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Abstract

Here, we develop k -mer substring space decomposition (Kssd), a sketching technique
which is significantly faster and more accurate than current sketching methods. We
show that it is the only method that can be used for large-scale dataset comparisons at
population resolution on simulated and real data. Using Kssd, we prioritize references
for all 1,019,179 bacteria whole genome sequencing (WGS) runs from NCBI Sequence
Read Archive and find misidentification or contamination in 6164 of these. Additionally,
we analyze WGS and exome runs of samples from the 1000 Genomes Project.

Keywords: Sketching method, Distance estimation, Sequence comparison, K-mer,
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Background
When this manuscript is drafting, the size of NCBI Sequence Read Archive

(SRA) database has reached to 30 peta base pairs and is keeping exponential

growth [1]. Such volume of data makes conventional sequence analysis tools such

as Blast [2] unscalable and puts a heavy burden for data managements and oper-

ations. The “big data” challenge was largely alleviated recently by sketching tech-

niques—a class of techniques about how to map k-mers (k length substrings of a

sequence) to integers and select k-mers for similarity—or distance-preserving se-

quence dimensionality reduction [3, 4]. Sketching techniques create a sketch

(namely, collection of integers mapped from selected k-mers) for each dataset

(hereinafter, refers to either a sequence or a sequences set) and use merely

sketches that typically are only several Kb in sizes to measure the extents of two

kinds of relationships—resemblance and containment, which capture the notions

of “roughly the same” and “roughly contained” for two datasets, respectively [5].

Resemblance and containment measurements underlie a broad range of applica-

tions, e.g., clustering of datasets, composition analysis of metagenomics, and

searching large-scale datasets for a certain sequence [3, 5]. Notably, sketching

techniques also play an essential part in long-reads assembly [6] and mapping [7,
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8] by overcoming the computational bottleneck of all vs. all long-reads overlap-

ping and long-reads to reference mapping, respectively.

Current sketching techniques select k-mers by minimum hashes, hence also

termed as MinHash methods. For example, Mash [3] and Bindash [4] select fixed

number (typically around 1000) of k-mers with minimum hashes of all the k-

mers from each dataset, for the reduced representation of this dataset. MinHash

methods have inherited limitations from hash: Hash is a many-to-one function,

meaning k-mers hashing is irreversible and distinct k-mers could be mapped to

the same integer, namely, hash collisions. Hash collisions would introduce extra

variation to the resemblance or containment measurement and thereby may

hamper the accuracy for datasets searching, distance estimation, and clustering.

Moreover, MinHash methods such as Mash and Bindash always create sketch of

fixed size, which would lead to a biased distance estimation when comparing

two datasets of very different sizes [3, 5]—as is the scenario of many potential

applications, e.g., prioritizing the references for a metagenomics dataset or com-

position analysis of a mixture of sequences dataset. Mash screen [9] was recently

developed to address the latter problem; it first sketches all the references, then

query k-mers from each mixture of sequences against the reference sketches to

calculate the proportion of k-mers of each reference contained in each mixture

of sequences. But the mixture of sequences which consume majority of space

are not sketched at all; hence, the merits of sketching techniques—extremely

high space and time efficiency—are largely compromised. It makes mash screen

more suitable for answering the question “what reference genomes contained in

my (one) run?” [9], but not the question “what reference genomes contained in

which runs?”

To better address the above question as well as the hash collisions problem, we

propose here a new sketching method named k-mer substring space decompos-

ition (Kssd) [10, 11]. The main idea of Kssd is based on k-mer space sampling: a

set of k-mers are first drawn by random from the whole k-mer space and then

overlapped with each given dataset to create the sketch (Fig. 1). The sketches

created this way could preserve the pairwise similarities (or distances) of given

datasets even when the datasets are of very different sizes (see the “Methods”

section for proofs). k-mer space sampling is generalized to k-mer substring space

sampling/shuffling permitting sampling from a much smaller space so that com-

putational cost could be dramatically reduced. Kssd avoids hash collisions using a

pre-determined k-mer recoding scheme (see the “Methods” section). Such a

collision-free feature ensures the accuracy of set operations on sketches. Kssd

supports three types of sketch set operations: union, intersection, and subtraction,

which mirror respective set operations on original k-mers sets and underlie a

broad range of potential applications (see the “Discussion” section). Here, we

compare Kssd with other sketching methods on computational efficiencies and

accuracies using both simulated and real data. We further illustrate the usages of

Kssd in (1) creating sketches for all metagenomic datasets, (2) optimal references

and species inconsistency detection for all bacteria WGS datasets and (3) human

population datasets clustering, mislabeling detection, and correction using refer-

ence subtraction (a featured application of Kssd).
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Results
Kssd algorithm overview

We first introduce two conceptions: k-mer substring selection pattern (kssp) and k-mer

substring space sampling/shuffling. A kssp (denoted by p) is a “01” string of length k,

where 1s positions of a k-mer define the k-mer substring (denoted by p-selected-sub-

string). The whole k-mer substring space is randomly shuffled, partitioned into N sub-

spaces of equal size and one of the N subspaces is chosen for sequence sketching, so that

the dimensionality reduction rate is 1
N (Fig. 2a). kssp setting and k-mer substring space

sampling/shuffling need be performed only if k-mer substring space has never been de-

fined (in a file), e.g., run Kssd for the first time. Otherwise, kssd has only two steps: (1)

sketching and (2) distance computing as other sketching methods. Sketching: for a given

sequence, k-mers with its p-selected-substring presented in the chosen k-mer substring

subspace are selected and recoded into sketch (Fig. 2b). Distance computing: once all se-

quences are sketched, the Jaccard and containment coefficients are estimated by Ĵ =
jSðAÞ∩SðBÞj
jSðAÞ∪SðBÞj and Ĉ = jSðAÞ∩SðBÞj

minðjSðAÞj;jSðBÞjÞ, respectively (Fig. 2c). More detailed characterization of

the algorithm and its statistical properties is available in the “Methods” section.

Accuracy of resemblance estimation

Resemblance is the relationship that captures the distance/similarity of two datasets of

similar sizes. To compare the accuracy of Kssd with other sketching methods on

Fig. 1 The main idea of Kssd. The Kssd idea originates from the naive sketching method of sampling k-mers
directly from the sequence as its sketch as illustrated in a: the k-mers randomly drawn from sequence A and B are
represented by blue dots S(A) and orange dots S(B), respectively, and the shared k-mers S(A) ∩ S(B) are represented
by red dots. However, such a sketching method is ill-suited for similarity (or distance) estimation since the two
sketches S(A) and S(B) are probably drawn from unrelated regions of A and B hence shared very few k-mers (with

an estimated Jaccard coefficient Ĵ approximate to 0) even when A and B are nearly identical. Notwithstanding its
naivety, this thought inspired us the idea of k-mer space sampling as illustrated in b: firstly, a subset of k-mers s
termed k-mer subspace (shown as red dots here) are drawn randomly from k-mer space S (namely the collection
of all possible string of length k defined in a given alphabet set, shown as green dots ∪ red dots here); then, the
sketch of any given sequence is built by overlapping s with the k-mers set of this sequence. Since s is an unbiased
sampling of the k-mer space S, it is independent of any instance k-mer sets. After sketching, two sequences A and
B, their intersection A ∩B and union A ∪ B should go through dimensionality reductions of the same expectation

fold of jSjjsj. Therefore, it enables measuring both the resemblance and the containment of the two sequences

directly using their sketches, even if they are of very difference sizes
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resemblance estimation, we evolved in-silico a reference genome to 600 mutated ge-

nomes with pre-defined mutation rates ranging from 0.001 to 0.60 with stepwise in-

crease of 0.001 which were served as ground truths hereinafter. Mutated genomes were

divided into closely related group and distantly related group, with mutation rate being

0.001~0.3 (Fig. 3) and 0.301~0.60 (Additional file 1: Fig. S1), respectively. The mutation

distances between reference and its mutants were estimated by Kssd, Mash, and Bin-

dash, with variated k-mer lengths and sketch sizes. Pearson correlation coefficient of

the ground truths and the estimations was adopted as the accuracy measurement.

The results show clear stratifications with respect to k-settings, where k = 20 and 21

yield generally similar curves whereas k = 16 yield alternative curves. When sketch size

is relative smaller, using shorter k (16 here) is more accurate than longer k (20, 21

here); but when sketch size is larger (larger than 10,240 and 42,112 in closely related

group and distantly related group, respectively), using longer k is more accurate (Fig. 3

and S1). However, for the sake of efficiency, sketching technique rarely use sketch size

larger than 10,000, so shorter k is preferred. Providing the same k-settings (k = 16 or

20), Kssd outperforms both Mash and Bindash on both groups, especially when sketch

Fig. 2 Kssd algorithm overview. a k-mer substring space shuffling. In this example, a k-mer substring
selection pattern (kssp) p = ‘000010010000’ is pre-determined for 12-mer analysis, so the length of p-
selected-substring is 2 and the k-mer substring space has dimensionality D = 42 = 16. This 16-dimensions
space is shuffled and partitioned into N subspaces of equal size (3rd column, N = 4 here), and the
dimensions in each subspace are recoded by the lexically ordered strings of length log4

D
N (4th column,

length = 1 here). One subspace s (3rd and 4th column, marked as red) is chosen for sequence sketching. b
Sequence sketching. First, the k-mers with p-selected-substring (green substring in 1st column) belonging
to the red subspace s are selected, where the p-selected-substrings are recoded by the lexically ordered
dimension (3rd column), and each selected k-mers is recoded in a way that the recoded p-selected-
substring suffixes the rest substring (4th column). c Kssd distance. Once all sequences were sketched, the

Jaccard and containment coefficients are estimated by Ĵ = jSðAÞ∩SðBÞj
jSðAÞ∪SðBÞj and Ĉ = jSðAÞ∩SðBÞj

minðjSðAÞj;jSðBÞjÞ, respectively

Yi et al. Genome Biology           (2021) 22:84 Page 4 of 20



size is small (84, 1268 and 21,077) where Kssd’s accuracy is on par with Mash/Bindash’s

with double sketch size. For applications requiring an accuracy threshold of distance es-

timations, it means kssd can use 2 times higher dimensionality reduction for sketching,

hence achieving 2 times less space and time costing than Mash/Bindash.

Comparisons of Kssd and Mash screen on containment estimation and metagenomic

datasets sketching

Containment is the relationship that captures the distance/similarity of two datasets of

very different sizes. As mentioned above, the shortcomings of Mash and Bindash on

Fig. 3 Accuracies of Kssd, Mash, and Bindash on closely related group. The Pearson correlation coefficients r
between the ground truth and the estimated mutation rates is scaled to − log (1 − r) for plotting clarity (y-
axis). The decimal above the highest data point at a sketch size is the maximal r value of all the three
methods of all k settings with that sketch size. The default k-mer lengths k for Kssd, Bindash, and Mash are
16, 21, and 21, respectively; to match k, we also run Mash and Bindash with k = 16 in addition to the default
k settings, but Kssd takes only even k, so we also run with k = 20 to vary k. Due to different sketching
mechanism, Mash and Bindash take as parameter the sketch size of continuous integers and multiples of
64, respectively; but sketch size is not a parameter of Kssd and can only counted from the sketch file. To
match sketch sizes as closely as possible, we first sketched the reference using Kssd with dimensionality
reduction levels z = {4, 3, 2, 1, 0} and obtained the sketch sizes sk = {84, 1268, 21,077, 337,277, 5,236,120},
respectively; we got the nearest multiples of 64 of sk (the parenthesized values) and interpolated with their
2-, 4-, and 8-fold sketch sizes to obtain the sketch sizes parameter sb for Bindash; and we merged sk and
the interpolated points of sb to obtain the sketch size parameter sm for Mash. Mash with k = 20, 21 at sketch
size 5,236,120 are not shown due to the running error
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containment estimation are obvious and the best reported method for containment es-

timation is Mash screen [9]. To compare Kssd with Mash screen, we benchmarked

Kssd by the same approach used by Ondov et al., where a constitutes-known synthetic

microbiome community (accession: SRR606249; referred as shakya dataset [12]) was

adopted as testing dataset. Shakya dataset contains also exogenous genomes due to

sample contaminations which could be revealed by comparing to the simulated reads

from the 64 known constitutes (served as the contamination-free control) [9].

We took the latest NCBI prokaryotic assembly (including 138,743 genomes) as refer-

ences. For each reference, the containment measurements of this reference to shakya

datasets were plotted against the minimum resemblance distance (Eq. 4) of this reference

to the 64 known constitutes (hereinafter referred as minimum reference-to-constitutes

distance). Kssd containment analysis conveys almost the same information with that of

Mash screen, where data points were biased due to the same low-abundance constitutes

and the same contaminations (Fig. 4a–d). Data points from Mash screen became increas-

ingly discrete along x and y that probably due to using fixed sketch size, whereas those

from Kssd kept continuous which is more realistic. Both Kssd and Mash screen contain-

ment measurements were highly correlated with minimum reference-to-constitutes dis-

tances less than 0.15 in both the simulated (|r| = 0.9869 versus 0.9808) and the real (|r| =

0.9611 versus 0.9592) shakya datasets (Fig. 4a–d).

Notably, the Kssd sketch for shakya datasets was only 580 Kb. Suppose a remote data-

base (e.g., NCBI) manages to adopt kssd sketching and provide kssd sketches for the raw

datasets, users could spend 110,535 times less storage cost and data transfer for contain-

ment analyses using kssd than using mash screen that takes the raw shakya dataset (52

Gb, Fig. 4e). Moreover, Kssd took only 23.5 CPU minutes for the raw dataset sketching

and 3 CPU seconds for the containment estimation, whereas Mash screen took in total

126 CPU minutes for screening and the containment estimation. There is no need for

Kssd to sketch the shakya dataset again for the containment analysis for new references

whereas Mash screen would take another 126 CPU minutes to screen the shakya dataset

again for another 138,743 new references, which is likely happen in the near future since

NCBI Refseq database is growing rapidly [14]. When performing containment ana-

lysis of all SRA datasets (> 1 million) against all new references (here, 138,743), the sketch-

ing time for references is neglectable; therefore, the asymptotic time consumption of Kssd

is only 1
2523 of that of Mash screen (3 CPU seconds vs. 126 CPU minutes, Fig. 4f). Such a

high storage and time efficiency makes kssd well-suite for answering the above-

mentioned question “what reference genomes contained in which runs?”

Encouraged by the computational efficiency of Kssd, we applied Kssd to sketch all meta-

genomic datasets in SRA. Although all metagenomics containment analysis has been con-

ducted using Mash screen before [9], Mash screen cannot generate sketches of the

metagenomic datasets for future analysis. Here, we created their sketches using Kssd. Total

190,518 metagenomics runs were retrieved in SRA database. However, due to frequent fail-

ures on prefetch and fastq-dump, 65,265 runs were successfully piped to Kssd sketching (at

4096-fold dimensionality reduction, with minimum k-mer occurrence of 2), resulting in a

combined sketch of only 10 Gb in size. The user can quickly conduct the containment ana-

lysis on their own using the metagenomic combined sketch and the prokaryotic Refseq

combined sketch (Additional file 4).
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Computational efficiency

We used 100,000 bacteria genomes to assess the time efficiency of distance computing

for Kssd, Mash, and Bindash. Both Kssd and Bindash cannot fine-tune the sketch sizes,

Kssd take sketch sizes of 1
16z of the size of origin k-mers set, and Bindash takes sketch

sizes of 64m, where z, m ∈{0, 1, 2, 3,…}. Here, we choose sketch sizes as close as pos-

sible (1780 and 2048 for Kssd/Mash and Bindash, respectively). In our 12-core testing

machine, it took 10,531, 19,094, and 328,835 CPU seconds for Kssd, Bindash, and

Mash, respectively, and took 933, 11,335, and 27,600 elapsed seconds for Kssd, Bindash,

Fig. 4 Comparisons of Kssd and Mash screen on containment estimation using shakya datasets. a–d Each dot
represents a reference. X-axis indicates the minimum resemblance distance (Eq. 4) from a reference to the 64
known constitutes computed by Kssd (a, b) or Mash (c, d). Y-axis indicates reference-to-mixture containment
measurements computed by Kssd (using Aaf distance [13], Eq. 5) and Mash screen (containment-score [9]).
Containment score (y) of Mash screen measures the similarity between reference and mixture; hence, it
negatively correlated with x. The decimals below the data points are the correlation coefficients (r) of the plot
controlling x < 0.15. The 1st and 2nd columns are the plots of the simulated and the real shakya datasets,
respectively. On the real shakya datasets, the data points biased from expectation due to low abundance
constitutes are circled in purple, and those biased due to two different contaminations are circled in orange
and red. e Suppose remote database adopt Kssd sketching and provide Kssd sketch for shakya dataset, the user
can greatly reduce their storage costing when performing this analysis. f For large-scale containment analysis,
where the sample size of sequences mixture is greatly larger than the number of references, the asymptotic
time consumption of Kssd is much smaller than that of Mash screen
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and Mash, respectively (Fig. 5) to complete all pairwise distances computation. Namely,

Kssd was 12 times and 30 times faster than Bindash and Mash respectively when using

same number of threads (12 threads here). Kssd is significantly speeded up relative to

Bindash when multithreaded (from 2 times to 12 times); this may due to a more opti-

mized parallel design or a better I/O characteristics of Kssd than Bindash. Though Bin-

dash used a bit larger sketch size, Kssd can achieve similar accuracies by using only a

half of the sketch sizes of Mash/Bindash (Fig. 3), implying Kssd may outperform Mash/

Bindash even more with same accuracy.

Reference prioritization and species inconsistency detection for all bacteria WGS datasets

We then applied Kssd for containment analysis for all bacteria whole genome sequen-

cing (WGS) runs on NCBI SRA database to find the optimal references for each run

and to identify those runs in which the species best contained is not the species it regis-

tered (hereinafter, runs of species inconsistency). Species inconsistency indicates pos-

sible sample contamination or mislabeling which should be examined for quality

control purpose. And it also implies possible species misidentification (e.g., by a low

resolution method like 16S rRNA), detection of which is particularly important for clin-

ical pathogen datasets since it may help preventing possible misdiagnosis and mistreat-

ment for clinical infectious disease. Though other methods like Mash (screen) may also

be used for this task, Kssd is a more suitable tool due to its higher computational effi-

ciency as shown above.

We first retrieved all bacteria runs on NCBI SRA browser by specifying the organism

field to be “bacteria”; from the returned run summary, we excluded those metage-

nomics and non-WGS runs, resulting in 1,023,960 bacteria WGS runs with total size of

1.4 Pb. 1,019,179 runs were successfully fastq-dumped for Kssd sketching at 4096-fold

dimensionality reduction with minimum k-mer occurrence of 2, resulting in a com-

bined sketch of only 6.7 Gb in size, which is more than 200,000-fold size reduction

relative to the raw datasets. The all-runs sketch was queried against the all-prokaryotic-

Refseq sketch, which yielded 141,403,951,997 containment coefficients and Aaf dis-

tances (Eq. 5 in the “Methods” section) in only 3 h 22 min on a 12-CPU machine. For

each run, 10 references with highest containment coefficients (or minimum Aaf dis-

tances) were selected as the optimal references (Additional file 4). Runs of species in-

consistency were identified based three criteria: (1) the run had an Aaf distance greater

than 0.05—the evidenced upper boundary of intra-species mutational distance [3, 15]—

to the nearest reference of the registered species; (2) the run had an Aaf distance less

than 0.01 to the overall nearest (namely, best contained) reference; and (3) the overall

nearest reference was of a different species from the registered one. In total, 6164 runs

of species inconsistency were identified (Additional file 2: Table S1), 50 of which were

sampled for validation as follows: for each run, the reads were bwa [16] aligned respect-

ively to the overall nearest reference and the nearest reference of the registered species,

and the percentages of reads mapped were calculated and compared. It showed 49 of

the 50 runs had higher percentages of reads mapped on the overall nearest reference

than on its counterpart (Fig. 6), which suggested that even if a dataset had a wrong reg-

istered species, Kssd can still find the optimal reference for the dataset in 98% cases.

The only outlier SRR6045040 has lower reads mappability on the overall nearest
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reference than on the registered species reference. A possible explanation for this could

be that the overall nearest reference was poorly assembled which hampered the reads

mapping. Although we had excluded metagenomics runs, there were still substantial

runs of species inconsistency contained more than one species or unknown species

(e.g., ERR2789389), which may indicate severe sample contamination. Otherwise, runs

of species inconsistency contained only one dominative species indicated possible spe-

cies misidentification or mislabeling.

Population dataset clustering and mislabeling detection and correction using Kssd

reference subtraction

As far as we know, Kssd is the only sketching method supports secure subtraction op-

eration between two sketches (see the “Methods” section), which could be particularly

useful for population datasets analyses, since those k-mers covering the variants—in-

formative sites of population genomics—could be enriched by subtracting the k-mers

set (or sketch) of reference from that of a given dataset. We used PRJEB31736—an on-

going 30X whole genome resequencing project for the 2504 samples of 1000 Genomes

Project phase 3 (hereinafter, 1KG)—to test the performance of Kssd with reference sub-

traction (hereinafter, Kssd-w/-rs). In total 1730 runs from 196 samples were success-

fully fastq-dumped for Kssd sketching at 4096-fold dimensionality reduction, with

minimum k-mer occurrence of 2. All the sketches were subtracted by the sketch of

hg38 human reference, resulting in 1730 remainder sketches with total size of just 46

Mb. The pairwise distances of the remainder sketches then were estimated using Kssd

Fig. 5 Computational efficiencies. Assessments of CPU time and elapse time of the three methods were
performed on a 32-Gb, 12-core machine using a test dataset consisting of 100 K bacteria genomes
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and plotted using multidimensional scaling (MDS). It showed the majority of the runs

were grouped unambiguously by populations, except that all the runs (ERR3576658,

ERR3576659, ERR3576661-ERR3576667) from an EAS sample HG01855 were grouped

together with AFR runs (Fig. 7a). The population inconsistency of sample HG01855 im-

plied an AFR sample (real label unknown yet) was mislabeled as HG01855 (an EAS

sample) in PRJEB31736; otherwise, Kssd-w/-rs might be not reliable for population-

level clustering. To confirm this mislabeling event and justify the Kssd-w/-rs clustering

result, we preformed conventional genotypes principal component analysis (PCA) clus-

tering analysis using a combined genotype variant calling format (VCF) file merged

from the genotype of HG01855 (see Additional file 4 for detail) and 1KG VCF file (con-

taining the genotypes for all 2504 1KG samples, https://www.internationalgenome.org/

category/vcf/). It showed again HG01855 of PRJEB31736 was grouped with AFR but

not EAS samples (Fig. 7b), suggesting HG01855 of PRJEB31736 was truly mislabeled

and Kssd-w/-rs is reliable for population-level clustering. Since PRJEB31736 is just the

resequencing project of the 2504 1KG samples, the real label for HG01855 of

PRJEB31736 must be one of the 2504 samples other than HG01855. Genotypes PCA

showed HG01855 of PRJEB31736 was closest to HG01885 (but distant to HG01855) of

1KG (Fig. 7b), promoting HG01885 might be the real label for HG01855 of

PRJEB31736. QTLtools mbv was then performed to confirm the real identity of

HG01855 by matching the HG01855 bam file (generated by mapping all HG01855 runs

to the chromosome 1 reference) to 1KG VCF file [17]. It showed again HG01855 of

PRJEB31736 was best matched to HG01885 of 1KG, with genotype consistencies of

0.99 and 0.91 in heterozygous and homozygous sites, respectively (Fig. 7c). Inspired by

Fig. 6 Bwa mappabilities of the 50 sampled runs on the overall nearest reference versus the nearest reference
of registered species. Horizontal axis indicates the run accession; vertical axis indicates the percentage of reads
bwa mapped to the overall nearest reference (blue) and the nearest reference of registered species (orange)
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QTLtools mbv, we created reference subtracted sketches for all 1KG samples (using

chromosome 1 VCF file), and then computed the Jaccard and containment coefficients

(Eqs. 2 and 3 in the “Methods” section) between HG01855 of PRJEB31736 and all 1KG

samples. It showed again HG01885 was best matched, with Jaccard and containment

coefficients of 0.0173 and 0.85, respectively (Fig. 7d). Moreover, HG01885 was clearly

separated from other samples which were clumped together (Fig. 7c and d), which indi-

cated that the matchings were significant. Therefore, the real label of sample HG01855

in PRJEB31736 should be HG01885—an AFR sample. The label HG01855 looks so

similar with HG01885 (only different at the 6th character) that might have confused

the data submitter and caused the mislabeling. A similar analysis on 19,326 human ex-

ome runs using Kssd-w/-rs alone found sample NA12275 of PRJNA59853 should be

NA12775.

In the above experiment, we illustrated two ways of mislabeling detection—clustering

based and matching based. Clustering-based way can only detect across-population

mislabeling but need no reference datasets whereas matching-based way requires refer-

ence datasets (e.g., the 1KG VCF file in this experiment) but can both detect and cor-

rect mislabeling without the across-population limitation (e.g., both NA12275 and

NA12775 are CEU samples). Kssd supports both of the two ways. Though the same

analyses could also be done using convention methods like genotypes PCA and

QTLtools, the computational expenses were enormously higher. Genotypes PCA and

QTLtools sample matching took 1440 and 420 min respectively to test just one sample.

Regardless of the raw datasets downloading, the main cost lay in bwa mapping and

GATK [18] variant calling (only for genotypes PCA). In contrast, the main cost of Kssd

Fig. 7 Clustering and matching PRJEB31736 runs by referring 1KG samples. a MDS plot of 1730 PRJEB31736
runs using Kssd reference subtracted sketches. b Genotype PCA using combined VCF file of HG01855
(PRJEB31736) and 2504 1KG samples. c Matching HG01855 (PRJEB31736) to 2504 1KG samples using
QTLtools mbv. Each black circle represents a 1KG sample, with x and y indicating percentages of consistent
genotypes on heterozygous and homozygous sites, respectively. d Matching HG01855 (PRJEB31736) to
2504 1KG samples using Kssd. Each black circle represents a 1KG sample, with x and y indicating Jaccard
and containment coefficients to HG01855, respectively. e Execution time of the above analyses. MDS plot of
160 testing runs using f Mash sketches, g Kssd sketches without reference subtraction, and h Kssd sketches
with reference subtraction
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lay in raw datasets sketching which took on average only 1.6 min per run for local data-

sets. In practice, Kssd sketching was piped from data streaming thus completed imme-

diately after the datasets were fully fastq-dumped and there was almost no storage cost

for the raw datasets. Once all the runs were sketched, the set operations and analyses

on the sketches, including the reference subtraction, distance calculating, and sample

matching, completed instantly (Fig. 7e).

To test if the reference subtraction step is essential, 160 runs (Additional file 3: Table

S2) were randomly sampled and sketched, and pairwise distances were estimated using

Mash (with sketch size of 500,000, minimum k-mer occurrence of 2) and Kssd-w/o-rs

and Kssd-w/-rs (4096-fold dimensionality reduction, minimum k-mer occurrence of 2),

respectively. MDS plot showed both Mash and Kssd-w/o-rs failed to cluster the runs

(Fig. 7f and g), whereas Kssd-w/-rs unambiguously clustered the runs by population

(Fig. 7h), which suggested that the reference subtraction essentially improved resem-

blance and containment measurements for population datasets.

Discussion and conclusions
While we compare Kssd with other sketching techniques in this study, there is another

class of sequence summarizing techniques named HyperLogLog, including HyperMin-

Hash [19] and Dashing [20], which can also measure the distance for datasets using

summaries. HyperLogLog do not fall into our category of sketching technique, as its

summary saves no representative k-mers or hashes but a collection of estimators for

the cardinality of k-mers set. Therefore, it cannot be applied to cases unitizing repre-

sentative k-mers/hashes, e.g., sequences overlapping/mapping. HyperLogLog has its

main superiority in summarizing speed, but slower in distance computing than Bindash

and has no clear superiority in accuracy [20] and hence excluded for comparison in this

study. There are also others theoretical developments on MinHash methods, e.g.,

SuperMinHash [21] and BagMinHash [22], but their practical purposes in biological

datasets analysis are not clear yet.

Kssd uses a one-to-one function mapping from k-mer space to integer space, which

is simpler than hash and has no collision and hence makes Kssd faster and more accur-

ate than current sketching methods. More importantly, the one-to-one nature guaran-

tees the security of set operations on sketches (Eqs. 7–10). Though a newly released

MinHash library SourMash [23] also supports set operations on sketches, its security is

not guaranteed due to the many-to-one nature of MinHash. Kssd support set opera-

tions of union, intersection, and subtraction. The reference subtraction operation not

only reduces further the sketch size and hence save the computing cost, but also essen-

tially improves the accuracy of distance estimation, hence for the first time enabling

real-time and large-scale datasets clustering, mislabeling detection, and correction at

population resolution. Union and intersection also have potential applications: for ex-

ample, we could sketch all bacteria references and pool the sketches into a single one

using union operation. The pooled sketch could be used as a contamination filter, and

it could be subtracted from any given sketch, say a sketch of human WGS run, to filter

out bacteria contaminations. We could create a pan-genome union sketch using 1000

genome project VCF file, and intersect it with sketch of an ancient human dataset to

get a purified sketch for the dataset, so that we could cluster the purified sketch with

sketches of 1000 genome project samples for fast ancestry test for the ancient human.
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Kssd is highly scalable. To the best of our knowledge, the containment analyses on 1,

019,179 bacteria runs is so far the largest analysis performed on a client-side machine

(except those performed on the server-end machine of the database), and it created a

combined Kssd sketch of only 6.7 Gb from the 1.4 Pb raw datasets. Though we have

fastq-dumped almost all the bacteria datasets, it suffered significantly higher frequent

fastq-dump failures on complicated datasets such as metagenomics and human WGS

datasets, which prevented us from sketching the entire SRA database. However, for a

local manager of NCBI or other large-scale databases, it is feasible to sketch all nucleo-

tide datasets in the database. The superiority of Kssd in low-cost computing makes it

possible to provide handy and real-time online analyses for much more simultaneous

users hence may greatly fasten data-driven discoveries. It is also possible to store the

combined Kssd sketch of all the nucleotide datasets from NCBI in a normal laptop or

smartphone and use it in conjunction with a portable sequencing device like nanopore

Minion, so that one can conduct real-time resemblance and containment analysis for

sequencing data in areas where internet is inaccessible, e.g., fieldwork or remote area.

Though Kssd possess above-mentioned merits, there are still limitations: firstly, Kssd

loses its efficiency when searching individual gene or small virus references contained

in mixture of sequences since these sequences are too short to be dimensionality re-

duced further to an informative sketch [9]. And Kssd requires the mixture of sequences

to be dimensionality reduced at the same folds with the references, so the mixture of

sequences cannot be dimensionality reduced either. We suggest that the references

should be at least 10,000 base pairs, so that the lowest-level sketches (with 16-fold di-

mensionality reduction) would still be informative enough for effective distance estima-

tion. For single-gene searching, the tool BIGSI [24] would be a more suitable choice,

and for numerous small virus genome searching, Mash screen would be better. Sec-

ondly, in the current version of Kssd implementation, the choices for the dimensional-

ity reduction are restricted to 16z fold (z takes integers), which prevents fine-tuning of

the dimensionality reduction folds. Lastly, Kssd do not support amino acid sequences

for current version.

One important future direction is developing long-reads overlapper and mapper

based on the k-mer substring space sampling framework. Current long-read overlapper

adopts the MinHash technique that always selects a fixed number of k-mers for a read

[7], which may waste space or hurt sensitivity when input sequences vary greatly in

lengths [8]. Kssd has the superiority in that it always selects k-mers with its number

proportion to the length of the read. Moreover, Kssd sketch is reversible, meaning the

selected k-mers could be recovered from the sketches, so there is no need to store the

k-mers hence helps saving the memory cost. Another important direction is to estimate

directly from the sketch the abundance of each reference contained. Though it is easy

to tracking in sketch the k-mer occurrences from the mixture of sequences, the rela-

tionship between the k-mer occurrences and the abundance of each reference con-

tained is complicated, since other genomes contained may also contribute to the k-mer

occurrences thus confounding abundance estimation. However, the relationship is not

totally chaotic, it is evidenced that there is clear average nucleotide identity (ANI)

boundary (ANI = 95%) between two difference prokaryotic species [15], which means

roughly 5% or larger genome regions are species-specific; thus, the k-mer occurrences

of these regions are not or much less confounded by other species and probably reflect
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the truth abundance. Therefore, a robust inferring of species-specific k-mer occur-

rences would be the key for sketch-based abundance estimation. Though MinHash

technique was introduced for biological sequences handling recently, it has long history

of development that initially used for detecting similar web pages and clustering docu-

ments [5]. In contrast, Kssd was introduced first time in this study, but we speculate

that a modified version of Kssd can perform tasks like documents clustering or similar

web pages detection as well. After all, the documents, webpage content, and DNA are

essentially all sequences but with a different alphabet set.

Methods
k-mer substring selection pattern and k-mer substring space sampling/shuffling and

recoding

A k-mer substring selection pattern (kssp) p is a “01” string of length k, by which the

letters at the 1s of the given k-mer (or k-mer set) K are concatenated, termed as the p-

selected-K-substring(s) and denoted by p1(K), and the letters at 0 s are also

concatenated, termed as p-unselected-K-substring(s) and denoted by p0(K). The weight

of p, denoted by w, is the number of 1s in p (also the length of p1(K)). Given alphabet

set Σ and weight w, the k-mer substring space S is the collection of all length w strings

defined in Σ and thus has dimensionality |S| = |Σ|w (we view each element in S as a di-

mension). S is first Fisher-Yates shuffled [25] and then partitioned into N subspaces of

equal size, denoted by s1, s2, …, sN; for computational convenience, we choose N = |Σ|a,

where a could be any positive integer ≤ w, so that |s| = | Σ |w-a (s ∈ {s1, s2, …, sN}), and

the dimensions of s could be represented by lexically ordered strings of length w-a (Fig.

2a).

Let A be a k-mer set; the subset R(A) = {K|K ∈ A, p1(K) ∈ s} is mapped to sketch S(A)

as follows: for each k-mer K ∈R(A), the p-selected-K-substring p1(K) is recoded by the

lexical order of its dimension in the subspace s, denoted by s(p1(K)), and then the p-un-

selected-K-substring p0(K) and the string s(p1(K)) are concatenated into the new string

p0(K)s(p1(K)), which has length of k-a (Fig. 2b). This k-mer recoding scheme could be

summarized by the one-to-one function r(K) = p0(K)s(p1(K)) mapping from k-mer to in-

tegers, hence avoiding hash collisions. The overall sketching process could be summa-

rized by:

SðAÞ ¼ rðRðAÞÞ ¼ fp0ðKÞsðp1ðKÞÞjK ∈ A; p1ðKÞ∈ sg ð1Þ

Kssd distance

The Jaccard and the containment coefficients for a k-mer set pair (A, B) are estimated

by:

Ĵ A;Bð Þ ¼ j S Að Þ∩S Bð Þ j
j S Að Þ∪S Bð Þ j ð2Þ

and

Ĉ A;Bð Þ ¼ j S Að Þ∩S Bð Þ j
min jS Að Þj; jS Bð Þjð Þ ð3Þ

respectively. Ĵ and Ĉ could be further converted to Mash and Aaf distances by.
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cDm ¼ −
1
k

ln
2 Ĵ

1þ Ĵ

� �
ð4Þ

and

cDa ¼ −
1
k

ln Ĉ
� � ð5Þ

respectively; both the Mash and Aaf distances estimate the mutation distance be-

tween A and B [3, 13].

Statistical properties of Kssd

Because of the nature of Fisher-Yates shuffle [25], subspace s and sketch S(A) are an

unbiased sampling (without replacement) of space S and the recoded k-mer set r(A), re-

spectively, and we have |r(A)| = |A|, since the k-mer recoding function r is injective.

Thus, we have:

EfjSðAÞjg ¼ 1
N
jrðAÞj ð6Þ

namely, the expected rate of dimensionality reduction is 1
N for sketch S(A).

For two k-mer sets A and B, we have:

SðA∩BÞ ¼ fp0ðKÞsðp1ðKÞÞjK∈ A∩B; p1ðKÞ∈ sg
¼ fp0ðKÞsðp1ðKÞÞjK∈ A; p1ðKÞ∈ sg∩fp0ðKÞ sðp1ðKÞÞjK ∈ B; p1ðKÞ∈ sg
¼ SðAÞ∩SðBÞ

ð7Þ

and similarly, we have:

S A∪Bð Þ ¼ S Að Þ∪S Bð Þ; ð8Þ

S A − Bð Þ ¼ S Að Þ − S Bð Þ ð9Þ

and

S A∪B − Bð Þ ¼ S Að Þ∪S Bð Þ − S Bð Þ ð10Þ

namely, the orders of Kssd sketching operation and set operations (e.g., union, inter-

section and subtraction) are interchangeable. It ensures the security and accuracy of set

operations on sketches which equivalent to first do set operations on the raw datasets

and then perform sketching on that resulting raw datasets. Since (A ∩ B) ∩(A ∪ B − A ∩

B) =∅, we have |S(A ∩ B)| + |S(A ∪B − A ∩ B)| = |S(A ∪ B)|, where |S(A ∩ B)| and | S(A

∪B - A ∩ B)| are independent. Therefore, we have:
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E
1

Ĵ

� �
¼ E

j S Að Þ∪S Bð Þ − S Að Þ∩S Bð Þ þ S Að Þ∩S Bð Þ j
j S Að Þ∩S Bð Þ j

� �
¼ E

j S Að Þ∪S Bð Þ − S Að Þ∩S Bð Þ j
j S Að Þ∩S Bð Þ j þ 1

� �

¼ E
j S A∪B −A∩Bð Þ j

j S A∩Bð Þ j
� �

þ 1 by interchangeabilityð Þ

¼ E jS A∪B − A∩Bð Þ jf g
E jS A∩Bð Þjf g þ 1 by independencyð Þ

¼
1
N

j A∪B −A∩B j
1
N

j A∩B j
þ 1 by Eq:6ð Þ

¼ 1
J
;

namely,

E Ĵ
� 	 ¼ J ; ð11Þ

similarly, we have:

E Ĉ
� 	 ¼ C; ð12Þ

which means Ĵ and Ĉ are unbiased estimates of J and C, respectively. Both Ĵ and Ĉ

are essentially sample proportions, thus have asymptotical gaussian distribution N( p̂ ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ ð1 − p̂Þ

n

q
), np > 10, where p̂ = Ĵ , n = |S(A ∪ B)| or p̂ = Ĉ , n =min(|S(A)|, |S(B)|) when

p = J or C, respectively. Therefore, the population standard deviation is given by.

sd p̂ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1 − p̂ð Þ

n

r
ð13Þ

and the 95% confidence interval (CI) is [p̂ − 1.96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ ð1 − p̂Þ

n

q
, p̂ - 1.96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ ð1 − p̂Þ

n

q
].

The P value is defined by:

P value ¼ P z≥
p̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ð1 − p̂Þ
n

r
0BB@

1CCA ð14Þ

where the random variable z follows the standardized normal distribution. To ac-

count for multiple testing problem, Q value Q is calculated by multiplying the P value

P by the total number of comparisons, for example, for x queries search against y refer-

ences, Q = Pxy.

k-mer set decomposition

By applying Eq. 1 with subspace s1, s2, ..., sN individually, k-mer set A can be decom-

posed into a collection of sketches d(A) = {S1(A), S2(A), ..., SN(A)}, respectively. Since

{s1, s2, ..., sN} is a partition of k-mer substring space S, we have ⋃
N

i¼1
si = S and si ∩ sj =Ø,

for 1 ≤i ≤N and 1 ≤j ≤N, therefore,
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⋃
N

i¼1
SiðAÞ ¼ fp0ðKÞsiðp1ðKÞÞjK ∈ A; p1ðKÞ∈ Sg ¼ rðAÞ; ð15Þ

and

SiðAÞ∩S jðAÞ ¼ fp0ðKÞsiðp1ðKÞÞjK∈ A; p1ðKÞ∈ sig∩fp0ðKÞs jðp1ðKÞÞjK ∈ A; p1ðKÞ∈ s jg
¼ ∅; 1≤ i≤N; 1≤ j≤N

ð16Þ

Thus, we have:

Aj j ¼ ⋃
N

i¼1
Si Að Þ

���� ���� ¼XN
i¼1

j Si Að Þ j : ð17Þ

The above conversion from A to d(A) is termed as A decomposition and sketches

S1(A) ... SN(A) are termed as the components of A. Based on Eqs. 7, 8 and 17, the

ground truth Jaccard coefficient J and containment coefficient C of two k-mer sets A

and B could be recovered by:

J ¼ j A∩B j
j A∪B j ¼

XN
i¼1

j SiðA∩BÞ j

XN
i¼1

j SiðA∪BÞ j
¼

XN
i¼1

j SiðAÞ∩ SiðBÞ j

XN
i¼1

j SiðAÞ∪ SiðBÞ j
ð18Þ

and

C ¼

XN
i¼1

j SiðAÞ∩ SiðBÞ j

min
XN
i¼1

jSiðAÞj;
XN
i¼1

jSiðBÞj
 ! ; ð19Þ

respectively. Equations 18–19 allow estimating the intersection and union of A and B

component by component, where each component take only 1
N memory of the k-mer

set, which is particularly useful when ground truth J and C is needed in a memory-

limited computer.

k-mer length

The optimal k-mer length for alignment-free sequences comparisons is roughly (but

not strictly) framed by the Eq. S2 in our previous work [26], namely:

k ¼ log4
3g
2u

; ð20Þ

where g is the genome-size, and u is the allowed upper bound of the probability of ran-

dom k-mer hitting ranging from 0.001 to 0.01 [26]. It yields k = 16 for bacterial or

smaller genomes, k = 20 or 22 for metagenomics/mammals or larger genomes, and

k = 18 for other genomes in between.

Implementation

k-mer substring space sampling/shuffling is implemented by the subcommand shuffle,

for example:
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Kssd shuffle -k 9 -s 6 -l 3 -o out

This command will generate a file named “out.shuf” which keeps the shuffled k-mer

substring space; this file would then be taken as input for sequences sketching or de-

composition. To simplify kssp setting, kssd uses symmetric kssp “0{x-y}1{y}1{y}0{x-y},”

where x and y are the half-length of k-mer and the half-length of k-mer substring (or

kssp weight w), respectively, namely, k = 2x and w = 2y. 0{x-y} and 1{y} mean a 0s string

of length x-y and 1s string of length y, respectively. Users need only set x (here by -k

9), y (here set by -s 6), and the dimensionality reduction level z (here set by -l 3; for de-

composition purpose set -l 0). Referring to the number of partitions of k-mer substring

space (or the dimensionality reduction folds) in the last section N = |Σ|a, where a = 2z

here, so -l 3 set dimensionality reduction folds to 163 for DNA sequence analysis. For

the current version of kssd, x, y, and z should satisfy 12 > x > y > z + 2 > 1. y is suggest to

greater than z + 2 to ensure the substring space after dimension-reduction is still large

enough (greater than 162) for robustness consideration.

To sketch/decompose reference sequences, just run:

Kssd dist -r <reference files dir> -L out.shuf -o <ref_outdir>

or

Kssd dist -r <reference files dir> -L 3 -k 9 -o <ref_outdir>

Either command will generate a database of reference-sketches in folder ref_outdir/

ref.; the latter one actually combines the two commands below internally:

kssd shuffle -k 9 -s 6 -l 3 -o <ref_outdir>/default.shuf &&

kssd dist -r <reference files dir> -L ref_outdir/default.shuf -o <ref_outdir>

It simplifies the process at the cost of losing control for option “-s.”

To sketch/decompose query sequences, make sure using the same “.shuf” file with

the references, and just run:

kssd dist -o <qry_outdir> -L out.shuf|<ref_outdir>/default.shuf <query files dir>

It will generate a combined queries sketch in folder qry_outdir/qry. Then, we can

perform all queries versus all references comparisons by:

kssd dist -r <ref_outdir>/ref -o <outdir> <qry_outdir>/qry

To compare references to themselves, just run:

kssd dist -r <ref_outdir>/ref -o <outdir> <ref_outdir>/qry

Then, the distance will output to the “distance” file in the folder <outdir>.

For set operations, using:

kssd set -u <qry_outdir/qry> -o <union_outdir>

to create the union sketch in <union_outdir> from the combined queries sketch in <

qry_outdir/qry>. Note the combined queries sketch is just a sketch combined from all

queries sketches, the union operation deduplicate those integers duplicated in different

queries;

and using:

kssd set -i <union_outdir> -o <intersect_outdir> <qry_outdir/qry>

to create the intersection sketch in <intersect_outdir> between the union sketch in <

union_outdir> and the combined queries sketch in <qry_outdir/qry>;

and using:

kssd set -s <union_outdir> -o <subtract_outdir> <qry_outdir/qry>

to subtracts the union sketch in <union_outdir> from the combined queries sketch in

<qry_outdir/qry> and creates the remainder sketch in <subtract_outdir>.
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For large-scale remote datasets sketching, data streaming could be piped to Kssd

sketching using:

kssd dist -L <default.shuf> -o <out_dir> --pipecmd “fastq-dump --skip-technical -Z”

<Accession>

This command creates a sketch in <out_dir> for the remote run <Accession> directly

without saving the run in local hence dramatically reduced the storage usage.
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