring: Individual Tree Detection, Species Classification and Carbon Dynamics Simulation. Forests
2019, 10, 680. [CrossRef]

37. Daliman, S.; Abu-Bakar, S.A.R.; Azam, S.H.M.N. Development of young oil palm tree recognition using Haar- based rectangular
windows. IOP Conf. Ser. Earth Environ. Sci. 2016, 37, 012041. [CrossRef]

38. Tianyang, D.; Jian, Z.; Sibin, G.; Ying, S.; Jing, F. Single-Tree Detection in High-Resolution Remote-Sensing Images Based on a
Cascade Neural Network. ISPRS Int. J. Geo-Inf. 2018, 7, 367. [CrossRef]

39. Ferreira, M.P.; de Almeida, D.R.A.; de Almeida Papa, D.; Minervino, J.B.S.; Veras, H.F.P.; Formighieri, A.; Santos, C.A.N.; Ferreira,
M.A.D.; Figueiredo, E.O.; Ferreira, E.J.L. Individual tree detection and species classification of Amazonian palms using UAV
images and deep learning. For. Ecol. Manag. 2020, 475, 118397. doi:10.1016/j.foreco.2020.118397. [CrossRef]

40. Hu, G.; Zhu, Y.; Wan, M.; Bao, W.; Zhang, Y.; Liang, D.; Yin, C. Detection of Diseased Pine Trees in Unmanned Aerial Vehicle
Images by using Deep Convolutional Neural Networks. Geocarto Int. 2020, 35, 1–15. [CrossRef]

41. Wang, K.; Wang, T.; Liu, X. A Review: Individual Tree Species Classification Using Integrated Airborne LiDAR and Optical
Imagery with a Focus on the Urban Environment. Forests 2019, 10, 1. [CrossRef]

42. Surový, P.; Kuželka, K. Acquisition of Forest Attributes for Decision Support at the Forest Enterprise Level Using Remote-Sensing
Techniques—A Review. Forests 2019, 10, 273. [CrossRef]

43. Deng, S.; Katoh, M.; Yu, X.; Hyyppä, J.; Gao, T. Comparison of Tree Species Classifications at the Individual Tree Level by
Combining ALS Data and RGB Images Using Different Algorithms. Remote Sens. 2016, 8, 1034. [CrossRef]

44. Liu, J.; Feng, Z.; Yang, L.; Mannan, A.; Khan, T.U.; Zhao, Z.; Cheng, Z. Extraction of Sample Plot Parameters from 3D Point Cloud
Reconstruction Based on Combined RTK and CCD Continuous Photography. Remote Sens. 2018, 10, 1299. [CrossRef]

45. Sun, Y.; Xin, Q.; Huang, J.; Huang, B.; Zhang, H. Characterizing Tree Species of a Tropical Wetland in Southern China at the
Individual Tree Level Based on Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4415–4425.
[CrossRef]

46. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European
Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37. [CrossRef]

47. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

http://dx.doi.org/10.2174/1874110X01408010540
http://dx.doi.org/10.3390/f9120759
http://dx.doi.org/10.1016/j.isprsjprs.2020.11.016
http://dx.doi.org/10.3390/f6051721
http://dx.doi.org/10.3390/f9060291
http://dx.doi.org/10.3390/f5051011
http://dx.doi.org/10.1016/j.foreco.2021.118986
http://dx.doi.org/10.1007/s11676-021-01328-6
http://dx.doi.org/10.1109/IGARSS.2017.8127085
http://dx.doi.org/10.5424/fs/2018272-11713
http://dx.doi.org/10.3390/f10080680
http://dx.doi.org/10.1088/1755-1315/37/1/012041
http://dx.doi.org/10.3390/ijgi7090367
http://dx.doi.org/10.1016/j.foreco.2020.118397
http://dx.doi.org/10.1080/10106049.2020.1864025
http://dx.doi.org/10.3390/f10010001
http://dx.doi.org/10.3390/f10030273
http://dx.doi.org/10.3390/rs8121034
http://dx.doi.org/10.3390/rs10081299
http://dx.doi.org/10.1109/JSTARS.2019.2950721
http://dx.doi.org/10.1007/978-3-319-46448-0_2


J. Imaging 2021, 7, 176 24 of 24

48. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

49. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,
arXiv:1502.03167.

50. Xiong, Y.; Liu, H.; Gupta, S.; Akin, B.; Bender, G.; Wang, Y.; Kindermans, P.J.; Tan, M.; Singh, V.; Chen, B. MobileDets: Searching
for Object Detection Architectures for Mobile Accelerators. arXiv 2021, arXiv:2004.14525.

51. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

52. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
53. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
54. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching

for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019; pp. 1314–1324.

55. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. arXiv 2014, arXiv:1409.4842.

56. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015,
arXiv:1512.00567.

57. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 779–788. [CrossRef]

58. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 22–25 July 2017; pp. 6517–6525. [CrossRef]

59. Redmon, J.; Farhadi, A. YOLO v.3. Technical Report, University of Washington. 2018. Available online: https://pjreddie.com/
media/files/papers/YOLOv3.pdf (accessed on 9 June 2020).

60. Wang, C.Y.; Liao, H.Y.M.; Yeh, I.H.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W. CSPNet: A New Backbone that can Enhance Learning
Capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
Virtual, 16–18 June 2020.

61. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. In European
Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 346–361. [CrossRef]

62. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

63. Hafiz, A.M.; Bhat, G.M. A survey on instance segmentation: State of the art. Int. J. Multimed. Inf. Retr. 2020, 9, 171–189. [CrossRef]
64. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014.
65. Girshick, R. Fast R-CNN. In Proceedings of the International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13

December 2015.
66. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the International Conference on Computer Vision

(ICCV), Venice, Italy, 22–29 October 2017.
67. Chen, L.C.; Hermans, A.; Papandreou, G.; Schroff, F.; Wang, P.; Adam, H. MaskLab: Instance Segmentation by Refining Object

Detection with Semantic and Direction Features. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4013–4022. [CrossRef]

68. Huang, Z.; Huang, L.; Gong, Y.; Huang, C.; Wang, X. Mask Scoring R-CNN. arXiv 2019, arXiv:1903.00241.
69. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. arXiv 2017,

arXiv:1612.03144.
70. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-time Instance Segmentation. arXiv 2019, arXiv:1904.02689.
71. Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.

Comput. Vis. 2010, 8, 303–338. [CrossRef]
72. Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft

COCO: Common Objects in Context. arXiv 2015, arXiv:1405.0312.
73. Padilla, R.; Netto, S.L.; da Silva, E.A.B. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the

2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 237–242.
[CrossRef]

74. Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit. Electronics 2021, 10, 279. [CrossRef]

http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2017.690
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf
http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/s13735-020-00195-x
http://dx.doi.org/10.1109/CVPR.2018.00422
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1109/IWSSIP48289.2020.9145130
http://dx.doi.org/10.3390/electronics10030279

	Introduction
	Deep Learning-Based Object Detection
	Single-Shot Detector
	MobileNet and SSDLite
	ResNet
	Inception
	You Only Look Once
	MobileDet
	Instance Segmentation Review

	Materials and Methods
	Study Areas and Forests, and Image Acquisition Methodology
	Dataset Preparation, Augmentation and Split
	DL Models Configuration and Training
	DL Models Evaluation Experiments, Conditions and Metrics

	Results and Discussion
	Results of Experiment #1
	Results of Experiment #2
	Results of Experiment #3
	Detection Performance of the Models
	AP and F1 versus Confidence
	Temporal Results of Inference

	Discussion

	Conclusions
	
	References

