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Abstract
Trial design:Cerebral small vessel diseases (CSVDs) are a group of brain pathological processes involving cerebral small arteries,
brain venules, and capillaries. The recombination signal-binding protein Jk (RBPJ) is implicated in the pathogenesis of these diseases
but its actual roles need confirmation. The aim of this work was to evaluate variations inRBPJ gene for their possible associations with
the disease.

Methods:The RBPJ gene was sequenced for 400 patients with cerebral infarction disease and 600 normal controls. The statistical
analyses and Hardy–Weinberg equilibrium tests of the patients and control populations were conducted using the SPSS software
(version 19.0) and Plink (version 1.9), Haploview software, and online software SNPSpD.

Results:We characterized variants rs2871198, rs1397731, rs3822223, rs2077777, rs2270226, and rs2788861 within or near the
RBPJ gene. The genetic heterozygosity of rs2871198, rs1397731, rs3822223, rs2077777, and rs2270226 was very high. Statistical
analysis showed that the variants rs2270226 and rs2077777 in the gene were associated with the risk of cerebral infarction diseases
in the Chinese Han population.

Conclusions: rs2270226 and rs2077777 in the RBPJ gene were associated with the risk of cerebral infarction diseases in the
Chinese Han population.

Abbreviations: CSVDs = cerebral small vessel diseases, LD = linkage-disequilibrium, RBPJ = recombination signal-binding
protein Jk, SNPs = single nucleotide polymorphism, VCI = cognitive impairment.
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1. Introduction

Cerebral small vessel diseases (CSVDs), withmany types including
cerebral infarction, are a group of prevalent brain pathological
processes involving cerebral small arteries, brain venules, and
capillaries.[1,2] These diseases are mainly divided into age-related
cerebral small vessel disease, hypertension-related cerebral small
vessel disease and cerebral amyloid angiopathy, and are often
associated with other mental disorders, such as stroke, cognitive
impairment (VCI), and vascular dementia.[3–6]

Cerebral infarction is among the most common CSVDs,
characterized by severe hypoxic ischemic tissue necrosis in the
brain, often leading to repeated paralysis, sensory disability,
language barrier, dementia, and other long-term functional
disabilities with resultant low living quality.[7–9] Clinically, a
variety of therapies have been applied to treat the disease,[10,11]

but few are effective.[12,13]

Insights into risk and etiologic factors would help develop
novel strategies for the treatment of cerebral infarction diseases.
The risk factors so far documented include smoking, obesity,
dyslipidemia, high blood pressure, diabetes and aging,[14,15] and
the pathogenesis involves neuronal cell apoptosis.[16,17] Blockage
of the brain blood vessels is the direct cause of the disease,
resulting from embolism or thrombosis and leading to cerebral
ischemia,[18] which may induce immune responses and inflam-
mation.[15,19–23]

The genetic etiology of the cerebral infarction disease involves
the Notch signaling pathway,[15,24,25] which is highly conserved
in evolution and regulates the expression of many genes involved
in cell proliferation or differentiation.[26–28] The Notch signaling
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Table 1

PCR primers used for RBPJ gene sequence analysis.

Exon Forward primer Reverse primer Size Tm

1 AGCAGTTTAACATACCAA AATCCATAACCACATCTA 389 44.6
2 TACTTAGGGCATGTTGTT GAGGGAAAGGAAGTTTGA 391 45.1
3 GCGTAGTAATGATGAAAG GAACCCAGTAATAGAAGC 268 44.8
4 CCCGATTTCTGTCCTGTG TTCCAATGTCAGCAGCGT 547 49.8
5 GGTTTTATCAGCTATCCCTT TTTCCCCAGAATGTCCCT 529 48.8
6 TCCTTCTTTTGCTCCCTC CCATCTCGGACTGTGAAT 402 48.1
7 TCACAGCAGTGGGGAGCC AACAGCACTGATTACTAACATA 440 46.3
8 GTTCAGGGAAGAGGGTAA GCTTGCATGTCTGAGGAT 542 47.2
9 CTGCTGTCTATGGGGTTT TCTGGCAAGTACGCTCCT 540 49.4
10 AAAATTAGGAGGAGCGTAC TGCAGAAATGTCTGGGAC 525 48.0
11 TTCTTTCCTGGCACTGAT GTTTTCCCAAGAAACCAC 527 50.7
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pathway also affects the proliferation of stem/progenitor cells and
supports the central and peripheral nervous systems.[29] In a
previous study, we found that variants of the Notch3 gene,
combined with aging, are associated with the risk of cerebral
infarction diseases.[15]

In the process of Notch pathway functioning, the recombina-
tion signal-binding protein Jk (RBPJ) mediates the signaling from
the Notch receptors.[30,31] RBPJ is a DNA binding regulatory
factor, which recognizes the consensus sequence “C(T)
GTGGGAA” and regulates many factors such as CSL transcrip-
tion factors family.[32] RBPJ is also associated with some
corepressors and represses the Notch transcription,[33] and the
SNP rs874040 in RBPJ skews memory T cells toward a
proinflammatory phenotype involving the notch signaling
pathway.[34] Based on these findings, we hypothesize that the
RBPJ may play important roles in the pathogenesis of cerebral
infarction diseases.
In the present study, we investigated variants rs2270226 and

rs2077777 in theRBPJ gene for their associations with the risk of
cerebral infarction disease in the Chinese Han population and
demonstrated the association of the central repressor domain and
5’UTR with the functions of RBPJ. These findings provide novel
insights into the roles of RBPJ gene in etiology and pathogenesis
of the cerebral infarction diseases.

2. Materials and methods

2.1. Study population

A total of 400 patients with cerebral infarction disease and 600
normal controls were collected at the Department of Neurology
and Medical Examination Center of the Daqing Oilfield General
Hospital, Daqing, China. We performed the experiments in
accordance with relevant guidelines and regulations and obtained
a written informed consent from each participant. The Ethics
Committee of HMU approved this work, which is consistent with
the 1975 Declaration of Helsinki.
In the clinical examination, the medical histories and clinical

features of the enrolled participants were recorded in detail. The
participants also received physical, MRI, and other neurological
Figure 1. Schematic diagrams of rs2871198, rs1397731, rs3822223, rs
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system examinations. The detailed information of the cerebral
infarction patients and normal agedness controls were shown in
the previous study.[15]
2.2. DNA analysis

Genomic DNA of all the participants was extracted using
standard protocols.[35,36] The transcribed regions and splicing
sites of the RBPJ gene were amplified by PCR with the primers
shown in Table 1. The PCR products were sequenced for
mutational analysis as previously described.[37]
2.3. SNP genotyping analysis

The variations within or near the RBPJ gene were determined for
the 400 cerebral infarction patients and 600 normal controls. The
DNA regions were amplified and the PCR products were
sequenced to determine the genotypes; 2 researchers conducted
the measurements independently. Overall cerebral infarction
disease genetics correlation analysis was also conducted.
2.4. Statistical analysis

Statistical analyses and Hardy–Weinberg equilibrium tests of the
patients and control populations were conducted using the SPSS
software (version 19.0)[38] and Plink (version 1.9) as previously
reported.[39,40] The experiment-wide significance threshold,
matrix of mpirwise linkage-disequilibrium (LD) correlation for
the markers and haplotype diagram of LD structure were
calculated using the online software SNPSpD and Haploview
software as previously reported.[41]
3. Results

3.1. SNP gene analyses

We sequenced the transcribed regions and splicing sites of the
RBPJ gene to test the hypothesis that germline common genetic
variants in the gene may confer the susceptibility to cerebral
infarction diseases. We characterized variants rs2871198,
2077777, rs2270226, and rs2788861 within or near the RBPJ gene.



Table 2

The genotype and allele frequency of rs2871198, rs1397731, rs3822223, rs2077777, and rs2270226 variants in 400 Chinese Han cerebral
infarction and 600 normal agedness controls.

Variations Group Genotype frequency (%) Allele frequency (%)

rs2871198 Genotype G/G G/A A/A G A
CID 400 158 (39.5) 188 (47.0) 54 (13.5) 504 (63.0) 296 (37.0)

Control 600 208 (34.7) 300 (50.0) 92 (15.3) 716 (59.7) 484 (40.3)
rs1397731 Genotype C/C C/T T/T C T

CID 400 331 (82.8) 64 (16.0) 5 (1.3) 726 (90.8) 74 (9.3)
Control 600 490 (81.7) 106 (17.7) 4 (0.7) 1086 (90.5) 114 (9.5)

rs3822223 Genotype C/C C/A A/A C A
CID 400 148 (37.0) 179 (44.8) 73 (18.3) 475 (59.4) 325 (40.6)

Control 600 246 (41.0) 266 (44.3) 88 (14.7) 758 (63.2) 442 (36.8)
rs2077777 Genotype G/G G/C C/C G C

CID 400 200 (50.0) 151 (37.8) 49 (12.3) 551 (68.9) 249 (31.1)
Control 600 319 (53.2) 243 (40.5) 38 (6.3) 881 (73.4) 319 (26.6)

rs2270226 Genotype T/T T/C C/C T C
CID 400 85 (21.3) 170 (42.5) 145 (36.3) 340 (42.5) 460 (57.5)

Control 600 91 (15.2) 326 (54.3) 183 (30.5) 508 (42.3) 692 (57.7)

CID=cerebral infarction diseases.

Table 3

SNP rs2270226 and rs2077777 varients within the RBPJ genewere associated with risk of cerebral infarction in Chinese Han populations.

Title Pearson Chi-square Risk

Genotyped SNP Statistical types Value Min count
∗

df Asymp. sig. (2-sided) Value 95%CI-low 95%CI-up

rs2871198 Genotype 2.527 58.40 2 0.283 – – –

Allele 2.242 312.00 1 0.134 1.151 0.957 1.384
rs1397731 Genotype 1.334 3.60 2 0.513 – – –

Allele 0.035 75.20 1 0.851 1.030 0.757 1.400
rs3822223 Genotype 2.898 64.40 2 0.235 – – –

Allele 2.919 306.80 1 0.088 0.852 0.709 1.024
rs2077777 Genotype 10.581 34.80 2 0.005‡ – – –

Allele 4.869 227.20 1 0.027† 0.801 0.658 0.976
rs2270226 Genotype 14.241 70.40 2 0.001‡ – – –

Allele 0.005 339.20 1 0.941 1.007 0.840 1.207

SNPs= single nucleotide polymorphism.
∗
The minimum expected count.

† Statistically significant, P< .05.
‡ Statistically significant, P< .005.
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rs1397731, rs3822223, rs2077777, rs2270226, and rs2788861
within or near the RBPJ gene (Fig. 1). Analysis of these SNPs
showed that the genetic heterozygosity of rs2871198,
rs1397731, rs3822223, rs2077777, and rs2270226 was very
high, whereas that of rs2788861 was very low and was excluded
from further analysis.

3.2. Polymorphism-disease association analyses

We conducted analyses on the SNPs to inspect their
possible associations with the diseases and found that
Table 4

Hardy–Weinberg equilibrium test for the study population groups.

Genotype

SNPs Homo/Hetero/Homozygote

Rs2871198 146/488/366
Rs1397731 99/170/821
Rs3822223 161/445/394
Rs2077777 87/394/519
Rs2270226 176/496/328

SNPs= single nucleotide polymorphism.

3

the variants rs2270226 and rs2077777 in the gene were
associated with the risk of cerebral infarction in the
Chinese Han population (Tables 2 and 3). We conducted
the Hardy–Weinberg equilibrium test for the study
population groups, and it was in line with equilibrium
(Table 4).
Experiment-wide significance threshold required to keep

Type I error rate at 5% of rs2871198, rs1397731,
rs3822223, rs2077777, and rs2270226 was 0.013. The
Haploview software was used to conduct LD analysis of the
H-W equilibrium Testing

O (HET) E (HET) P

0.488 0.4758 .4646
0.170 0.1703 .8540
0.445 0.4729 .0615
0.394 0.4067 .3132
0.496 0.4884 .6507

http://www.md-journal.com


Figure 2. LD analysis of the variants rs2871198, rs1397731, rs3822223, rs2077777, and rs2270226 in the RBPJ gene. The LD plots were generated using the
Haploview software v4.2. (A) Data analysis between CID patients and controls from the present study; (B) data from HapMap CHB of variants in RBPJ gene. The
data from the HapMap CHB and this work were consistent. No numeric in the cube, the value was 100. CID=cerebral infarction diseases, LD= linkage-
disequilibrium.

Table 5

SNP rs2270226 and rs2077777 within RBPJ gene associated with
the risk of cerebral infarction diseases.
SNPs Value Trend model Dominant model Recessive model

rs2077777 ChisQ 4.722 0.964 10.580
P .0298

∗
.3262 .0011

∗

rs2270226 ChisQ 0.006 3.600 6.124
P .9406 .0578 .0133

∗

SNPs= single nucleotide polymorphism.
∗
Statistically significant.
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variants rs2871198, rs1397731, rs3822223, rs2077777, and
rs2270226, and the results were consistent with the data
from the HapMap CHB population (Fig. 2). The genotype
frequencies in the disease and control groups were further
analyzed by 3 genetic models, including trend, dominant,
and recessive models, in addition to chi-square tests, and all
results indicated that the variants rs2077777 and rs2270226
were associated with the risk of cerebral infarction diseases
(Table 5).
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4. Discussion

In the present work, we validated the associations of RBPJ
variants rs2270226 and rs2077777 with the risk of cerebral
infarction diseases. Certain diseases or genetic factors can change
the characteristics of the cerebral vascular systems and contribute
to cerebral infarction or other CSVDs.[18,42] In the blood vessel
development, the Notch signaling pathway regulates the
expression of many genes involved in the cell proliferation,
differentiation, apoptosis, and cell fate decision,[26] and coor-
dinates arterial differentiation of endothelial cells.[43–46] Targeted
mutations of the Notch target genes could result in embryonic
lethality due to severe defects in the angiogenic vascular
remodeling.[44,47] RBPJ is a transcriptional regulator, through
which the Notch receptor regulates the downstream target genes
when the Notch receptors bind with ligands.[48,49] So, the DNA-
binding protein RBPJ plays a central role in the Notch signaling
pathway.[50] In this work, we found that rs2270226 and
rs2077777 in the RBPJ gene were associated with the risk of
cerebral infarction disease, possibly via affecting the downstream
target genes of the Notch signaling pathway.
As a member of the CSL (CBF-1, Suppressor of Hairless, Lag-

2), RBPJ is a major downstream sequence-specific transcriptional
repressor in the Notch signaling pathway.[51] By recruiting
distinct protein complexes to the promoter, the RBPJ functions
on the target genes.[52] The replication and transcription
activators in the Notch signaling pathway activate the promoters
by binding to the repression domain of RBPJ.[53] It has been
reported that mutations in the RBPJ binding sites suppressed the
expression of the replication and transcription activators.[54] The
rs2077777 and rs2270226 in the RBPJ gene may affect the
interactions between RBPJ and the activators.
Via the central repressor domain (aa 179-361 in RBPJ protein),

the RBPJ protein recruits corepressor proteins and histone
deacetylases, thus inhibiting gene expression.[55] In the Notch
signaling pathway, Notch proteins interact with their ligands,
triggering a cascade of proteolytic reactions and ultimately
liberating a fragment of their cytosolic tail also named Notch
intracellular domain.[56] When the fragments are transported to
the nucleus, they interact with RBPJ by binding to the RBPJ
central repressor domain.[32,57] The rs2270226 variant is located
near the central repressor domain of the RBPJ within the aa 50–
100 region, consistent with the postulated roles of the central
repressor domain for the functions of the RBPJ.
Through different regions or domains, RBPJ interacts with the

Notch intracellular region, activates the downstream target genes
transcription and regulates cell differentiation,[53,57] such as the
central repressor domain of RBPJ interacting with the RAM of
Notch intracellular region.[53] On the other hand, the N- and C-
terminal regions of RBPJ bind to the Notch intracellular region
ankyrin repeat; when mutated, the N- and C-terminal regions are
defective in transcriptional activation.[57] Analysis of rs2077777
located near the 50UTR of the RBPJ gene further demonstrated
the important roles of 5’UTR of the gene for its functions.
5. Conclusion

We validated the associations of RBPJ variants rs2270226 and
rs2077777 with the risk of cerebral infarction diseases in the
Chinese Han population and demonstrated the roles of central
repressor domain and 5’UTR for the functions of the RBPJ.
5
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