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Translating Data in a Pandemic 1

An evaluation of prospective COVID-19 modelling studies in 
the USA: from data to science translation 
Kristen Nixon, Sonia Jindal, Felix Parker, Nicholas G Reich, Kimia Ghobadi, Elizabeth C Lee, Shaun Truelove, Lauren Gardner

Infectious disease modelling can serve as a powerful tool for situational awareness and decision support for policy 
makers. However, COVID-19 modelling efforts faced many challenges, from poor data quality to changing policy and 
human behaviour. To extract practical insight from the large body of COVID-19 modelling literature available, we 
provide a narrative review with a systematic approach that quantitatively assessed prospective, data-driven modelling 
studies of COVID-19 in the USA. We analysed 136 papers, and focused on the aspects of models that are essential for 
decision makers. We have documented the forecasting window, methodology, prediction target, datasets used, and 
geographical resolution for each study. We also found that a large fraction of papers did not evaluate performance (25%), 
express uncertainty (50%), or state limitations (36%). To remedy some of these identified gaps, we recommend the 
adoption of the EPIFORGE 2020 model reporting guidelines and creating an information-sharing system that is 
suitable for fast-paced infectious disease outbreak science.

Introduction 
The COVID-19 pandemic has become an unprecedented 
public health crisis in its prolonged impact on health and 
its disruption to economic and social life, with more than 
6·5 million reported deaths globally as of Sept 7, 2022.1 
To aid planning and response efforts during a pandemic, 
mathematical modelling of current and future trends of 
infectious disease outbreaks has historically served as a 
valuable tool. Nowcasting and forecasting models can 
improve situational awareness of the current and near 
future states of disease spread, whereas long-term 
projections and scenario modelling can shed light on 
outcomes that might result from a set of assumptions. 
Insights from modelling can educate individuals on how 
to mitigate their own risks, while also providing support 
for decision making for policy makers seeking to 
minimise harm to an entire population.

These insights are historically provided though peer-
reviewed published literature, which can serve as an 
invaluable tool for communicating state of the art 
science. During the COVID-19 pandemic, an extremely 
large volume of research articles have been published: 
about 125 000 within 10 months of the first confirmed 
case, approximately 30 000 of which are preprints.2 In 
this noisy publication landscape, journals prioritised the 
quick sharing of COVID-19 information, but there is a 
trade-off between speeding up peer review and ensuring 
high-quality research.3 Preprints also had an important 
role in disseminating COVID-19 research. Preprints 
were often covered in the media, had large audiences on 
social media platforms such as Twitter, and in some 
cases were misunderstood in consequential ways.2 For 
COVID-19 modelling specifically, the use of models for 
informing response efforts was criticised largely because 
of a few particularly erroneous projections at the start of 
the outbreak and poor communication on what insight 
models can and cannot provide.4–6

Literature reviews that attempt to synthesise COVID-19 
modelling studies, published up until the time of this 
Series paper, form an incomplete, fragmental 
understanding of modelling work, largely due to the 
rapid pace of publication on preprint servers and in peer-
reviewed journals. To the best of our knowledge, most 
existing reviews are either systematic but only cover a 
short time span (eg, up until July, 2020),7–9 or use a 
narrative approach and do not develop a method to 
examine a representative set of papers.10–12 The only 
exceptions we found are one systematic review covering 
242 papers up until November, 2020,13 and one narrative 
review that covered 50 of the most cited papers.14 Only 
one review included preprints,13 and all are limited to 
papers published before August, 2020,7–10 or in 2020.12,13 
Many of these reviews are focused on model objectives 
and methodology,8,9,12 and neglect other aspects of 
modelling that are crucial for science translation to 
decision makers and the public.

In this Series paper, to build on previous work, we 
provide a narrative review with a systematic approach, 
which handles the challenges presented in synthesising 
an enormous body of work with objective criteria to 
obtain the most representative and informative sample 
of papers possible. Our review covers publications up 
until Aug 20, 2021, which captures 8 months of 2021 
that have not been covered by other reviews. We focus 
on factors of modelling that have been neglected in the 
existing literature, namely input data, uncertainty, 
performance evaluation, and stated limitations, which 
are crucial for science translation and enable models to 
provide insight for decision makers and the public. We 
provide a quantitative evaluation of each of these 
elements, which enables strong and justified con
clusions about trends and areas in need of improvement, 
with respect to modelling COVID-19 and future 
pandemics.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00148-0&domain=pdf
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Methods 
Search strategy and selection criteria 
There are three main types of COVID-19 disease-spread 
modelling: retrospective modelling, nowcasting, and 
prospective modelling. Retrospective modelling, or 
backward-looking analysis, has been applied throughout 
the outbreak to explore a variety of key questions such as 
inferring basic epidemiological characteristics (eg, the 
basic reproductive rate [R0], incubation period, and 
fatality rate), revealing factors driving transmission, and 
assessing the effectiveness of different interventions.15–17 
Nowcasting focuses on understanding the current 
situation, like inferring the true number of cases in light 
of under-reporting.18 Prospective modelling is forward-
looking, and includes forecasts, projections, and future 
scenario analysis. Forecasting aims to predict near-term 
epidemiological dynamics, often relying on data-driven 
methods and assuming that there will be minimal 
changes during the forecast period, whereas projections 
span over a much longer future time window, and thus 
have to make assumptions about how the factors driving 
COVID-19 will change in the future. Future scenario 
analyses produce multiple projections that explore the 
effects of different sets of assumptions that vary factors 
such as transmission rates and interventions.

Due to the magnitude of the COVID-19 modelling 
literature, we had to impose substantial constraints on the 
scope of this Series paper to enable us to do a systematic, 

quantitative, and timely assessment of the relevant 
literature. Therefore, this Series paper comprises a 
narrative review with a systematic approach. Specifically, 
these four inclusion criteria defined our review scope. 
(1) Prospective modelling work on population-level 
dynamics of COVID-19: we included papers that provided 
future predictions for a specific location, including 
forecasting, projections, and future scenario analysis. We 
excluded retrospective modelling studies and nowcasting. 
Papers that only fit a model without providing out-of-
sample predictions were not included. (2) Data-driven: we 
broadly defined this as papers that incorporated COVID-19 
data into the setup or fitting of the model. Papers that only 
used parameters from the literature or only used data 
from other viruses were excluded. (3) Geographical 
restriction: we only included papers published in English 
that implemented forecasting or projections (including 
future scenario analyses) for US counties, states, or at the 
national level, which restricted our analysis to papers 
working with the same data issues and in a similar 
context. (4) Journal restriction: we only included papers 
from peer-reviewed journals, as defined by Scopus’ context 
curation standards,19 or preprints from modellers that 
contribute to the US COVID-19 Forecast Hub. 

For papers published in peer-reviewed journals, we 
restricted papers to those from journals ranked in the top 
10% in their respective field on the basis of the Scopus 
CiteScore. Although we recognise this restriction will 
exclude important work, this criterion was the best 
option available to apply a systematic approach to 
reducing the set of papers to a manageable number while 
still obtaining the most representative sample of papers 
possible. For our final sample of peer-reviewed papers, 
the number of papers from each journal, and each 
journal’s top category and rank percentile according to 
Scopus CiteScore, is shown in the appendix (pp 1–2). We 
developed a Scopus query on the basis of these criteria 
(appendix p 2). To minimise the chance of our search 
missing relevant papers, we searched PubMed with the 
equivalent query (figure 1).

We searched Scopus and PubMed on Aug 20, 2021, and 
our final selection of papers was distributed from 
March 23, 2020, to Aug 16, 2021 (figure 2). Notably, the 
top 10% criteria only reduced the number of papers to 
37% of the original size, from 2401 to 894 papers. Papers 
were screened individually by KN, SJ, and FP, and could 
be confirmed by another screener if a paper’s eligibility 
for inclusion was unclear. For the data collection, 
categorisations were done individually by the same 
authors, and confirmed on a second pass, with one 
individual covering all papers for a particular category to 
ensure consistent categorisation. 119 peer-reviewed 
papers were included (figure 1).

We additionally considered preprints from authors 
known to be engaged in real-time modelling work. We 
included preprints from modellers participating in the 
US COVID-19 Forecast Hub,  which focuses on 1-week to 

See Online for appendix

Figure 1: Study selection
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4-week predictions.2 We also attempted to include the 
Scenario Modelling Hub,20–22 but no preprints met our 
criteria for the time window considered. Although these 
papers do not have the validation that comes with peer-
review, these models were used in real-time by the 
Centers for Disease Control and Prevention (CDC), 
which we believe justifies their inclusion in this analysis. 
We found 17 preprints in the metadata provided by the 
modelling teams contributing to the Forecast Hub. Thus, 
136 papers in total are included in our analysis. Despite 
our efforts, we acknowledge that we will miss a 
substantial portion of real-time COVID-19 modelling 
work that exists on preprint servers and on the websites 
of modelling groups.

We have designed our process to obtain the most 
objective and representative sample possible, given the 
challenges of synthesising an enormous body of work in 
a useful, timely manner. Despite the limitations of our 
scoping process, we are confident that our analysis can 
provide valuable insight on the state of published 
COVID-19 work and highlight areas for improvement. 

Categorisation analysis
To conduct a quantitative analysis on the substance and 
quality of these studies, for each paper we classified eight 
features: model objective and prediction horizon, 
methodology, target variables, data categories, geo
graphical resolution, uncertainty, performance eval
uation, and model limitations (appendix pp 3–6). We 
acknowledge that some of these categorisations are 
subjective or difficult to consistently extract from papers, 
especially the performance evaluation and stated 
limitations categories. Thus, we narrowly defined our 
categories and transparently discuss these definitions in 
the Results. 

Since many of the existing COVID-19 review papers go 
into more detail on methodology,8,9,12 we opted not to 
cover this aspect of modelling beyond classification into 
three broad categories: compartmental models (eg, 
susceptible, infectious, and recovered [known as SIR] 
and variations), statistical models (eg, machine learning, 
deep learning, and ARIMA), and hybrid (a combination 
of compartmental and statistical models).

To capture meaningful data on performance evaluation, 
we made an a priori decision to report on the performance 
evaluation only for the subset of papers implementing 
short-term prediction models, which can be fairly 
evaluated against truth data. By contrast, the purpose of 
long-term projections is to compare multiple plausible 
scenarios of the future, not to predict what will happen. 
Therefore, a fair performance evaluation with standard 
error metrics is not possible since these models make 
assumptions about the future that do not match reality.

To understand the multidisciplinary nature of the 
COVID-19 literature, we provide the most common journal 
subject areas, as defined by Scopus, in our set of papers. 
Additionally, we provide a breakdown of how the COVID-19 

Forecast Hub papers compare with the entire set of papers 
on expressing uncertainty, conducting a thorough 
performance evaluation, and discussing limitations.  

Results and discussion 
We visualised the relative size of each category and the 
most common connections between categories (figure 3). 
Each line through the figure represents the categor
isations of a single paper. The width of the lines is 
weighted such that in cases of a paper being in more 
than one category, such as with both cases and deaths 
data, a line with half of the normal width is assigned to 
each category.

Model objective and prediction horizon 
Forecasts are unconditional in the sense that they attempt 
to predict what will happen in the near future, whereas 
projections and scenarios are conditioned on the model’s 
assumptions about the future to extend the prediction 
horizon. We were unable to reliably categorise models 
into forecasts or projections due to inconsistent use of 
these terms and a scarcity of clear communication on 
which approach was used in the papers. Since papers did 
not consistently state the precise objective of their model 
(unconditional forecast or assumption-based projection), 
we report a proxy for model objective: short-term 
predictions (ie, forecasts), or long-term predictions 
(ie, projections). To remain consistent with the COVID-19 
Forecast Hub and COVID-19 Scenario Hub, which 
represent best practice for prospective COVID-19 
modelling, we categorised studies that made predictions 
for 4 weeks or less as short-term (46%, n=63), and studies 
making predictions with a horizon that extended beyond 
4 weeks as long-term (60%, n=82). There were a few 
papers that produced both long-term predictions and 
short-term predictions.23–26 Because papers often fall into 
multiple categories, percentages in this analysis do not 
always add up to 100%. Within the category of papers 
conducting long-term projections, we also tagged papers 
with multiple scenarios, which provided multiple 
predictions based on different sets of assumptions. For 

Figure 2: Histogram of the number of papers in our analysis by month of 
publication
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example, modelling scenarios could explore the impact 
of different reopening speeds, non-pharmaceutical 
interventions, and vaccination rates. Of the 82 papers in 
the long-term projections category, 54 papers (66%) 
considered multiple scenarios.

Methodology
Since most compartmental models in our sample used 
statistical methods to fit parameters, to retain informative 
categories we adopted a stringent definition of a hybrid 
model, requiring both compartmental and statistical 
layers of the model that go beyond the use of statistical 
approaches to fit parameters. For example, one paper 
classified as hybrid used deep learning to infer a time-
dependent reproduction number, which was then fed into 
a compartmental model.27 A model that only uses 
statistical methods to fit parameters for a compartmental 
model was classified as compartmental. We found that 
47% of papers (n=64) used a compartmental model, 43% 
(n=59) used a statistical model, and 13% (n=17) used a 
hybrid model. A few papers developed and showed both a 
compartmental model and a statistical model.23–26 We also 
noted when models used agent-based methods (9%, n=12; 
figure 3; appendix pp 3–6).

Target variables 
The most common target prediction variables were cases 
(89%, n=121), deaths (52%, n=71), hospitalisations (10%, 

n=14), and effective reproductive number (Rt; 9%, n=12). 
Some of the lesser used target variables included growth 
rate, peak cases, and intensive care unit admissions. 38% 
(n=52) of papers had only one target variable, 43% (n=59) 
of papers had two target variables, and 18% (n=25) had 
more than two (appendix pp 3–6).

The target prediction variables were dominated by 
absolute numbers of cases and deaths, which aligns 
with the goals of the US COVID-19 Forecast Hub. 
Despite the continued desire for these targets from 
across the field of public health, government, industry, 
and the public, accurate prediction of them remains 
challenging.28 

Data categories 
Next, we quantified the categories of input data used to 
inform models. We defined the data categories (table 1), 
including an in-depth look at the datasets used by papers 
in our analysis that attempt to capture COVID-19 
behaviours.

The most frequently used data categories were cases, 
deaths, mobility, demographics, and hospital admissions 
(table 2). 20% (n=27) of papers used only one category of 
data, 39% (n=53) of papers used two categories, 
16% (n=22) used three categories, and 25% (n=34) used 
four or more categories.

The data sources that informed predictions in our 
analysis were dominated by case and death data 

Figure 3: Sankey diagram of the connections between categorisations of our analysis
This diagram shows the relative co-occurrence of categories within papers in our analysis. Thicker lines between categories indicate that those categories are more 
likely to occur in the same paper. Rt=effective reproductive number.
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(figure 3). Data used in two or less papers include 
vaccinations, Rt, wastewater surveillance, and economic 
data. 51% (n=70) of modelling studies only used epidem
iological data sources (ie, cases, deaths, and hospital 
admissions). The most frequently used non-
epidemiological sources were mobility and demographic 
data. The models that did use other data sources tended 
to incorporate a large number and variety of input 
data.41–43 Some factors that have been shown to be 
associated with COVID-19 dynamics, such as 
demographics, health risk factors, and climate, rarely 
appeared in our sample, although little research has 
been done to rigorously test for whether these factors 
can improve predictive performance. Despite the 
increasing effect of new variants on epidemiological 
dynamics, none of the papers in our sample used variant 
prevalence data. In the USA, these data have a low 
sample size, sampling bias, and are difficult to use as a 
signal for predictive modelling.

Geographical resolution 
We noted the geographical scale at which predictions 
were made, categorising papers as national, state, or 
county level and smaller. 54% of 136 papers included a 
national-level prediction, 36% (n=49) at the state level, 
and 34% (n=46) at the county level or smaller scale 
(table 3). Half of the models in our analysis were at the 
national level. This resolution tends to be the easiest to 
predict and the least useful for decision making, which 
must often occur at the local level.

Uncertainty 
We established which papers included a quantitative 
expression of uncertainty of their predictions, excluding 
those that only did so for model parameters. We found 
that half of the papers (50%, n=68; table 3) did not express 
quantitative uncertainty around the predictions, despite 
the highly uncertain and consequential nature of 
COVID-19 dynamics. 49% of papers (n=67) included 
some form of confidence or prediction intervals. A 
sensitivity analysis was performed in 13% of papers 
(n=18; appendix pp 3–6). 

The use of forecasts for decision makers is dependent 
on clear communication of uncertainty,44 especially since 
point estimate predictions will rarely match ground-truth 
data. Well calibrated expressions of uncertainty help 
stakeholders assess future risk and decide how to 
respond. For example, the difference between a 
1% chance of exceeding hospital capacity versus a 
25% chance could establish whether or not certain 
preparatory actions are taken. Additionally, expressing 
uncertainty is especially important to prevent harmful, 
incorrect interpretations of COVID-19 models. Clearly 
communicating uncertainty around predictions weakens 
the ability of actors to use a study in a misleading way to 
support their pre-existing agenda.

Performance evaluation 
We categorised the type of performance evaluation used 
for each short-term model, which can be fairly evaluated 
on ground truth data. When defining our performance 

Description Examples

Cases or deaths Epidemiological data on the number of cases or deaths and 
corresponding metrics

Daily cases or deaths , cumulative cases or deaths, reproduction number, and growth rate

Hospital 
admissions

Data related to hospitalisation of patients with COVID-19 Daily hospitalisations, active hospitalisations, and intensive care unit occupancy

Testing Data pertaining to COVID-19 testing in a population or location Daily tests and test positivity rate

Climate Data describing the climate or any meteorological variables 
pertaining to a specific location; time series or static data

Daily precipitation, daily temperature, and average temperature

Demographics Demographic or sociodemographic information about the 
population of a specific location

Population, age, race, income, and rural to urban ratio

Hospital resources Data on the amount of certain resources available in hospitals Number of beds and intensive care unit beds

Health risk factors Data that quantifies the health risk factors of the population in 
the context of COVID-19

Prevalence of comorbidities and use of preventative services (eg, doctor visits)

Mobility Data that quantifies the movement of a population Google Mobility Trends (residential, grocery and pharmacy stores, parks, retail and recreation, 
workplaces, and transit stations),29 Unacast social distancing scoreboard (average mobility, non-essential 
visits, and encounters density),30 SafeGraph (trip counts at a census block group resolution),31 Apple 
Mobility Trends (trends in Apple Maps routing requests),32 Facebook Movement Range Maps (change in 
movement compared with baseline percentage of population who stays home),33 and flight data

Human behaviour Data that quantifies the behaviour or beliefs of a population in 
the context of COVID-19, excluding data on the mobility of a 
population

Google search trends,34 mask use per capita,35 Facebook’s COVID-19 Trends and Impact Survey (time series of 
self-reported mask use and other social distancing behaviours),36 New York Times Mask-Wearing Survey data 
(static),37 and sentiment index constructed from COVID-19 news38

Policy Data pertaining to COVID-19 policies Oxford COVID-19 Government Response Tracker (ordinal scale on stringency of many types of COVID-19 
policies, including containment and closure policies, economic policies, health system policies, and 
vaccination policies),39 state-level social distancing policies (dates and details of policies including 
emergency declarations, gathering restrictions, closures, stay-at-home orders, travel restrictions, isolation 
orders, and mask mandates)40

Table 1: Data categories
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evaluation categories, we considered that for timeseries 
forecasts, the setup of training and testing data should be 
representative of real-time forecasting conditions. Since 
the use of a model is based on its ability to predict future 
dynamics, randomly excluded out-of-sample evaluation 
methods do not adequately describe performance. Instead, 
models should be trained with data up until a certain 
cutoff date and evaluated with data after that date. This 
future-blind approach preserves the fundamental 
challenge of forecasting: not knowing future data or 
trends. Within the subset of short-term studies considered 
(N=63), 75% (n=47) of papers used performance evaluation 
metrics to compare future-blind, out-of-sample predictions 
to ground truth data. Ground truth data are usually 
reported cases or deaths, and sources used in our sample 
include the Center for Systems Science and Engineering 
at Johns Hopkins University (Baltimore, MD, USA),1 the 
COVID Tracking Project, and WHO Dashboard. The most 
common metrics to compare predictions to ground truth 
were mean absolute error, root mean square error, mean 
absolute percentage error, coefficient of determination, 
mean square error, and coverage rate of prediction 
intervals. Of the papers that did a metric-based evaluation, 
only 13% (n=6) evaluated the accuracy of confidence 
intervals (table 3). Within the group of 47 papers that 
conducted a future-blind performance evaluation, 
34% (n=16) evaluated only one model, 55% (n=26) compared 
performance metrics across multiple internal models, and 
19% (n=9) compared the performance metrics of their 
model against those of other models in the COVID-19 
Forecast Hub. 15% (n=7) of evaluated models used a 
baseline model for comparison (appendix pp 3–6).

Although most of the 63 modelling studies (75%, n=58) 
quantified the performance of their model relative to 
ground truth data, 78% (n=49) did not evaluate their 
model on predictions made across a timespan that 
included varying epidemiological dynamics. To quantify 
the frequency of these practices, we counted the number 
of dates from which papers showed predictions. For 

example, if a paper presents a model prediction with data 
up until Sept 1 and predicts future case counts on Sept 8, 
15, 22, and 29, this prediction would be made from a 
single date. If this paper adds another prediction made 
from Oct 1 (with data up until this date) and predicts 
weekly values for the next 4 weeks, this paper would be 
showing predictions made from two dates, which cover a 
month-long timespan (Sept 1 to Oct 1). We defined the 
category this way to ensure we could reliably extract these 
data from each paper. Our analysis found that among 
short-term models, more than half (62%, n=39) only 
showed a prediction made from a single date, 16% (n=10) 
of papers showed predictions made from multiple dates 
over a timespan that was less than 2 months long, and 
22% (n=14) covered a timespan longer than 2 months.  
From the COVID-19 Forecast Hub, we know that 
predictive accuracy of models varies widely over time, 
especially with respect to epidemiological trends.45 
Therefore, not evaluating a model across a variety of 
epidemiological dynamics severely limits the 
generalisability of the performance evaluation and the 
ability to make fair comparisons between models. In 
addition, a third of papers (34%, n=16) that completed a 
quantitative performance evaluation did not compare 

Occurrences, n (%; n=136)

Cases 126 (93%)

Deaths 79 (58%)

Mobility 34 (25%)

Demographics 30 (22%)

Hospital admissions 15 (11%)

Policy 13 (10%)

Testing 11 (8%)

Hospital resources 10 (7%)

Climate 8 (6%)

Human behaviour 8 (6%)

Health risk factors 4 (3%)

Numbers exceed 136 as categories overlap between papers.

Table 2: Papers in the top data categories

All papers 
(n=136)

Forecast Hub papers 
and preprints (n=20)

Prediction horizon

Short-term predictions 63 (46%) 14 (70%)

Long-term predictions 82 (60%) 8 (40%)

Methodology

Compartmental 64 (47%) 7 (35%)

Statistical 59 (43%) 9 (45%)

Hybrid 17 (13%) 4 (20%)

Agent-based 12 (9%) 1 (5%)

Geographical level

National 74 (54%) 5 (25%)

State 49 (36%) 13 (65%)

County or smaller 46 (34%) 11 (55%)

Uncertainty

Expressed quantitative 
uncertainty

68 (50%) 11 (55%)

Sensitivity analysis 18 (13%) 1 (5%)

Performance evaluation (out of short-term models only)

Comparison to ground truth 47/63 (75%) 12/14 (86%)

Number of predictions (out of short-term models only)

Only made predictions from one 
date

39/63 (62%) 1/14 (7%)

Made multiple predictions over a 
timespan less than 2 months

10/63 (16%) 6/14 (43%)

Made multiple predictions over a 
timespan greater than 2 months

14/63 (22%) 7/14 (50%)

Limitations

Authors discussed limitations 87 (64%) 13 (65%)

Table 3: Comparison of category occurrences in all papers and Forecast 
Hub papers and preprints 
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their model to a baseline or any other models, so whether 
the model provides any improvement over a naive model 
is unclear. The COVID-19 Forecast Hub uses a baseline 
model that assumes no change in incidence over the next 
4 weeks. According to historical error metrics calculated 
by the Forecast Hub and Carnegie Mellon University 
(CMU; Pittsburgh, PA, USA) Delphi, on Sept 8, 2021, 
only 25% of models outperformed the baseline model for 
cases, whereas 75% outperformed the baseline for deaths 
by relative mean absolute error and weighted interval 
score.46 Thus, comparison with a baseline model provides 
context and thereby important information about the 
usefulness of a model. 

Many papers did not cover the specific methodology of 
their performance evaluation, which limited our ability 
to provide more specific analyses in this Series paper. 
Authors should clearly state the dates of the training 
period, the dates predictions were made from, how error 
metrics were computed and aggregated, and whether 
metrics are computed in-sample or out-of-sample. In 
addition, models that aim to contribute to real-time 
forecasting efforts should use input data as they were 
available at the date predicitons are made from; these 
data are available from the CMU Delphi’s COVIDcast 
Epidata.47,48 Without thorough performance evaluation, 
the broader scientific community will be unable to 
identify which approaches are working and build 
knowledge on best practices.

Model limitations
Authors of the papers stated six main categories of 
limitations: disregarded factors (39%), data quality (28%), 
unknowable factors (26%), limitations specific to the 
methods used (22%), data availability (16%), and poor 
generalisability (8%). We define unknowable factors as 
those that cannot be known at the time predictions were 
made, such as future implementation of non-pharma
ceutical interventions, or the emergence of new variants 
during the prediction horizon. By contrast, disregarded 
factors have some relevant data or information available 
at the time of the analysis, but the authors of the papers 
chose to disregard it, like the demographic breakdown of 
populations or health-care capacity of different regions. 
A third of the papers in our analysis (36%) did not list 
any limitations in an accessible section of the paper, 
which we considered to be in the discussion, conclusion, 
or in a separate section called limitations. In most cases, 
all these types of limitations are relevant to COVID-19 
models. Unfortunately, our categorisation does not give 
information about how thoroughly these limitation 
categories were discussed.

Multidisciplinary nature of the COVID-19 literature 
The highly consequential nature of the COVID-19 
pandemic has attracted modelling experts from a variety 
of different fields. The top five journal subject areas 
represented in our final set of papers, in order from most 

to least frequent, are applied mathematics (30%, n=41), 
multidisciplinary (22%, n=30), general physics and 
astronomy (21%, n=29), general mathematics (18%, 
n=24), and statistical and non-linear physics (16%, n=22). 
Note that the assignment of journals to subject areas was 
done by Scopus. Public health did not appear in the top 
five subject areas. Our final set of papers represented 
52 journals. The most common journals were Chaos, 
Solitons & Fractals; PLoS One; and Scientific Reports 
(figure 4). We were unable to conduct a thorough analysis 
on the contributions to COVID-19 modelling from 
different fields due to the difficulty of classifying papers 
into distinct disciplines solely on the basis of the journal 
they were published in and the inherent interdisciplinarity 
of this work. However, we completed a subanalysis on the 
group of papers from COVID-19 Forecast Hub modellers.

The set of papers written by authors that contributed to 
the COVID-19 Forecast Hub includes 17 preprints42,49–64 
and three papers published in peer-reviewed journals.65–67 
70% of these papers made short-term predictions and 
40% of these papers made long-term predictions. 
Although these papers were cited by teams in the 
metadata of their submissions to the COVID-19 Forecast 
Hub, these preprints are not necessarily on the exact 
model and application that was submitted to the 
COVID-19 Forecast Hub. Despite being mostly preprints 
with many serving to provide a brief explanation of a 
model being used in real-time, these papers were more 
likely to express uncertainty, have forecasts for state and 
county levels, and conduct performance evaluation than 
the full set of papers (table 3). In addition, COVID-19 
Forecast Hub papers were substantially more likely to 
show and evaluate predictions made from several dates 
over a timespan greater than 2 months (50% vs 22% for 
all papers). A great advantage of the COVID-19 Forecast 
Hub approach is that it encourages good practices in 
terms of uncertainty, evaluation, and high geographical 
resolution. Additionally, the real-time sharing of forecasts 
ensures that predictions were truly future-blind.

Concluding remarks 
Our analysis found substantial gaps in COVID-19 model 
transparency in the literature, especially on reporting 
aspects of models that are crucial for science translation. 
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Figure 4: Top 10 journals in the final set
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Papers did not consistently state the precise objective of 
their model (unconditional forecast or assumption-based 
projection), detail their methodology, express uncertainty, 
evaluate performance across a long, varied timespan, and 
clearly list their limitations. Without this information, 
studies are more vulnerable to misinterpretation, which 
can have serious consequences during a global health 
crisis in which decision makers and the public rely on 
scientific papers for critical guidance.68,69 In addition, poor 
reporting limits the ability of literature reviews to 
synthesise insights from the research to establish best 
practices. In response to these kind of concerns, the 
EPIFORGE 2020 model reporting guidelines70 were 
developed, primarily for epidemic forecasting studies, but 
but the concepts apply to other types of modeling as well. 
These guidelines recommend consistent terminology, a 
clear definition of study purpose and model targets, 
identification of prospective versus retrospective work, 
comparison with a baseline model, a non-technical 
summary of results, and full documentation of: data 
sources, data availability, data processing, methods, 
assumptions, code, model validation, forecast accuracy 
evaluation, uncertainty, limitations, interpretation, and 
generalisability.70 Consistent sharing of this information 
for epidemiological predictions would improve the 
consistency, reproducibility, comparability, and quality of 
epidemic forecasting and modelling papers, in addition 
to minimising the potential for the public to 
misunderstand or misuse the research.

Another obstacle to maximising the knowledge gained 
from epidemic modelling is the suitability of the 
information-sharing system. Since it is not standard 
practice for modelling papers to report on translational 
work, this Series paper can only comment on the 
translation potential of papers on the basis of their 
reporting practices, not on how models were actually 
used during the COVID-19 pandemic. In addition, the 
volume and variable quality of the literature forced us to 
adopt stringent and limiting scoping criteria to obtain a 
manageable sample of literature to analyse. Other 
reviews adopted their own narrow scope, creating a 
body of COVID-19 modelling literature reviews that 
amount to a fragmented, incomplete understanding of 
the efforts of researchers.

The obstacles to completing this literature review 
illustrate the difficulty of building knowledge from the 
COVID-19 literature through the traditional information-
sharing system: peer-reviewed literature synthesised by 
systematic literature reviews. Thus, a new information-
sharing system that is better suited to the needs of 
outbreaks is urgently needed, which can handle the pace 
of publications and strike a balance between the speed 
and quality of disseminating research findings.

Limitations 
For COVID-19 applications, clearly stating model 
limitations is crucial to help the public understand the 

appropriate interpretation of results. The main limitations 
of this Series paper are the result of the difficult nature of 
synthesising the COVID-19 literature. We had to adopt 
stringent scoping criteria, which included limiting our 
analysis to studies that made prospective, data-driven 
predictions for the USA, and to papers published in the 
top 10% of journals based on Scopus’ CiteScore.19 The 
CiteScore is an imperfect metric that relies on the number 
of citations per study in a journal. However, the CiteScore 
was the best option we knew of to select for a higher 
quality sample of papers, since we did not want to 
introduce a time bias by using each paper’s number of 
citations. Another limitation is that we can only comment 
on the state of the peer-reviewed literature (and a specially 
selected sample of the preprint literature) within this 
analysis, not the state of all real-time work, some of which 
is not and might never be represented in the literature. In 
addition, some of the categorisations we made were 
subjective and difficult to extract consistently, so we 
implemented quality control mechanisms as discussed in 
the Methods, and we are confident in our overall 
conclusions. Despite these limitations, we believe we 
have studied the most representative sample of papers 
possible and obtained findings that are informative for 
improving epidemic modelling in the future. 

Conclusions
To conclude, this Series paper examined a subset of the 
COVID-19 modelling literature, focused on data-driven, 
prospective modelling, and identified several 
opportunities to improve the use of outbreak modelling, 
which are especially relevant to inform the work of the 
new CDC Center for Forecasting and Outbreak Analytics, 
for which planning began in August, 2021. In response 
to considerable scoping challenges, we selected a sample 
that should represent the best modelling papers and still 
found them to be inadequate in some of the areas that 
are most crucial for translating models into useful 
insight for decision makers and the general public.

The main takeaways of this Series paper are adopting 
epidemic forecasting standards and creating a suitable 
information-sharing system. Adopting the EPIFORGE 
2020 model reporting guidelines addresses many of the 
issues identified in this Series paper, including the need 
to be transparent about the methods, express 
uncertainty, thoroughly evaluate performance, state 
limitations, and discuss appropriate interpretations. 
Additionally, the creation of an information-sharing 
system suited to the needs of an epidemic would allow 
the hard work of COVID-19 modellers to be more 
efficiently synthesised into best practices.
Contributors 
LG, KN, and SJ contributed to the conceptualisation and design of the 
study. KN, SJ, and FP collected and analysed the data. FP and SJ made 
the figures. KN led the writing of the original draft. NGR, KG, ECL, ST 
and LG edited the manuscript. LG supervised the study. KN and SJ have 
verified the underlying data. All authors had full access to the data and 
approved the manuscript for publication.



 www.thelancet.com/digital-health   Vol 4   October 2022	 e746

Series

Declaration of interests 
ECL declares payment for expert testimony from Cohen Ziffer 
Frenchman & McKenna for a report related to COVID-19 epidemiology. 
KN, SJ, and LG submitted a model to the US COVID-19 Forecast Hub. 
NGR is a coauthor on EPIFORGE 2020 model reporting guidelines, is a 
codirector of the Forecast Hub, has submitted individual models to the 
Forecast Hub, and served in an advisory role for the US Scenario 
Modeling Hub. ST is a cofounder and member of the leadership team 
for the US Scenario Modeling Hub, and has submitted individual 
models to both the Scenario and Forecast Hubs. ECL has submitted 
models to both the Forecast and Scenario Hubs. FP and KG declare no 
competing interests. 

Acknowledgments 
KN, SJ, and LG were funded by the NSF Rapid Response Research 
grants (award ID 2108526 and 2028604), and the CDC SHEPheRD 
Project (200-2016-91781). ECL declares support from the National 
Science Foundation (NSF), a grant from Public Health Institute. NGR 
has been supported by the National Institutes of General Medical 
Sciences (NIGMS; R35GM119582), and a grant from the CDC 
(1U01IP001122). KG and FP were funded by the Rockefeller Foundation 
Covid-19 Modeling Accelerator and CDC U01CK000589. ST declares a 
grant from NSF (2127976) and a CDC contract (200-2016-91781). The 
funders of the study had no role in study design, data collection, data 
analysis, data interpretation, or writing of the report. The authors had 
final responsibility for the decision to submit for publication. The 
content is solely the responsibility of the authors and does not 
necessarily represent the official views of NIGMS or the National 
Institutes of Health.

References
1	 Dong E, Du H, Gardner L. An interactive web-based dashboard to 

track COVID-19 in real time. Lancet Infect Dis 2020; 20: 533–34.
2	 Fraser N, Brierley L, Dey G, et al. The evolving role of preprints in 

the dissemination of COVID-19 research and their impact on the 
science communication landscape. PLoS Biol 2021; 19: e3000959.

3	 Horbach SPJM. Pandemic publishing: medical journals strongly 
speed up their publication process for COVID-19. Quant Sci Stud 
2020; 1: 1056–67.

4	 James LP, Salomon JA, Buckee CO, Menzies NA. The use and 
misuse of mathematical modeling for infectious disease 
policymaking: lessons for the COVID-19 pandemic. 
Med Decis Making 2021; 41: 379–85.

5	 Press WH, Levin RC. Modeling, post COVID-19. Science 2020; 
370: 1015.

6	 Ioannidis JPA, Cripps S, Tanner MA. Forecasting for COVID-19 has 
failed. Int J Forecast 2020; 38: 423–38.

7	 Shankar S, Mohakuda SS, Kumar A, et al. Systematic review of 
predictive mathematical models of COVID-19 epidemic. 
Med J Armed Forces India 2021; 77: S385–92.

8	 Guan J, Wei Y, Zhao Y, Chen F. Modeling the transmission 
dynamics of COVID-19 epidemic: a systematic review. J Biomed Res 
2020; 34: 422.

9	 Xiang Y, Jia Y, Chen L, Guo L, Shu B. Long E. COVID-19 epidemic 
prediction and the impact of public health interventions: a review of 
COVID-19 epidemic models. Infect Dis Model 2021; 6: 324–42.

10	 Zawadzki RS, Gong CL, Cho SK, et al. Where do we go from here? 
A framework for using susceptible-infectious-recovered models for 
policy making in emerging infectious diseases. Value Health 2021; 
24: 917–24.

11	 Adiga A, Dubhashi D, Lewis B, Marathe M, Venkatramanan S, 
Vullikanti A. Mathematical models for COVID-19 pandemic: 
a comparative analysis. J Indian Inst Sci 2020; 100: 793–807.

12	 Rahimi I, Chen F, Gandomi AH. A review on COVID-19 forecasting 
models. Neural Comput Appl 2021; published online Feb 4. https://
doi.org/10.1007/s00521-020-05626-8.

13	 Gnanvi JE, Salako KV, Kotanmi GB, Glèlè Kakaï R. On the reliability 
of predictions on Covid-19 dynamics: a systematic and critical 
review of modelling techniques. Infect Dis Model 2021; 6: 258–72.

14	 McCabe R, Donnelly CA. Disease transmission and control modelling 
at the science–policy interface. Interface Focus 2021; 11: 20210013.

15	 Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions 
on the spread of the 2019 novel coronavirus (COVID-19) outbreak. 
Science 2020; 368: 395–400.

16	 Flaxman S, Mishra S, Gandy A, et al. Estimating the effects of non-
pharmaceutical interventions on COVID-19 in Europe. Nature 2020; 
584: 257–61.

17	 Tian H, Liu Y, Li Y, et al. An investigation of transmission control 
measures during the first 50 days of the COVID-19 epidemic in 
China. Science 2020; 368: 638–42.

18	 Wu JT, Leung K, Leung GM. Nowcasting and forecasting the 
potential domestic and international spread of the 2019-nCoV 
outbreak originating in Wuhan, China: a modelling study. Lancet 
2020; 395: 689–97.

19 	 Elsevier. How Scopus works: Scopus content. https://www.elsevier.
com/solutions/scopus/how-scopus-works/content (accessed May 6, 
2022).

20	 Lemaitre JC, Grantz KH, Kaminsky J, et al. A scenario modeling 
pipeline for COVID-19 emergency planning. Scientific Reports 2021; 
11: 7534.

21	 Truelove S, Smith CP, Qin M, et al. Projected resurgence of 
COVID-19 in the United States in July–December 2021 resulting 
from the increased transmissibility of the Delta variant and 
faltering vaccination. eLife 2022; 11: e73584.

22	 Borchering RK, Viboud C, Howerton E, et al. Modeling of future 
COVID-19 cases, hospitalizations, and deaths, by vaccination rates 
and nonpharmaceutical intervention scenarios—United States, 
April–September 2021. MMWR Morb Mortal Wkly Rep 2021; 
70: 719–24.

23	 Li Q, Bedi T, Lehmann CU, Xiao G, Xie Y. Evaluating short-term 
forecasting of COVID-19 cases among different epidemiological 
models under a Bayesian framework. Gigascience 2021; 
10: giab009.

24	 Nikolopoulos K, Punia S, Schäfers A, Tsinopoulos C, Vasilakis C. 
Forecasting and planning during a pandemic: COVID-19 growth 
rates, supply chain disruptions, and governmental decisions. 
Eur J Oper Res 2021; 290: 99–115.

25	 Cot C, Cacciapaglia G, Islind AS, Óskarsdóttir M, Sannino F. 
Impact of US vaccination strategy on COVID-19 wave dynamics. 
Sci Rep 2021; 11: 10960.

26	 Bertozzi AL, Franco E, Mohler G, Short MB, Sledge D. The 
challenges of modeling and forecasting the spread of COVID-19. 
Proc Natl Acad Sci USA 2020; 117: 16732–38.

27	 Bhouri MA, Costabal FS, Wang H, et al. COVID-19 dynamics across 
the US: a deep learning study of human mobility and social 
behavior. Comput Methods Appl Mech Eng 2021; 382: 113891.

28	 Reich NG, Tibshirani RJ, Ray EL, Rosenfeld R. On the predictability 
of COVID-19. Sept 28, 2021. https://forecasters.org/
blog/2021/09/28/on-the-predictability-of-covid-19/ (accessed 
Dec 6, 2021).

29	 Google. COVID-19 community mobility reports. https://www.
google.com/covid19/mobility/ (accessed Dec 14, 2021).

30	 Unacast. Social distancing scoreboard. https://www.unacast.com/
covid19/covid-19-retail-impact-scoreboard (accessed Dec 14, 2021). 

31	 SafeGraph. SafeGraph data for academics in the United States. 
https://www.safegraph.com/academics (accessed Dec 14, 2021).

32	 Apple. COVID19 mobility trends reports. https://covid19.apple.
com/mobility (accessed Dec 14, 2021).

33	 Meta (Facebook). Movement range maps. https://dataforgood.
facebook.com/dfg/tools/movement-range-maps (accessed 
Dec 14, 2021).

34	 Google Trends. Coronavirus search trends. https://trends.google.
com/trends/story/GB_cu_JSW_pHABAADqAM_en (accessed 
Dec 14, 2021).

35	 Institute for Health Metrics and Evaluation. COVID-19 projections. 
https://covid19.healthdata.org/global?view=mask-use&tab=trend 
(accessed Dec 14, 2021).

36	 Meta (Facebook). COVID 19 Symptom Survey. https://dataforgood.
facebook.com/dfg/tools/covid-19-trends-and-impact-
survey#methodology (accessed Dec 14, 2021).

37	 GitHub. Mask-wearing survey data. https://github.com/nytimes/
covid-19-data/tree/master/mask-use (accessed Dec 14, 2021).

38	 Chalkiadakis I, Yan H, Peters GW, Shevchenko PV. Infection rate 
models for COVID-19: model risk and public health news 
sentiment exposure adjustments. PLoS One 2021; 16: e0253381.

39	 Hale T, Angrist N, Goldszmidt R, et al. A global panel database of 
pandemic policies (Oxford COVID-19 Government Response 
Tracker). Nat Hum Behav 2021; 5: 529–38.



e747	  www.thelancet.com/digital-health   Vol 4   October 2022

Series

40	 Adolph C, Amano K, Bang-Jensen B, Fullman N, Wilkerson J. 
Pandemic politics: timing state-level social distancing responses to 
COVID-19. J Health Polit Policy Law 2021; 46: 211–33.

41	 Duque D, Morton DP, Singh B, Du Z, Pasco R, Meyers LA. Timing 
social distancing to avert unmanageable COVID-19 hospital surges. 
Proc Natl Acad Sci USA 2020; 117: 19873–78.

42	 Arik SO, Li CL, Yoon J, et al. Interpretable sequence learning for 
COVID-19 forecasting. arXiv 2020; published online Jan 13, 2021. 
https://doi.org/10.48550/arXiv.2008.00646 (preprint).

43	 Lee SY, Lei B, Mallick B. Estimation of COVID-19 spread curves 
integrating global data and borrowing information. PLoS One 2020; 
15: e0236860.

44	 Lutz CS, Huynh MP, Schroeder M, et al. Applying infectious 
disease forecasting to public health: a path forward using influenza 
forecasting examples. BMC Public Health 2019; 19: 1659.

45	 Cramer EY, Ray EL, Lopez VK, et al. Evaluation of individual and 
ensemble probabilistic forecasts of COVID-19 mortality in the 
United States. Proc Natl Acad Sci USA 2022; 119: e2113561119.

46	 COVID 19 ForecastHub. COVID-19 US forecast evaluation report. 
Sept 8, 2021. https://covid19forecasthub.org/eval-reports/?state=US
&week=2021-09-08 (accessed Dec 7, 2021).

47	 Reinhart A, Brooks L, Jahja M, et al. An open repository of real-time 
COVID-19 indicators. Proc Natl Acad Sci USA 2021; 
118: e2111452118.

48	 Carnegie Mellon University Delphi Group. COVIDcast dashboard. 
https://delphi.cmu.edu/covidcast/ (accessed June 12, 2022).

49	 Zou D, Wang L, Xu P, Chen J, Zhang W, Gu Q. Epidemic model 
guided machine learning for COVID-19 forecasts in the United 
States. medRxiv 2020; published online May 25. https://doi.
org/10.1101/2020.05.24.20111989 (preprint).

50	 Khan ZS, van Bussel F, Hussain F. A predictive model for Covid-19 
spread applied to eight US states. arXiv 2020; published online 
June 10. https://doi.org/10.48550/arXiv.2006.05955 (preprint).

51	 Galasso J, Cao DM, Hochberg R. A random forest model for 
forecasting regional COVID-19 cases utilizing reproduction number 
estimates and demographic data. Chaos Solitons Fractals 2022; 
156: 111779.

52	 Zhang-James Y, Hess J, Salekin A, et al. A seq2seq model to forecast 
the COVID-19 cases, deaths and reproductive R numbers in US 
counties. medRxiv 2021; published online April 20. https://doi.
org/10.1101/2021.04.14.21255507 (preprint).

53	 Shi Y, Ban X. Capping mobility to control COVID-19: a collision-
based infectious disease transmission model. medRxiv 2020; 
published online July 28. https://doi.
org/10.1101/2020.07.25.20162016 (preprint).

54	 Wu D, Gao L, Xiong X, et al. DeepGLEAM: a hybrid mechanistic 
and deep learning model for COVID-19 forecasting. arXiv 2021; 
published online Feb 12. https://arxiv.org/abs/2102.06684v3 
(preprint).

55	 Srivastava A, Xu T, Prasanna VK. Fast and accurate forecasting of 
COVID-19 deaths using the SIkJalpha model. arXiv 2020; published 
online July 10. https://arxiv.org/abs/2007.05180v2 (preprint).

56	 IHME COVID-19 health service utilization forecasting team, 
Murray CJL. Forecasting COVID-19 impact on hospital bed-days, 
ICU-days, ventilator-days and deaths by US in the next 4 months. 
medRxiv 2020; published online March 30. https://doi.
org/10.1101/2020.03.27.20043752 (preprint).

57	 Pei S, Shaman J. Initial simulation of SARS-CoV2 spread and 
intervention effects in the continental US. medRxiv 2020; published 
online March 27. https://doi.org/10.1101/2020.03.21.20040303 
(preprint).

58	 Gibson GC, Reich NG, Sheldon D. Real-time mechanistic Bayesian 
forecasts of COVID-19 mortality. medRxiv 2020; published online 
Dec 24. https://doi.org/10.1101/2020.12.22.20248736 (preprint).

59	 Wang L, Wang G, Gao L, et al. Spatiotemporal dynamics, 
nowcasting and forecasting of COVID-19 in the United States. arXiv 
2020; published online April 29. https://doi.org/10.48550/
arXiv.2004.14103 (preprint).

60	 Meta (Facebook). Neural relational autoregression for high-
resolution COVID-19 forecasting. Sept 23, 2020. https://ai.facebook.
com/research/publications/neural-relational-autoregression-for-
high-resolution-covid-19-forecasting/ (accessed Sept 20, 2021).

61	 Biegel HR, Lega J. EpiCovDA: a mechanistic COVID-19 forecasting 
model with data assimilation. arXiv 2021; published online May 12. 
https://doi.org/10.48550/arXiv.2105.05471 (preprint).

62	 Wilson DJ. Weather, social distancing, and the spread of COVID-19. 
July, 2020. https://doi.org/10.24148/wp2020-23 (accessed Dec 14, 
2021).

63	 Baxter A, Oruc BE, Keskinocak P, Asplund J, Serban N. Evaluating 
scenarios for school reopening under COVID19. BMC Public Health 
2020; 22: 496.

64	 Rodriguez A, Tabassum A, Cui J, et al. DeepCOVID: an operational 
deep learning-driven framework for explainable real-time 
COVID-19 forecasting. Proc Conf AAAI Artif Intell 2020; 
35: 15393–400.

65	 Pei S, Kandula S, Shaman J. Differential effects of intervention 
timing on COVID-19 spread in the United States. Sci Adv 2020; 
6: eabd6370.

66	 Rowland MA, Swannack TM, Mayo ML, et al. COVID-19 infection 
data encode a dynamic reproduction number in response to policy 
decisions with secondary wave implications. Sci Rep 2021; 11: 10875.

67	 Gao J, Sharma R, Qian C, et al. STAN: spatio-temporal attention 
network for pandemic prediction using real-world evidence. 
J Am Med Inform Assoc 2021; 28: 733–43.

68	 Bagdasarian N, Cross GB, Fisher D. Rapid publications risk the 
integrity of science in the era of COVID-19. BMC Med 2020; 18: 192.

69	 Fraser N, Brierley L, Dey G, et al. The evolving role of preprints in 
the dissemination of COVID-19 research and their impact on the 
science communication landscape. PLoS Biol 2021; 19: e3000959.

70	 Pollett S, Johansson MA, Reich NG, et al. Recommended reporting 
items for epidemic forecasting and prediction research: the 
EPIFORGE 2020 guidelines. PLoS Med 2021; 18: e1003793.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an 
Open Access article under the CC BY 4.0 license.


	An evaluation of prospective COVID-19 modelling studies in the USA: from data to science translation
	Introduction
	Methods
	Search strategy and selection criteria
	Categorisation analysis

	Results and discussion
	Model objective and prediction horizon
	Methodology
	Target variables
	Data categories
	Geographical resolution
	Uncertainty
	Performance evaluation
	Model limitations
	Multidisciplinary nature of the COVID-19 literature

	Concluding remarks
	Limitations
	Conclusions

	Acknowledgments
	References


