
Published online 30 October 2021 Nucleic Acids Research, 2022, Vol. 50, Database issue D1131–D1138
https://doi.org/10.1093/nar/gkab987

BrainBase: a curated knowledgebase for brain
diseases
Lin Liu 1,2,†, Yang Zhang1,2,3,†, Guangyi Niu1,2,3,†, Qianpeng Li1,2,3, Zhao Li1,2,3,
Tongtong Zhu1,2,3, Changrui Feng 1,2,3, Xiaonan Liu1,2,3, Yuansheng Zhang1,2,3,
Tianyi Xu1,2, Ruru Chen1,2,3, Xufei Teng1,2,3, Rongqin Zhang1,2,3, Dong Zou1,2,
Lina Ma 1,2,3,* and Zhang Zhang 1,2,3,*

1National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of
Genomics, Chinese Academy of Sciences, Beijing 100101, China, 2China National Center for Bioinformation, Beijing
100101, China and 3University of Chinese Academy of Sciences, Beijing 100049, China

Received August 15, 2021; Revised October 01, 2021; Editorial Decision October 06, 2021; Accepted October 07, 2021

ABSTRACT

Brain is the central organ of the nervous system and
any brain disease can seriously affect human health.
Here we present BrainBase (https://ngdc.cncb.ac.
cn/brainbase), a curated knowledgebase for brain
diseases that aims to provide a whole picture of
brain diseases and associated genes. Specifically,
based on manual curation of 2768 published articles
along with information retrieval from several public
databases, BrainBase features comprehensive col-
lection of 7175 disease–gene associations spanning
a total of 123 brain diseases and linking with 5662
genes, 16 591 drug–target interactions covering 2118
drugs/chemicals and 623 genes, and five types of
specific genes in light of expression specificity in
brain tissue/regions/cerebrospinal fluid/cells. In ad-
dition, considering the severity of glioma among
brain tumors, the current version of BrainBase in-
corporates 21 multi-omics datasets, presents molec-
ular profiles across various samples/conditions and
identifies four groups of glioma featured genes with
potential clinical significance. Collectively, Brain-
Base integrates not only valuable curated disease–
gene associations and drug–target interactions but
also molecular profiles through multi-omics data
analysis, accordingly bearing great promise to serve
as a valuable knowledgebase for brain diseases.

INTRODUCTION

Brain is the central organ of the nervous system, not only
controlling thoughts, memory, speech, and movement, but

also regulating the function of many organs (1). Any brain
disease that alters brain function or structure, can seriously
affect human health. For instance, glioma, one of the most
common types of brain tumors, represents ∼ 80% of malig-
nant brain tumors and exhibits low resection rate and high
recurrence risk (2,3). Nowadays, increasing brain-related
projects have been launched throughout the world, e.g. Hu-
man Brain Project in Europe (4), BRAIN Initiative in US
(5), Brain/MINDS in Japan (6), China Brain Project (7),
etc., with the aim to deepen our understanding of brain
diseases, structure and function and to accelerate brain-
derived applications in health, computing, and technology.

Particularly, powered by high-throughput sequencing
technologies, great efforts have been devoted to decipher-
ing complex associations between genes and brain diseases
from multiple omics levels (2,8–11). However, these valu-
able disease–gene associations (as well as omics datasets)
are scattered in massive scientific publications, thus making
their retrieval, integration and visualization very arduous
and time-consuming. Although several related resources
have already been developed with different purposes, there
still lacks a comprehensive resource dedicated for brain
diseases that includes high-quality associations extracted
from published literatures. Specifically, the Developmen-
tal Brain Disorders Database (DBDB, https://www.dbdb.
urmc.rochester.edu) aims to provide a number of genes,
phenotypes, and syndromes associated only with neurode-
velopmental disorders (12), the Ivy Glioblastoma Atlas
Project (Ivy GAP, http://glioblastoma.alleninstitute.org) fo-
cuses on the anatomic and genetic basis of glioblastoma at
the cellular and molecular levels (13), the Chinese Glioma
Genome Atlas (CGGA, http://www.cgga.org.cn) is devoted
to providing open access to glioma datasets and offering
interactive visualization of multi-omics profiles (14), Glio-
Vis (http://gliovis.bioinfo.cnio.es) is a web application for
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visualization and analysis of brain tumors’ expression
datasets (15) and STAB (http://stab.comp-sysbio.org) is a
spatio-temporal cell atlas with the aim to understand both
the etiology of neuropsychiatric disorders and the develop-
ment of the normal human brain (16). Despite this, a com-
prehensive collection of high-quality disease–gene associa-
tions covering a diversity of brain diseases is highly desir-
able.

Here, we present BrainBase (https://ngdc.cncb.ac.cn/
brainbase), a curated knowledgebase for brain diseases that
is dedicated to the curation, integration and visualization
of brain diseases-related knowledge. Unlike extant relevant
databases, BrainBase features comprehensive collection of
high-quality disease–gene associations, drug–target interac-
tions and multi-omics datasets. Accordingly, BrainBase not
only integrates a large number of valuable knowledge asso-
ciations and interactions manually curated from published
literatures but also includes a wide range of molecular pro-
files through multi-omics data analysis, thus bearing great
promise to serve as a valuable knowledgebase for uncov-
ering molecular mechanisms underlying the progression of
brain diseases.

MATERIALS AND METHODS

Knowledge curation and integration

Disease-gene associations were extracted from 2768 pub-
lished literatures, with literature curation on 510 glioma
publications due to its severity among brain tumors and
information retrieval from related databases, including
DBDB (12), Brain Disease Knowledgebase (http://birg1.
fbb.utm.my/bddb), HMDD (17), LncBook (18), EWAS
Atlas (19), GWAS Catalog (20), EDK (21) and CR-
Marker (22). Drug-target interactions were collected from
ChEMBL (23), DrugBank (24), CMap (25), PharmGKB
(26) and CTD (27). In the current version of BrainBase, it
was found that drugs were designed for 8 common brain
diseases, including Alzheimer’s disease, Parkinson’s disease,
glioma, glioblastoma, epilepsy, autism spectrum disorder,
medulloblastoma and cerebral palsy.

To unify disease name and definition, terms or identifiers
of Disease Ontology (DO) were retrieved and mapped to the
corresponding diseases (28). In order to provide consistent
names for all collected genes in BrainBase, gene names were
unified with the help of the gene symbol-alias conversion
table from the HGNC database (2021.4.23 version) (29).

Data collection

Multi-omics datasets were obtained from several
well-known public databases, including GEO (30)
TCGA (31), GTEx (32), HPA (33), Ivy GAP (13) and
CGGA (14). Totally, 21 open-access datasets were
included in BrainBase and publicly available with-
out restrictions at ftp://download.big.ac.cn/brainbase.
Detailed information about these datasets can be
accessible at https://ngdc.cncb.ac.cn/brainbase/faq.
Among these datasets, GSE50161, GSE59612,
GSE4290, GSE111260, GSE36278, GSE60274,
GSE61160, GSE50923, CGGA 301, CGGA 325,
CGGA 693, CGGA methylation, TCGA expression,

TCGA methylation and TCGA CNV were used to
identify glioma featured genes.

Computational identification of specific genes

We identified genes specifically expressed in brain tissue, re-
gions and cells, as well as genes that are detected in the
special ‘tissue’ cerebrospinal fluid (CSF): (i) brain-specific
genes: a dataset from GTEx v7 (32) (15 January 2016) con-
taining 11 688 samples across 53 tissue sites was used for
identification of brain-specific genes. Since tissues may have
multiple different sites, gene expression levels were averaged
over sites that were from the same tissue. To reduce back-
ground noise, genes with maximum expression level smaller
than 1 TPM (Transcripts Per Million) were removed. Fi-
nally, based on the expression profiles across 31 tissues, we
calculated the tissue specificity index � for each gene to
identify tissue-specific genes (34,35). In this study, brain-
specific genes were defined as those genes that are specif-
ically expressed in brain with � > 0.9. As a consequence,
a list of 639 brain-specific genes were identified, includ-
ing 475 mRNAs, 2 miRNAs, 127 lncRNAs and 4 pseudo-
genes; (ii) brain-region-specific genes: based on the GTEx
dataset, 546 brain-region-specific genes were identified with
the tissue specificity index � , expressed specifically in 12
brain regions, including cerebellum, cerebellar hemisphere,
spinal cord (cervical c-1), hypothalamus, nucleus accum-
bens (basal ganglia), substantia nigra, frontal cortex (BA9),
cortex, hippocampus, putamen (basal ganglia), amygdala
and caudate (basal ganglia); (iii) brain-specific proteins: a
list of 215 proteins specifically expressed in brain were ob-
tained from the HPA database (33); (iv) cell markers: a
total of 328 brain cell marker genes were collected from
CellMarker (36) and Cell Taxonomy (https://ngdc.cncb.ac.
cn/celltaxonomy); and (v) CSF proteins: 1126 proteins de-
tected in CSF with their fluorescence intensity were ob-
tained from GEO (GSE83710) (37,38).

Identification of glioma featured genes

Glioma, a severe brain tumor, represents ∼80% of malig-
nant brain tumors, can be classified into low-grade glioma
(LGG) and glioblastoma multiforme (GBM) (39). Powered
by high-throughput sequencing technologies, a set of molec-
ular biomarkers have been found to benefit glioma diagno-
sis and prognosis; among them, isocitrate dehydrogenase
(IDH) mutation and 1p/19q co-deletion (codel) are two
most important genetic events (35,40). Since it was reported
that glioma is related to other brain diseases (41,42), iden-
tification of glioma featured genes by comparing the fol-
lowing four pairs, namely, Glioma vs Normal, GBM ver-
sus LGG, IDH wildtype vs IDH mutation, and 1p19q non-
codel vs 1p19q codel, is of great significance for study-
ing glioma and other brain diseases. Therefore, to iden-
tify glioma featured genes, student’s t-test was performed
at multi-omics levels and the P-values were adjusted by
the false discovery rate (FDR) described by Benjamini and
Hochberg (43), namely, four pairs (as mentioned above) at
the expression level, 4 pairs (as mentioned above) at the
DNA methylation level (promoter region) and 3 pairs (ex-
cept Glioma vs Normal) at the CNV level, which were de-
noted as E4, M4 and C3, respectively. As a result, four
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groups of featured genes were identified: (i) ubiquitously
differential genes (UDGs): genes exhibit significant differ-
ences ubiquitously in E4, M4 and C3 (P-value < 0.001,
FDR < 0.01); (ii) differentially expressed genes (DEGs):
genes exhibit significant differences in E4 (P-value < 0.001,
FDR < 0.01); (iii) differentially DNA-methylated genes
(DMGs): genes exhibit significant differences in M4 (P-
value < 0.001, FDR < 0.01) and (iv) differential CNV
genes (DCGs): genes exhibit significant differences in C3
(P-value < 0.001, FDR < 0.01).

Database construction and web interface implementation

BrainBase was built based on Apache Tomcat Server (http:
//tomcat.apache.org) and MySQL (http://www.mysql.org).
Web interfaces were developed by JSP, HTML5, CSS3,
AJAX, JQuery and BootStrap (version 3.3.7). Omics pro-
files were visualized by HTML widgets and R packages in-
cluding plumber (version 1.1.0), ggplot2 (version 3.3.4), gg-
pubr (version 0.4.0), survminer (version 0.4.9) and survival
(version 3.2). ECharts (version 4.1.0) was also adopted to
generate interactive charts.

DATABASE CONTENTS AND USAGE

BrainBase presents a comprehensive collection of high-
quality knowledge entries including disease–gene asso-
ciations and drug–target interactions, houses five types
of specific genes in terms of expression specificity, in-
corporates multi-omics molecular profiles across various
samples/conditions, and identifies four groups of glioma
featured genes with potential significance in clinical appli-
cation (Figure 1).

Disease-gene associations

Given great efforts that have been devoted to the identifi-
cation of genes associated with brain diseases, it is critical
to build a comprehensive view of disease–gene associations
across diverse brain diseases (44,45). Hence, based on liter-
ature curation and integration with controlled vocabularies
(see details in Materials and Methods), the current version
of BrainBase houses a total of 7175 disease–gene associa-
tions spanning a total of 123 brain diseases and linking with
5662 genes. Based on this, BrainBase is capable to capture
a whole picture of brain diseases and associated genes (Fig-
ure 2). Notably, the top five diseases by associations, accord-
ing to the current accumulation of brain-related studies, are
Alzheimer’s disease, autism spectrum disorder, glioma, mul-
tiple sclerosis and Parkinson’s disease (Figure 2A). In addi-
tion, BrainBase provides a landscape of hot genes (with dif-
ferent types, including mRNA, miRNA and lncRNA) that
are closely associated with brain diseases. Strikingly, hsa-
mir-146 (miRNA), GRIA2 (mRNA) and MEG3 (lncRNA)
are representative genes associated with 13, 7 and 9 brain
diseases, respectively (Figure 2B).

Considering that glioma is highly malignant among brain
diseases and associated with either aberrant activities of
genes or abnormal upstream regulators/downstream tar-
gets (46,47), here we propose a curation model with par-
ticular focus on glioma to standardize the curation pro-
cess and establish controlled vocabularies and descriptive

terms (that are abstracted and categorized based on liter-
ature curation) to depict each item (for details see https:
//ngdc.cncb.ac.cn/brainbase/faq). Based on this model, a
wide range of important items are curated from publica-
tions, including molecular role (e.g. gene type, omics infor-
mation, tumor process, pathway, description and PMID),
regulation axis (e.g., regulator type/name/effect and tar-
get type/name/effect) and experimental sample (e.g. sub-
type, grade, species and tissue/cell line). As a consequence,
among all the 7175 associations, 656 glioma entries are fur-
ther curated and obtained, which are associated with 363
genes; the top ten genes in terms of disease–gene associ-
ations are IDH1, EGFR, MGMT, TP53, IDH2, PTEN,
FGFR1, PDGFRA, EGFRVIII and H3-3A (Figure 2C),
consistent well with previous findings (11,48–49) that these
genes are closely related with glioma. Additionally, Brain-
Base obtains a whole picture of glioma pathways and pro-
cesses; the top five pathways are AKT, Wnt/�-catenin,
Purine Biosynthesis, PI3K/AKT/mTOR and Notch (Fig-
ure 2D) and the top five processes are proliferation, inva-
sion, suppression, aggressiveness and growth (Figure 2E),
potentially providing an integrated landscape of underlying
etiology of glioma.

Drug–target interactions

Accumulating evidence have shown that drug targeted
genes can be involved in multiple diseases (50,51). There-
fore, BrainBase incorporates a large number of 16,591
drug–target interactions involving 2118 drugs/chemicals
and 623 genes and focusing on 8 common diseases (see
details in Materials and Methods). For example, TNF,
a gene encoding a proinflammatory cytokine (52), is a
targeted gene shared by glioma, Parkinson’s disease and
Alzheimer’s disease, and BDNF, one of the neurotrophic
factors (53), is a targeted gene shared by autism spectrum
disorder, Alzheimer’s disease, epilepsy and Parkinson’s dis-
ease (Figure 2F), implying the potential of these core tar-
geted genes as therapeutic opportunities. In addition, con-
sidering that the trend of drug design is from single tar-
get to multiple targets (54,55), we find that in BrainBase,
the collected drugs/chemicals overall have six targets on
average. Among them, noticeably, afimoxifene, associating
with the seven diseases, interacts with three genes in autism
spectrum disorder, 14 genes in Alzheimer’s disease, seven
genes in epilepsy, eight genes in Parkinson’s disease, seveb
genes in medulloblastoma, 12 genes in glioblastoma and 13
genes in glioma (https://ngdc.cncb.ac.cn/brainbase/drugs).
Collectively, BrainBase features comprehensive integration
of drug–target interactions, yielding a set of genes for drug
target selection in brain diseases.

Potential significance of specific genes

Specifically expressed genes at multi-omics levels are likely
associated with diseases and targeted by drugs with po-
tential clinical application (56–58). Thus, through com-
putational identification based on the GTEx v7 (15 Jan-
uary 2016) dataset, BrainBase provides five types of spe-
cific genes, namely, 639 brain-specific genes specifically
expressed in brain tissue (RNA level), 546 brain-region-
specific genes in 12 brain regions (RNA level), 328 cell
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Figure 1. Database contents and features.

markers in 23 cell types (RNA level), 1126 CSF pro-
teins (protein level) and 215 brain-specific proteins (protein
level), respectively (see Materials and Methods). Intrigu-
ingly, we find among the disease-associated/drug–targeted
genes, 192 are brain-specific, 91 are brain-region-specific,
134 are brain cell markers, 373 are CSF associated genes
and 94 are brain-specific proteins (Supplementary Tables
S1–S5). Clearly, these results indicate that the five types
of specific genes are of great potential for clinical appli-
cations. Meanwhile, it should be noted that brain-region-
specific genes may not reflect the unique features of dif-
ferent regions, since it has been reported that brain re-
gions have close functional connectivity with other regions
(59,60). To facilitate users to perform in-depth investiga-
tions on these specific genes, BrainBase provides open ac-
cess to these genes as well as their details (e.g. cell type, brain
region, expression level and gene type) at https://ngdc.cncb.
ac.cn/brainbase/genes.

Glioma multi-omics profiles and featured gene groups

Considering the severity of glioma among brain tumors,
the current version of BrainBase collects 21 datasets
from worldwide public resources, and exhibits multi-omics
molecular profiles (expression, DNA methylation and
CNV) across various samples/conditions (Figure 3). For
any given gene of interest, BrainBase provides a wealth of
multi-omics molecular levels across diverse conditions, in-
cluding glioma vs normal, different grades (G4 vs G3 vs
G2), IDH status, 1p19q status, IDH & 1p19q status, MGMT
status, cell subtype and survival (Figure 3A-C). In addition,
BrainBase offers a series of charts for visualizing omics pro-
files, which can be also downloaded in PDF format.

In order to provide candidate genes for glioma stud-
ies, based on these collected multi-omics datasets, four
groups of glioma featured genes are identified (Figure 3D),
namely, UDGs, DEGs, DMGs and DCGs (see Materials

https://ngdc.cncb.ac.cn/brainbase/genes
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and Methods). In this study, UDGs are defined as differ-
ential genes that exhibit significant differences ubiquitously
at multi-omics levels, DEGs/DMGs/DCGs are defined as
genes with significant differences at the expression/DNA
methylation/CNV level, respectively. As a result, a total of
1387 UDGs, 8675 DEGs, 9448 DMGs and 10 696 DCGs
are obtained, which are publicly available at https://ngdc.
cncb.ac.cn/brainbase/featured genes.

Remarkably, we find that these featured genes cover sev-
eral well-known biomarkers, e.g. MGMT in UDGs, IDH1
in DEGs, ADAR in DMGs, and EGFR in DCGs, respec-
tively. Specifically, MGMT, a key gene for DNA repair, is

associated with glioma survival and clinical treatment (11).
ADAR, a gene encoding the enzyme responsible for RNA
editing (61), is associated with GBM cell proliferation (62).
In our previous study, PRKCG, a member of protein kinase
C (PKC) family (63), is in UDGs and can be used for glioma
diagnosis, prognosis and treatment prediction (35). In addi-
tion, functional enrichment analysis of these 1,387 UDGs
shows that UDGs are significantly associated with TNF
signaling pathway, rap1 signaling pathway, proteoglycans in
cancer, positive regulation of ERK1 and ERK2 cascade, in-
flammatory response and angiogenesis (Figure 3E and F).
Importantly, among 5,976 brain-diseases’ associated genes,

https://ngdc.cncb.ac.cn/brainbase/featured_genes
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285 genes are UDGs, including 65 glioma-associated genes
(Supplementary Table S6) and 236 genes associated with
other brain diseases (Supplementary Table S7), clearly indi-
cating that UDGs are of utmost importance with potential
clinical application for brain diseases.

DISCUSSION AND FUTURE DEVELOPMENTS

In this study, we present BrainBase, a comprehensive
knowledgebase that provides a high-quality collection of
brain diseases, associated genes, drugs and omics profiles.
Based on manual curation and integration from published
literatures and related databases, the current version of
BrainBase houses 7,175 disease–gene associations, 16 591
drug–target interactions, 21 multi-omics datasets, five types
of specific genes and four groups of featured genes. As
an important resource of the National Genomics Data
Center (NGDC, https://ngdc.cncb.ac.cn) (64), BrainBase is
devoted to serving as an open-access resource for study-
ing brain diseases. Future directions include: (i) frequent
curation and incorporation of disease–gene associations
and drug–target interactions; (ii) integration and analy-
sis of more multi-omics datasets for common brain dis-
eases and (iii) improvement of web interfaces and develop-
ment of tools in aid of multi-omics data mining and visu-
alization. We also call for worldwide scientists to work to-
gether to build BrainBase into a valuable resource covering
more comprehensive associations, interactions and omics
datasets and further providing high-quality curated knowl-
edge for brain research.
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