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ABSTRACT In the present work, we report the complete genome sequence of Lac-
tobacillus harbinensis NSMJ42, isolated from makgeolli (a Korean traditional alcoholic
beverage) in South Korea. The final genome assembly consists of a 3.29-Mbp chro-
mosome with 3,082 protein-coding sequences and a G�C content of 53.36%.

Makgeolli is a Korean traditional fermented alcoholic beverage with a 6 to 8%
alcohol content that is brewed with rice and nuruk. Nuruk, a starchy disk or tablet

formed from various cereals as raw material, contains diverse fungal and bacterial
strains from the surrounding environment and acts as a starter culture for saccharifi-
cation and alcoholic fermentation for producing makgeolli (1). Studies on the makgeolli
microflora have revealed the presence of amylolytic molds (Aspergillus, Rhizopus, and
Mucor spp.), alcohol-producing yeasts (Saccharomyces spp.), and lactic acid bacteria
(LAB) in makgeolli (1–6). LAB are involved in the production of organic acids, amino
acids, vitamins, and aromatic compounds during makgeolli fermentation and also in
the prevention of bacterial contamination and spoilage by Micrococcus, Bacillus, Aero-
bacter, and Pseudomonas spp. (1, 7–9). It has been reported that makgeolli has
medicinal properties like antioxidant, antihypertensive, antidiabetes, and anticancer
activities (1, 10, 11). Moreover, probiotic properties of LAB and yeast isolates in
makgeolli have been proven (12, 13). We isolated Lactobacillus harbinensis NSMJ42 from
makgeolli and sequenced the whole genome to understand its whole metabolic
capacity and functional potential.

A traditional makgeolli collected in Gyeongsangbuk Province (South Korea) was
diluted in phosphate-buffered saline (PBS) (pH 7.4), and the dilutions were spread over
an MRS agar (Difco) plate. The plates were incubated at 30°C for 48 h, and we obtained
a single colony of strain NSMJ42. For whole-genome sequencing, genomic DNA was
isolated from strain NSMJ42 grown in MRS broth (Difco) at 30°C, using a TruSeq DNA
PCR-free kit (Illumina). The whole genome was sequenced at Cosmo Genetech (Seoul,
South Korea) by a combination of the PacBio RS II single-molecule, real-time (SMRT)
sequencing platform using a 20-kb SMRTbell template library and the Illumina NovaSeq
6000 platform (2 � 101 bp) with an insert size of 550 bp. A total of 70,372 postfilter
polymerase reads (783,148,504 bp; mean read length, 11,128 bp) were generated from
SMRT sequencing, and 100,364 subreads of clean data (781,769,715 bp; mean subread
length, 7,789 bp) were produced with quality filtering (minimum polymerase read
quality, 0.75; minimum polymerase read length, 50) and adapter trimming using
HGAP.3 within PacBio’s SMRT Analysis v2.3.0 (14). To generate long and accurate
sequences, preassembly was performed by mapping shorter subreads onto longer
subreads (14,557-bp threshold) using HGAP.3 (14). The error-corrected 7,726 long
subreads (84,586,769 bp; mean read length, 10,948 bp) were de novo assembled to the
initial draft genome assembly by HGAP.3 (14). Additionally, 5,037.99 Gbp (1,531.01-fold
coverage) with 49,881,092 paired-end reads were generated from the Illumina NovaSeq
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6000 system. The raw Illumina reads were used for consensus genome polishing and
error correction by mapping onto the initial PacBio draft genome assembly with
HGAP.3 (14), and the resulting contig was circularized using NUCmer v3.1 and MUM-
merplot v3.5 (15).

The final genome assembly, which had a mean coverage of 162.31-fold and a G�C
content of 53.36%, consisted of a 3,290,626-bp circular chromosome. Average nucle-
otide identity (ANI) analysis was conducted with OrthoANIu (16) to the accurate
identification of strain NSMJ42 and resulted in 97.97% similarity to L. harbinensis DSM
16991T (GenBank accession number AUEH00000000). The value is higher than the ANI
threshold of 95 to 96% (17), indicating that strain NSMJ42 belongs to the same species,
L. harbinensis. The NSMJ42 genome was annotated on NCBI PGAP version 4.8 (18), and
it contains 3,082 protein-coding genes, 15 rRNA genes, 67 tRNA genes, 4 noncoding
RNAs, and 56 pseudogenes. BASys genome annotation (19) showed that specific
clusters of orthologous groups (COGs) were assigned to 2,062 coding sequences (CDSs),
and genes for carbohydrate transport and metabolism (G) showed the highest preva-
lence (10.4%), followed by genes for replication, recombination, and repair (L) (6.6%)
and transcription (K) (6.1%). The strain NSMJ42 genome contains 160 carbohydrate-
active enzyme (CAZyme) genes, as predicted by HMMER searches (E value, �1E�15;
coverage, �0.35) in dbCAN (20), including 108 genes encoding glycoside hydrolases
(GHs), 18 genes encoding carbohydrate esterases (CEs), 28 genes encoding glycosyl-
transferases (GTs), 2 genes encoding polysaccharide lyases (PLs), and 4 genes encoding
carbohydrate-binding modules (CBMs) involved in the degradation or modification of
carbohydrates and their subsequent utilization in fermentative metabolism. In addition,
several cell surface proteins (class A and C sortases), LPXTG motif cell wall anchor domain
proteins, and D-alanyl-lipoteichoic acid biosynthesis proteins (dltABCD) were detected in
the strain NSMJ42 genome, which explains the potential of L. harbinensis NSMJ42 to
adhere to the intestinal epithelial cells (21, 22). The bacteriocin genome-mining tool
BAGEL4 (23) identified one area of interest (AOI) corresponding to class II bacteriocin.

Data availability. The genome sequence and raw sequencing reads for strain
NSMJ42 were deposited under GenBank accession number CP041364, BioProject ac-
cession number PRJNA552757, BioSample accession number SAMN12217290, and SRA
accession numbers SRX6406718 and SRX6406719.
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