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Abstract

We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based

software for identification of radiologic abnormalities (computer-aided detection, or CAD)

compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four data-

bases for articles published between January 2005-February 2019. We summarized data

on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUA-

DAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods

(“Development” studies) and 13 focused on evaluation of CAD (“Clinical” studies). Meta-

analyses were not performed due to methodological differences. Development studies were

more likely to use CXR databases with greater potential for bias as compared to Clinical

studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were

significantly higher: in Development studies AUC: 0.88 [0.82–0.90]) versus Clinical studies

(0.75 [0.66–0.87]; p-value 0.004); and with deep-learning (0.91 [0.88–0.99]) versus

machine-learning (0.82 [0.75–0.89]; p = 0.001). We conclude that CAD programs are prom-

ising, but the majority of work thus far has been on development rather than clinical evalua-

tion. We provide concrete suggestions on what study design elements should be improved.

Introduction

The need to improve tuberculosis (TB) diagnostic and screening services in high-burden

countries is clear: in 2016, active TB was the leading cause of death due to an infectious agent,

and only 69% of the 10.4 million people that developed this disease were detected by or noti-

fied to national TB programmes [1]. In developed countries, chest x-rays (CXRs) have been
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used for the evaluation of persons presenting with symptoms of possible active pulmonary TB

(PTB), and for screening of individuals in high risk groups, for several decades [2]. However,

uptake of CXR in high TB burden countries, particularly in resource-constrained settings, has

been limited [3, 4].

In recent years, there has been increasing interest in expanding access to chest radiography

in order to improve TB case detection in high-burden areas [5]. However, one of the chal-

lenges is the paucity of professionals to interpret radiographic images in resource-constrained

settings [6]. In recent years, advances in artificial intelligence (AI) technology and methods

have led to major progress in automated image recognition by computers. AI has been applied

to the analysis of radiologic images to identify abnormalities—referred to as computer-aided

detection, or CAD—and represents one potential solution to overcome the personnel shortage.

Two commonly used AI approaches that have been used to create CAD programs capable of

reading CXRs are Machine learning (ML) and Deep Learning (DL). ML is a type of AI analysis

that relies less on human specification (i.e. defining a set of variables to be included) and

instead allows algorithms to decide what variables are important [7, 8]. DL is a subset of ML

which attempts to model brain architecture [7]. It uses neural networks, or overlaying models,

that emphasize learning increasingly meaningful representations of the data [7]. The World

Health Organization (WHO) has called for greater evidence before endorsing the use of CAD

in PTB diagnostic and screening pathways [5].

To date, there has been only one systematic review of CAD use for PTB detection,[9] and it

was limited to reviewing the only commercially available software at the time of publication.

Amongst the 5 studies included, the reviewers identified methodological limitations that pre-

vented the pooling of results. Because the prior review was limited to studies of the single com-

mercially available software, it excluded the vast majority of studies of CAD for detecting PTB.

Hence, in order to provide a more comprehensive and expansive summary of the CAD litera-

ture we undertook an updated systematic review which included non-commercially available

CAD studies. Our primary objectives were to evaluate the evidence base with regards to the

estimation of the diagnostic accuracy of CAD, including assessing potential for bias, and if

appropriate, to calculate pooled estimates of area under the receiver operating characteristic

curves (AUC), sensitivity, and specificity. Secondary objectives were to evaluate study-level

factors associated with diagnostic accuracy; including those related to the design of the study,

and the type of software used (ML versus DL).

Methods

Design

This systematic review followed the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses guidelines [10]. The International Prospective Register of Systematic Reviews

(PROSPERO) registration number of this protocol is CRD42018073016.

Date source and search strategy

A search strategy was developed in consultation with an academic librarian (NT) to identify

published articles in MEDLINE (Ovid), EMBASE (Ovid), PubMed, and Scopus (S1 Appen-

dix). The search strategies included subject headings (where applicable) and text words for the

concepts of pulmonary tuberculosis, computer aided diagnosis, and diagnostic accuracy. The

search period was limited to papers published after January 1, 2005, and included articles pub-

lished up to February 13, 2019. Studies were limited to English and French.

AI to detect TB on chest X-rays
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Study selection

We included all published studies that used any form of computer software to analyze CXR in

place of human readers, for PTB detection purposes. Studies were excluded if they reported

CAD for diagnostic imaging other than CXR, or if CAD was used for diseases other than PTB.

Studies reported only in conference abstracts were excluded. Four independent reviewers

selected studies for inclusion (MH, AQ, LJ, FAK). Conflicts were reviewed by a third reviewer

(FAK).

Data extraction

Data were extracted using a standardized extraction form (S2 Appendix). Three reviewers per-

formed the extraction, with one reviewer (MH) verifying all data forms completed by the sec-

ond reviewer (AQ & LJ). Data collected included year of enrollment; funding sources and

conflicts of interest; software name and version number; country where study was completed;

CXR site and number on which the software was trained; model of CXR machine, and digitiza-

tion methods; study design and patient selection methods; inclusion and exclusion criteria;

microbiologic tests collected; scoring of software tools and methods of scoring selection;

patient characteristics including HIV status, age, and history of TB; and diagnostic accuracy

measures including sensitivity, specificity, AUC for microbiologic and radiologic references.

Descriptive analysis

We classified studies as either Development or Clinical. Development studies primarily

focused on reporting methods for creating a CAD program for PTB, and some included an

assessment of diagnostic accuracy—the latter being the focus of our systematic review. Devel-

opment studies were often published in engineering, computer science, medical imaging jour-

nals, or proceedings from engineering or medical imaging conferences. The development

studies were further subdivided based on the type of AI technology used (ML versus DL).

Clinical studies primarily focused on the assessment of the accuracy of an already-developed

CAD software. We further classified Clinical studies based on the context in which the CXR

was used, using WHO terminology for categorizing usage of x-ray as either for Triage or for

Screening [5]. In Triage studies, CXRs were used in a healthcare setting—hospital, or clinic—as

part of the diagnostic pathway of someone with PTB symptoms. In Screening studies, CXRs

were used for active case finding or prevalence surveys, where populations are screened to iden-

tify those with active TB often regardless of symptoms. The distinction was made because the

prevalence of more advanced or extensive disease will be higher in the Triage setting, thereby

affecting the sensitivity of CXR and hence the accuracy of CAD.

Quality assessment with respect to the evaluation of diagnostic accuracy

The data sources used for evaluating diagnostic accuracy of CAD were databases consisting of

CXRs, with each image linked to a reference standard result classifying PTB as present or

absent. Some of these data sources had been used by more than one Development study. We

evaluated these data sources for potential risk of bias by applying a modified Quality Assess-

ment of Diagnostic Accuracy Studies (QUADAS)-2 approach [11]. As our interest was to

assess the composition of the database itself including how PTB cases were defined, we

restricted our approach to the domains of patient selection and the reference test. Because

Development studies often did not provide sampling or reference details about the data

sources, we sought additional information from citations that described the data sources [12–

15].

AI to detect TB on chest X-rays
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We applied QUADAS-2 to all the CAD studies, assessing each study across the four

domains (patient selection, the performance of the index test, performance of the reference

test, and flow and timing). In all quality assessments, when the reference standard used for

determining a CAD program’s diagnostic accuracy was image interpretation by a human

reader instead of microbiologic testing of sputum, we judged this as a potential source of bias.

This is because human interpretation of CXR is moderately specific for PTB, has variable sen-

sitivity, is marked by limited inter-reader reliability, and the reproducibility is limited [5, 16].

Statistical analysis

Diagnostic accuracy measures (sensitivity, specificity, AUC) were reported when available. For

the studies that reported sensitivities and specificities, if two by two tables were not available,

we back calculated counts based on reported accuracy measures to build forest plots. A meta-

analysis was not undertaken given that different software programs were used, and for most

studies the raw data necessary to meta-analyze diagnostic accuracy measures were unavailable.

For studies of the most commonly reported software, CAD4TB, a meta-analysis was also not

pursued due to the variability of the methods and software versions tested.

The following study-level factors were evaluated as potential determinants of the reported

AUC: type of CAD study (Development vs Clinical); the method of AI software (ML versus

DL); whether the same CXRs used for evaluating diagnostic accuracy were the same CXRs that

had been used to train the software; the type of reference standard for PTB (microbiologically

confirmed vs human interpretation of CXR image); and the degree of patient selection, index

test, and reference standard bias. While the data were insufficient for a traditional meta-analy-

sis, to identify associations between these factors and reported AUC, we compared the pooled

distribution of the reported AUCs between groups defined by these study-level factors using

Kruskal-Wallis tests. When studies reported more than one AUC, a mean AUC was calculated

and used for this analysis. This assessment was done for the AUC but not for Sensitivity or

Specificity, as the latter two were reported in too few studies to undertake a meaningful com-

parison of distributions.

For all Clinical studies and Development studies which reported sensitivity, specificity, and

true positives, forest plots were used to visually assess heterogeneity of diagnostic accuracies.

Results

Study selection

We identified 4712 unique citations (Fig 1), of which 2821 studies were excluded at the title

and abstract phase. Of the remaining 391, 338 were excluded after full-text review. Amongst

the 53 included articles, 40 were classified as Development studies and 13 were classified as

Clinical (Table 1). The software developers were either authors or funded the research in 9/13

(69%) of the Clinical studies [17–25], and in 100% (40/40) of the Development studies.

Overview of studies

Within the Development studies, 7/40 (17%) employed DL methods while the remaining 33/

40 (83%) used ML approaches (Table 1) [26–65]. An important consideration when evaluating

the accuracy of a CAD software, is that it should be tested using a set of CXR images that are

separate from the training set (i.e. avoid testing accuracy with CXRs that were used for train-

ing, or CXRs that were not used for training but that originate from the same subset/study as

those with which the program was trained). Otherwise, the evaluation is likely to overestimate

the diagnostic accuracy, and will also have limited generalizability [66]. Within the

AI to detect TB on chest X-rays
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Development studies that reported accuracy measures, 3/32 (12%) did not report the database

used to train and test their software. Overall, the majority of studies (32/40, 80%), either used

the same databases to train and test their software, or did not comment on this (Table 2). For

the majority of Development studies demographic data of the study population whose CXR

were used to train and evaluate CAD were not reported in detail.

All Clinical studies used ML-based versions of CAD4TB. Within the triage use-case studies,

6/8 (75%) used a microbiologic reference standard on all participants [18, 19, 22, 25, 67, 68].

Within the screening studies, 4/5 (80%) used a microbiologic reference [20, 24, 69, 70]. In two

Clinical studies, the CADscore was used to select which participants underwent microbiologic

testing, hence the software’s diagnostic accuracy could not be assessed [17, 69]. The study

Fig 1. Study flow diagram. Computer aided detection (CAD).

https://doi.org/10.1371/journal.pone.0221339.g001
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Table 1. Methods of studies included in the descriptive analysis.

Author and year Country where CXR

completed

Databases used Computer

software

Reference

standard

Accuracy measures

Development Studies

Deep learning

Heo et al, 2019 South Korea YU AWH Not named Human reader AUC

Hwang et al, 2018 South Korea, USA,

China

SNUH, BMC, KUHG, DEMC,

MC, CH

DLAD Liquid culture, NAAT, and or TB

treatment

AUC,

Lakhani et al, 2017 USA, China MC, CH, TJH, Belarus AlexNet and

GoogLeNet

Human reader AUC, Sn, Sp

Santosh et al, 2017 USA, China, India MC, CH, IN Not named Human reader AUC, Sn, Sp

Lopes et al, 2017 USA, China MC, CH Not named Human reader AUC

Santosh et al, 2016 USA, China MC, CH Not named Human reader AUC

Hwang et al, 2016 South Korea, USA,

China

KIT, MC, CH Alexnet Human reader AUC

Machine learning

Ilena et al, 2018 China CH Matlab Human reader Sn, Sp, TP, TN, FP,

FN

Rajaraman et al, 2018 China, USA, Kenya,

India

CH, MC, Kenya, IN Not named Human reader AUC

Sivaramakrishnan et al,

2018

China, USA, Kenya,

India

CH, MC, Kenya, IN Custom 12-layer

CNN

Human reader AUC

Vajda et al, 2018 USA, China MC, CH Matlab Human reader AUC

Alfadhli et al, 2017 USA MC Not named Human reader AUC, Sn, TP

Fatima et al, 2017 USA MC Not named Human reader Sn, Sp

Ding et al, 2017 China, India, Kenya Kenya, IN, CH Not named Human reader NR

Hogeweg, et al, 2017 Japan, Sub-Saharan

Africa

JSRT, Sub-Saharan Africa Not named Human reader AUC

Udayakumar et al. 2017 USA, China MC, CH SVM and CBC

techniques

Human reader AUC

Maduskar et al, 2016 Zambia Large Zambian Not named Human reader AUC

Poornimadevi et al,

2016

Japan, USA JSRT, MC Not named Human reader Sn, Sp

Karargyris et al, 2016 China, Japan JSRT, CH Not named Human reader AUC

Melendez et al, 2016 Zambia Zambian Not named Human reader AUC

Melendez et al, 2015 Zambia, Tanzania,

Gambia

Zambian, Tanzania, Gambian Not named Human reader NR

Hogeweg et al, 2015 UK, South Africa F&T, TB-NEAT Not named Human reader, Liquid culture,

composite reference standard ��
AUC, Sn, Sp

Giacomini et al, 2015 Brazil Prospective, study-specific† Not named Liquid culture+ NR

Jaeger et al, 2015 China CH Not named Human reader NR

Requena-Mendez et al,

2015

Peru CXR from DOT study in Peru Not named Human reader NR

Jaeger et al, 2014 China, USA, Japan JSRT, MC, CH Not named Human reader AUC, Sn, Sp

Melendez et al, 2014 Zambia, South Africa Zambian TB-Xpredict Human reader AUC

Chauhan et al, 2014 India IN Not named Human reader NR

Seixas et al, 2013 Brazil Clinical data set from another

study�
Artificial Neural

Network

Composite reference�� NR

Sundaram et al, 2013 Not specified Not specified Not named Human reader NR

Jaeger et al, 2012 USA, Japan JSRT, MC Not named Human reader AUC

Xu et al, 2011 Japan, Canada JSRT, Calgary dataset Andrews’ curve Human reader TP, FP, FPR

Noor et al, 2011 Malaysia Retrospective non-clinical study

specific radiological

Not named Human reader Sn, Sp

(Continued)
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Table 1. (Continued)

Author and year Country where CXR

completed

Databases used Computer

software

Reference

standard

Accuracy measures

Shen et al, 2010 Canada JSRT, Calgary Not named Human reader TP, FPR

Mouton et al, 2010 South Africa Clinical dataset from previous

study not specific to PTB

Not named Human reader AUC

Hogeweg et al, 2010 Sub-Saharan Africa Sub-Saharan Africa CAD with rib

suppression

Human reader AUC

Hogeweg et al, 2010 Not specified Not specified Not named Human reader NR

Lieberman et al, 2009 China Prospective, study-specific† Not named Human reader NR

Arzhaeva et al, 2009 Netherlands F&T Not named Human reader AUC

Noor et al, 2005 China, USA MC, CH Andrews’ curve Composite reference�� NR

Clinical studies

Machine learning

Koesoemadinata et al,

2018

Indonesia Prospective study-specific† CAD4TB

(v 5)

Liquid culture/NAAT AUC, Sn, Sp

Melendez et al, 2018 United Kingdom Find & Treat CAD4TB

(v 5)

Human reader, TB treatment AUC, Sn, Sp, TP,

FP, TN, FN

Zaidi et al, 2018 Pakistan Sehatmand Zindagi (Healthy Life) CAD4TB

(v 3.07)

NAAT AUC, Sn, Sp

Rahman et al, 2017 Bangladesh Prospective, study-specific† CAD4TB

(v 3.07)

NAAT AUC, Sn, Sp

Melendez et al, 2017 Zambia Zambia National TB Prevalence

Survey

CAD4TB

(v 5)

Human reader CXR-, Liquid culture/

NAAT for CXR+

AUC, Sn, Sp

Muyoyeta et al, 2017 Zambia Prospective, study-specific† CAD4TB

(v 1.08)

NAAT for CXR+, AFB Smear for

CXR-

NR

Melendez et al, 2016 South Africa TB-NEAT collaborative study CAD4TB

(v 3.07)

Liquid culture AUC, Sn, Sp

Philipsen et al, 2015 South Africa TB-NEAT collaborative study CAD4TB

(v 3.07)

NAAT, liquid culture AUC, Sn, Sp

Steiner et al, 2015 Tanzania TB REACH project CAD4TB

(v 3.07)

Human reader AUC, Sn, Sp

Muyoyeta et al, 2015 Zambia Prospective, study-specific† CAD4TB

(v 1.08)

NAAT, AFB Smear for CXR- AUC, Sn, Sp

Breuninger et al, 2014 Tanzania TB Cohort and TB CHILD study CAD4TB

(v 3.07)

Liquid culture, AFB smear AUC, Sn, Sp

Muyoyeta et al, 2014 Zambia Prospective, study-specific† CAD4TB

(v 1.08)

NAAT AUC, Sn, Sp

Maduskar et al, 2013 Zambia Prospective, study-specific† CAD4TB

(v 1.08)

Liquid culture, AFB smear AUC, Sn, Sp

CXR, chest x-ray; USA, United States of America; UK, United Kingdom; AI, artificial intelligence; YU AWHE, Yonsei University annual worker’s health examination;

SNUH, Seoul National University Hospital; BMC, Boramae Medical Center; KUHG, Kyunghee University Hospital at Gangdong; DEMC, Daejeon Eulji Medical

Center; MC, Montgomery County; CH, Shenzhen Hospital, China; IN, Indian collection New Delhi; TJH, Thomas Jefferson Hospital dataset; JSRT, Japanese Society of

Radiology; KIT, Korean Institute of Tuberculosis; F&T, Find and Treat; DLAD, deep learning automatic detection; SVM, Support vector machines; CBC, clustering

based classification; CAD, computer aided detection; NAAT, nucleic acid amplification test; AFB, acid fast bacilli; ‘+’, positive; ‘-‘, negative; AUC, area under the

receiver operating curve; Sn, sensitivity; Sp, specificity; NR, not reported; TP, true positives; FP, false positives; FPR, false positive rate; TN, true negatives, FN, false

negatives; ACC, accuracy

� Trajman et al. Pleural fluid ADA, IgA-ELISA and NAAT sensitivities for the diagnosis of pleural tuberculosis Study

��Composite reference: positive culture/NAAT and/or initiation of TB treatment

†In these studies the study database was developed prospectively for the specific study

https://doi.org/10.1371/journal.pone.0221339.t001
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Table 2. Accuracy measures reported by development studies.

Author and year Database(s)

used for

training of CAD

Number of

CXRs used

for training

Database (s)

used for testing

CAD

Number of

CXRs used

for testing

Number of

TB positive

CXR

AUC (95% CI) Thres-

hold

score

Sn (95% CI) Sp (95% CI)

Deep learning

Heo et al, 2019 YU AWHE 2000 YU AWHE 37475 1202 0.91 (NR), 0.92

(NR)†
NR NR NR

Hwang et al, 2018 SNUH 60989 SNUH, BMC,

KUHG, DEMC,

MC,CH

NR 6768 0.988 (0.976–

0.999)

NR 0.95(SNUH),

0.94 (BMC), 1.0

(KUGH), 1.0

(DEMC), 1.0

(MC), 0.95

(CH)�

1.0 (SNUH), 0.96

(BMC), 0.91

(KUGH), 0.98

(DEMC), 0.94

(MC), 0.91

(CH)�

Lakhani et al, 2017 MC,CH, TJH,

Belarus

857 MC, CH,TJ,

Belarus

150 75 0.99 (0.96–1.00) NR 0.97 (0.90–1.0) 0.95 (0.87–0.98)

Santosh et al, 2017 MC,CH, IN 976 MC,CH, IN 976 478 0.92 (MC) 0.82

(CH) 0.96 (IN)�
NR 0.88 (MC) 0.78

(CH) 0.92 (IN)�
0.81 (MC) 0.76

(CH) 0.86 (IN)�

Lopes et al, 2017 NR NR CHMC, CI,NR 1031 550 0.834 (CH)

0.926 (MC)�
NR NR NR

Santosh et al, 2016 NR NR CHMC, CI 878 400 0.93 (CH) &

0.88 (MC)�
NR NR NR

Hwang et al, 2016 KIT 9221 KIT,MC,CH 2427 NR 0.96�+ NR NR NR

Machine learning

Ilena et al, 2018 CH 20 CH 30 15 NR NR 0.67 (NR)� 0.86 (NR)�

Rajaraman et al,

2018

CH,MC,

AMPATH,

Kenya, IN

2073 CH,MC, Kenya,

IN

2073 785 0.991 (CH)

0.962 (MC)

0.826 (Kenya)

0.965 (IN)�

NR NR NR

Sivaramakrishnan

et al, 2018

CH,MC, Kenya,

IN

1659 CH,MC, Kenya,

IN

1228 785 0.926 (CH),

0.833 (MC),

0.775 (Kenya),

0.956 (IN)�

NR NR NR

Vajda et al, 2018 MC,CH NR MC,CH 814 392 0.91 (MC), 0.99

(CH)�
NR NR NR

Alfadhli et al, 2017 MC 97 MC 41 58 0.89� NR 0.79� NR

Fatima et al, 2017 MC 138 MC 138 58 NR NR 0.83� 0.78�

Udayakumar et al. MC,CH NR MC, CH NR NR 0.87� NR 0.81� 0.74�

Hogeweg, et al,

2017

JSRT, Sub-

Saharan Africa

NR Sub-Saharan

Africa

348 174 0.891� NR NR NR

Ding et al, 2017 NR NR Kenya, IN,CH NR NR 0.949 (CH),

0.982 (IN), 0.76

(Kenya)�

NR NR NR

Maduskar et al,

2016

Large Zambian 629 Large Zambian 638 NR 0.9� NR 0.83� 0.70�

Poornimadevi et al,

2016

JSRT 247 JSRT 247 NA NR NR 0.56� 0.36�

Karargyris et al,

2016

CH 43 JSRT,CH NR NR 0.93� NR NR NR

Melendez et al,

2016

Zambian 461 Zambian 456 248 0.87� 0.45 NR NR

Melendez et al,

2015

Zambian,

Tanzania

Gambian

1323 Zambian,

Tanzania,

Gambian

1313 671 0.86 (Zambia),

0.88 (Tanzania),

0.91 Gambia�

NR NR NR

(Continued)
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populations of all the triage studies with microbiologic references were quite similar (S1 and

S2 Tables). Notably, the estimated HIV and TB prevalence in the triage studies were quite

high, ranging from 15% to 33%. The screening studies had lower TB prevalence compared to

triage studies (S1 and S2 Tables).

Quality assessment development studies

We first assessed the databases that were used as sources of CXR images and reference stan-

dards for the Development studies (S3 Table). Risk of selection bias was high in 2/18 (11%) of

Table 2. (Continued)

Author and year Database(s)

used for

training of CAD

Number of

CXRs used

for training

Database (s)

used for testing

CAD

Number of

CXRs used

for testing

Number of

TB positive

CXR

AUC (95% CI) Thres-

hold

score

Sn (95% CI) Sp (95% CI)

Hogeweg et al,

2015

F&T, TB-Neat 400 F&T, TB-Neat 400 153 0.87 (0.81–0.92)

(F&T), 0.74

(0.69–0.83)

(TB-Neat)#

NR NR NR

Jaeger et al, 2014 MC,CH, JSRT 1000 MC,CH 753 333 0.87� NR 0.78 (0.70–0.85) 0.81 (0.71–0.89)

Melendez et al,

2014

Zambian 461 Zambian 456 NR 0.88� NR NR NR

Chauhan et al, 2014 IN 204 IN 102 153 0.96 (0.86–0.99)

(DA), 0.89

(0.77–0.96)

(DB)##

NR 0.96 (DA), 0.88

(DB)�
0. 92 DA, 0.84

(DB)�&

Sundaram et al,

2013

NR 95 NR 95 52 NR NR 0.75� 0.90�

Jaeger et al, 2012 JSRT 247 MC 138 NR 0.83� NR NR NR

Xu et al, 2011 JSRT, Calgary 60 JSRT, Calgary 60 NR NR NR 0.68� 0.68�

Noor et al, 2011 Retrospective

non-clinical

90 Retrospective

non-clinical

213 208 NR NR 0.88� 0.84�

Shen et al, 2010 JSRT, Calgary 18 JSRT, Calgary 131 19 NR NR 0.82� NR

Mouton et al, 2010 Clinical non-TB

specific

119 Clinical non-TB

specific

119 NR NR 0.78� NR NR

Hogeweg, et al,

2017

CRASS 348 CRASS, JSRT 498 NR 0.75� NR NR NR

Arzhaeva et al,

2009

F&T 217 F&T 217�++ 37 NR 0.83 TB-

sus, 0.74

micro �†

NR NR

CAD, Computer aided detection;; YU AWHE, Yonsei University annual worker’s health examination; SNUH, Seoul National University Hospital; BMC, Boramae

Medical Center; KUHG, Kyunghee University Hospital at Gangdong; DEMC, Daejeon Eulji Medical Center; MC, Montgomery County; CH, Shenzhen Hospital, China;

IN, Indian collection New Delhi; TJH, Thomas Jefferson Hospital dataset; AMPATH, Academic Model Providing Access to Healthcare; JSRT, Japanese Society of

Radiology; KIT, Korean Institute of Tuberculosis; F&T, Find and Treat; AUC, area under the receiver operating curve; 95% CI, 95 percent confidence interval; NR, not

reported; DA, dataset A; DB, dataset B; Sn, sensitivity; Sp, specificity;; TP, true positives; FP, false positives; FPR, false positive rate; TB-sus, TB suspect

� No 95% CI reported
+Average AUC from KIT, MC, Shenzhen
++ 128 of the normal images were the same CXRS used in the training

# An external and radiological reference standard were used. The external reference for tuberculosis was set by an independent test not associated with the CXR; the

result of a sputum culture testing for the TB-NEAT database and a combination of sputum culture testing and clinical diagnosis for the Find & Treat database
## Two CXR digital image datasets, dataset A and B, were obtained from two different X-ray machines available at the National Institute of Tuberculosis and Respiratory

Diseases, New Delh
†The database was split between TB suspect cases were re-read by a third radiologist, and if classified differently were excluded. The database contained 256 normal

radiographs, 178 TB suspect radiographs, and 37 microbiologically diagnosed TB CXRs.

https://doi.org/10.1371/journal.pone.0221339.t002
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the databases. One dataset did not include PTB cases, and the other only included patients

with “typical TB” images [13, 51]. Selection bias was unclear in 6/16 (38%), and low in 8/16

(50%) where consecutive enrollment either prospectively or retrospectively was used. The ref-

erence standard risk of bias was high in 10/18 (56%) studies as a human reader was used,

unclear in 3/18 (17%), and low in 4/18 (22%) where a microbiologic reference was used.

The quality of the Development Studies with respect to the assessment of diagnostic accu-

racy is reported in Fig 2. Selection biased was largely determined by which databases were

used (S3 Table). The potential for selection bias was high in 13/33 (39%) studies, unclear in 13/

33 (39%), and low in 7/33 (21%). One study [62] had a pre-specified threshold score and there-

fore had a low risk of bias in the assessment of the index test, but the other 97% had a high risk

of bias as the threshold scores were set after the analysis. Additionally, 29/33 (88%) of the stud-

ies were considered to have a high degree of bias and low degree of applicability with regards

to the reference test utilized due to use of a human reader’s interpretation of CXRs. The flow

and timing had low bias in 15/33 (45%) studies, in 17/33 (52%) it was unclear, and in 1/33

(3%) it was high.

Quality assessment of clinical studies

All triage studies used a consecutive enrollment strategy, with 3/8 (38%) being prospective, 5/8

(63%) retrospective. Additional details about selection are provided in the Appendix (S2

Table). Fig 3 summarizes the QUADAS-2 assessment of the Clinical studies. There were meth-

odological concerns that likely resulted in a high degree of selection bias in 4/13 (31%) of the

studies [18, 21, 23, 68]. This was secondary to case-control design [21], and inappropriate

exclusion of patients in the analysis [18, 23, 68]. The threshold score was pre-specified in only

5/13 (38%) of the studies [17, 19, 22, 25, 71]. The remainder of the studies reported threshold

scores post-analysis and were therefore determined to have a high risk of bias [18, 20, 21, 23,

24, 68, 70, 72]. The majority of studies, 10/13 (77%) had low potential for bias with regards to

the use and performance of the reference standard [18–20, 22–25, 70, 72]. In two studies, the

CAD software was used to select patients to undergo microbiologic testing for PTB, and there-

fore were determined to have a high risk of bias for estimating diagnostic accuracy of CAD

[17, 71]. In another study, the reference standard was human reading of the CXR which was

deemed to have a high risk of bias [21]. The flow and timing had a high risk of bias in 2/10

(20%) of the studies due to CAD4TB selection of the reference standard [17, 71], was unclear

in 3/10 (30%), and low in 5/10 (50%).

Diagnostic accuracy reported in development studies

We found 33/40 (83%) of the Development studies reported measures of accuracy for index

tests. Of the 33 references that did include accuracy assessments, the AUC ranged from 0.78 to

0.99, sensitivity from 0.56 to 0.97, and specificity from 0.36 to 0.95 (Table 2). The forest plots

graphically display the diagnostic heterogeneity of the sensitivity and specificity of the Devel-

opment studies that published sensitivity, specificity, and the number of true positive TB cases

(Fig 4).

Diagnostic accuracy reported in clinical studies

The forest plots graphically display the diagnostic heterogeneity of the sensitivity and specific-

ity of the triage studies that used a microbiologic reference (Fig 4). In these studies, the sensi-

tivity ranged from 0.86 to 1.00, and specificity ranged from 0.23 to 0.69. In the screening

studies, sensitivity ranged from 0.53 to 0.89 and the specificity ranged from 0.56 to 0.98. In one

screening study, [21] investigators used a human reader as the reference standard and reported
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the sensitivity and specificity of CAD were 0.59 and 0.78, respectively. The sensitivity of CAD

was higher when using NAAT as the microbiologic reference standard compared to culture.

Given the methodological heterogeneity, the lack of standardized threshold scores, and the

variability of software versions used, a meta-analysis was not undertaken.

Assessment of study-level factors associated with reported AUC

Fig 5 shows the distribution of reported AUCs stratified by study level characteristics.

Reported AUCs were higher in: Development studies (median [IQR] AUC: 0.88 [0.82–0.90])

versus Clinical studies (0.75 [0.66–0.87]; p-value 0.004); and with DL (0.91 [0.88–0.99]) versus

ML (0.82 [0.75–0.89]; p = 0.001). While not statistically significant, we found that the median

AUC of studies using a human reader as the reference standard were higher than those studies

using a microbiologic reference standard of 0.88 [0.81–0.90] versus 0.77 [0.67–0.89] respec-

tively (p = 0.16). There was no significant difference in AUCs of studies that used the same

CXRs as the source for software development and evaluation of diagnostic accuracy, or of the

AUCs by the degree of patient selection, index test, or reference standard bias (Fig 5).

Discussion

In this systematic review, we sought to determine the diagnostic accuracy of CAD software

programs for detecting PTB on CXRs. Due to study heterogeneity, we did not meta-analyze

the data. We identified a number of methodological limitations in the existing evidence base.

Moreover, we identified a number of study-level factors associated with the reported accuracy,

which should be taken into consideration when evaluating future CAD studies.

Fig 2. Quality assessment (QUADAS 2) graph of development studies.

https://doi.org/10.1371/journal.pone.0221339.g002

Fig 3. Quality assessment (QUADAS 2) graph of clinical studies.

https://doi.org/10.1371/journal.pone.0221339.g003
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Fig 4. Forest plots of accuracy measures of development and CAD4TB studies. TP, true positive; FP, false positive; FN, false negative; TN, true negative; AI, artificial

intelligence; CXRs, chest x-rays; ML, machine learning; DL, deep learning; CI, confidence interval; NAAT, nucleic acid amplification test.

https://doi.org/10.1371/journal.pone.0221339.g004

Fig 5. Boxplots of the AUC of studies stratified by software design, CXR usage, reference standard, and degree of patient selection, index test, and reference

standard bias. AUC, area under the cure; Vs, versus; CXR, chest x-ray.

https://doi.org/10.1371/journal.pone.0221339.g005
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The majority of the CAD evidence base for PTB detection consists of Development studies.

While many of these reported some measure of diagnostic accuracy, this was done without

assessing the potential risks of bias arising from the databases that were used. Applying a

widely accepted standardized tool—QUADAS-2—for evaluating the quality of diagnostic

studies we found that the potential risk of bias was common in the databases used to evaluate

CAD in Development studies. We suggest future development studies apply the QUADAS-2

tool to assess for bias of the databases (Box 1).

Box 1. Recommendations for CAD accuracy study design elements

All Clinical studies evaluated the same commercially available software, CAD4TB. As noted

above, meta-analysis was not completed due to the methodological heterogeneity, the lack of

standardized threshold scores, and the variability of software versions used. While the software

achieved high sensitivities (0.85 to 1.0), there was a large degree of variability in the reported

specificities (0.23–0.69). Furthermore, the analysis in some studies was performed on CXRs

from datasets or sites that may have also contributed to training the software, potentially

resulting in an overestimation of the predictive power. Lastly, because the populations studied

had very high HIV and TB prevalence, the results may have limited generalizability to other

populations.

We identified a number of study-level factors that were associated with the reported AUC.

These included the type of technology used to classify images, and whether it was a Develop-

ment or Clinical study. The accuracy of DL vs ML studies was higher (median AUC DL vs ML

p-value 0.001), suggesting superior diagnostic accuracy of DL technology. The median AUC of

development studies was higher than clinical studies (p-value 0.004). This likely because of the

greater risk of bias due to the lack of pre-specified threshold scores, the use of the same data-

bases for training and testing, and the use of a human reader as the reference standard. Our

findings also suggested that studies using a human reader reference standard may have system-

atically overestimated the diagnostic accuracy of CAD, as the median AUC of these studies

was higher compared to studies that used a microbiologic reference; the differences were not

statistically significant, however. We did not find a significant difference in AUCs from studies

that used the same CXRs for training and testing. However, we can extrapolate from other

studies that using the same databases for training and testing will results in the systematic over-

estimations of reported predative value [73].

Recommendations for studies assessing CAD accuracy

• For the databases used to assess CAD accuracy, describe whether CXR had been used for triage or screening

purposes.

• State whether results of the evaluation being reported are applicable to Triage or Screening CXR use-cases

• Apply QUADAS-2 to assess the risk of bias in the databases used to evaluate CAD’s diagnostic accuracy

• Describe how CXRs were selected for training and testing

• Use different CXRs from separate databases for training and testing

• Clearly define true positive PTB

• Use a microbiologic reference standard of culture (preferred) or NAAT

• For CAD that output a continuous score, preferably pre-specify the threshold used to differentiate between a

positive and negative CAD result.

• For CAD that output a continuous score, report how the threshold score was determined

• State whether pre-training/verification of CAD with local CXRs is required prior to use in each setting

https://doi.org/10.1371/journal.pone.0221339.t003
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We suggest some elements that could improve the clinical applicability of future studies of

CAD. Studies should include a description of how CXRs were selected for training and testing.

Furthermore, CXRs from distinct databases should be used for training and testing. Ideally,

accuracy of CAD should be evaluated against a microbiologic reference standard. Lastly, if the

software has a continuous output, the threshold score to differentiate between a positive or

negative CXR should be reported, along with how this was determined (Box 1). The US Food

and Drug Administration (FDA) requires all of these standards be met and additionally neces-

sitates clear instructions for clinical use in their guidelines of CAD applied to radiology devices

(17).

One potential weakness of this review is that we only included studies from the published

literature, which could increase the risk that publication bias affected our reported results.

Additionally, we restricted our search to English and French studies only. Furthermore, we

were unable to complete a meta-analysis of the clinical studies and hence unable to comment

on the pooled accuracy of CAD.

This systematic review highlights the need for additional research of CAD of PTB on CXR.

To our knowledge, this is the first study to analyze the quality of current CXR databases that

have been used to train and test multiple CAD software tools. We conclude that AI based

CAD programs are promising, but more clinical studies are needed that minimize sources of

potential bias to ensure validity of the findings outside of the study setting.
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