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ABSTRACT. Leukocyte traffic out of the blood stream is crucial for an adequate immune response.
Leukocyte extravasation is critically dependent on the binding of leukocyte integrins to their
endothelial counterreceptors. This interaction enables the firm adhesion of leukocytes to the luminal
side of the vascular wall and allows for leukocyte polarization, crawling and diapedesis. Leukocyte
adhesion, polarization and migration requires the orchestrated regulation of integrin adhesion/de-
adhesion dynamics and actin cytoskeleton rearrangements. Adhesion strength depends on
conformational changes of integrin molecules (affinity) as well as the number of integrin molecules
engaged at adhesion sites (valency). These two processes can be independently regulated and several
molecules modulate either one or both processes. Cholesterol-rich membrane domains (lipid rafts)
participate in integrin regulation and play an important role in leukocyte adhesion, polarization and
motility. In particular, lipid raft-resident glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs)
have been reported to regulate leukocyte adhesion, polarization and motility in both integrin-dependent
and independent manners. Here, we present our recent discovery concerning the novel role of the GPI-
AP prion protein (PrP) in the regulation of b1 integrin-mediated monocyte adhesion, migration and
shape polarization in the context of existing literature on GPI-AP-dependent regulation of integrins.
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INTRODUCTION

In order to fulfill their effector and patrolling
functions, leukocytes traffic through the body
and need to adapt to the adhesive properties of
the different tissue environments. First, differ-
entiated leukocytes egress the bone marrow
into the vascular system. Later, circulating leu-
kocytes will exit the vasculature and penetrate
into the tissues, either for patrolling in search
for pathogens (i.e. resident monocytes, T cells)
or to eliminate infection and activate the adap-
tive immune response (i.e., inflammatory
monocytes, neutrophils).1,2 Leukocyte extrava-
sation depends on the presence of chemoattrac-
tants on the luminal side of the vascular
endothelium. At first, leukocytes contact the
endothelium by establishing weak and transient
selectin-dependent interactions, which lead to
leukocyte capture and rolling. Binding of che-
moattractants to their receptors on leukocytes
triggers signaling that leads to the activation of
leukocyte b1 and b2 integrins and their subse-
quent interaction with their endothelial counter-
receptors VCAM-1 and ICAM-1, respectively.
These interactions enable firm adhesion, polari-
zation and crawling of leukocytes on the vascu-
lar wall and lead to leukocyte diapedesis across
the endothelial layer.3

Arrested leukocytes rapidly change shape
and initiate crawling on the endothelial surface.
They become flattened and develop a leading
edge rich in lamellipodial and finger-like pro-
trusions, and a trailing edge with a single mem-
brane protrusion, the uropod (Fig. 1). This
transformation is initiated by integrin-mediated
adhesion and subsequent polarization of the
actin and microtubule cytoskeletons, leading to
the asymmetric distribution of membrane lipids
and proteins as well as cytosolic proteins into
either the leading edge or the uropod. Shape
and function are closely linked in leukocyte
front-rear polarity. Chemokine sensing takes
place at the leading edge, where chemokine
receptors are located, whereas the uropod con-
centrates a plethora of adhesion receptors,
including integrins, CD44, CD43, ICAMs and
PSGL-1, and has primarily an adhesive func-
tion both to the substratum and to other cells.4,5

Similarly, the composition of lipid rafts differs

between front and rear: leading edge rafts con-
tain the ganglioside GM3, whereas the ganglio-
side GM1 and the raft scaffolding proteins
flotillin-1 and -2 segregate into uropod rafts.6

Leukocytes are a striking example on the
functional relationship between cell shape and
cell behavior: from round cells in the circula-
tion to a flattened polarized shape when crawl-
ing on the luminal side of blood vessels.
Basically, effective migration depends on the
coordinated regulation of integrin adhesion/ de-
adhesion dynamics, the polarized distribution
of lipids and proteins, the reorganization of the
cytoskeleton and the linkage between plasma
membrane and cytoskeleton.

GPI-APs and integrin adhesion

Integrins are heterodimeric complexes
formed by one a and one b subunit. Primarily,
leukocytes express aLb2 and aMb2 hetero-
dimers (LFA-1 and Mac-1, respectively), as
well as a4b1 and a5b1 heterodimers (VLA-4
and VLA-5, respectively). These integrins are
fundamental for leukocyte anchorage to the
vascular wall as well as for leukocyte motility
where they mediate force transduction between
the substrate and the cytoskeleton enabling cell
displacement.

Integrin adhesiveness is regulated by
changes in integrin affinity and/or valency.
Integrin affinity is induced by a conformational
change that consists in the extension of the
extracellular domains of ab integrin hetero-
dimers.7,8 This conformational switch is
induced by inside-out signaling triggered by
chemokine receptors leading to the binding of
talin and kindlin-3 to the b chain cytosolic
domain.9 Valency refers to the extent of multi-
valent binding to ligand. Increases in valency
are induced by (polyvalent) ligand binding and
depend on the lateral diffusion of integrins and
subsequent microclustering.7,10,11 Detachment
of integrins from the actin cytoskeleton is
required for integrin lateral mobility, enabling
ligand-induced clustering and adhesion rein-
forcement.10,11 Although integrin mobility is
important for the onset of leukocyte adhesion,
integrins must re-attach to the cytoskeleton to
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ensure strong cell adhesion to the substrate.
This could be achieved by the recruitment of
activated integrins to specialized domains of
the plasma membrane where stable cytoskeletal
anchorage takes place. Consistent with this
notion, integrin clustering at lipid raft domains
has been shown to be important for integrin-
mediated adhesion.12,13 Lipid rafts are choles-
terol- and sphingolipid-rich membrane nanodo-
mains that harbor a specific set of proteins,
both transmembrane and glycosyl-phosphati-
dyl-inositol-anchored proteins (GPI-APs). Also
specific proteins associate to the cytoplasmic
leaflet of lipid rafts, including Src family kin-
ases and the scaffolding proteins caveolin and
flotillin.14 Lipid raft connection to the cytoskel-
eton has a prominent role in both domain for-
mation and signaling, and takes place through
several membrane-actin linkers such as filamin,

annexins and ERM (ezrin-radixin-moesin) pro-
teins.15 In line with this, GPI-APs have been
found to form nanoclusters anchored to the
actin cytoskeleton in steady-state conditions.16

These nanoclusters could function as pre-
formed platforms for the cytoskeletal linkage,
clustering and immobilization of integrins
moving in by lateral diffusion. In support of
this idea, Garcia-Parajo and colleagues13 have
shown that nanoclusters of b2 integrins (LFA-
1) on the membrane of quiescent monocytes
reside close to GPI-AP nanodomains. ‘Outside-
in’ activation of LFA-1 by ICAM-1 binding
induces the ‘fusion’ of GPI-AP nanodomains
with LFA-1 nanoclusters and the further
recruitment of mobile integrins, which results
in the formation of integrin microclusters and
adhesion strengthening13. In line with these
data, there is evidence of a functional

FIGURE 1. Monocyte polarization on the b1 integrin ligand VCAM-1. Migrating human monocytic
U937 leukocytes plated on immobilized VCAM-1 and CXCL12 acquire a polarized shape consisting
of a leading edge followed by the cell body and a rear end formed by the uropod, where b1 integrins
and phosphorylated ERM proteins accumulate.20 (Color figure available online.)
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association between specific GPI-APs and
integrin-mediated adhesion.17-20 In particular,
the GPI-APs uPAR, CD157 and PrP (prion pro-
tein) have been found to have a role in the regu-
lation of leukocyte adhesion and migration in
vivo and in vitro.19-23 These GPI-APs can
establish lateral associations with integrins:
uPAR interacts with b2 integrins in monocytes
and with b1 and b3 integrins in adherent
cells24-26 and CD157 associates to b1 and b2
integrins in monocytes.19 A physical associa-
tion between PrP and b1 integrins has so far
only been reported after the proteomic analysis
of the PrP interactome in neuroblastoma
cells.27 Antibody-mediated ligation of CD157
promotes the clustering of b1 and b2 integrins
into lipid raft domains and leads to increased
activity of signaling pathways that control
monocyte transendothelial migration.19,28 Sim-
ilarly, PrP was found to colocalize with b1
integrins on membrane caps in polarized mono-
cytic cells and to regulate b1 integrin-mediated
monocyte adhesion to fibronectin and VCAM-
1.20 PrP-deficient monocytes display a reduced
ability to bind polyvalent VCAM-1, without
significant alterations in b1 integrin affinity,
suggesting that PrP silencing reduces the
valency of integrin adhesion. In agreement
with the fact that increases in integrin valency
are important to resist blood flow shear stress
forces, PrP-deficient monocytes displayed
reduced firm adhesion to the endothelium under
shear flow conditions.20 These data suggest
that, similarly to other GPI-APs, PrP may con-
tribute to integrin microclustering. However,
no direct interaction between PrP and b1 could
be demonstrated by conventional biochemical
methods, arguing that PrP may modulate integ-
rin adhesion by alternative pathways. Interest-
ingly, a functional association between PrP and
b1 integrins has also been identified in neuronal
cells, where PrP was proposed to regulate
integrin signaling through the regulation of the
production of the b1 ligand fibronectin.29

Excessive extracellular deposition of fibronec-
tin by PrP-deficient neurons was proposed to
enhance b1 integrin clustering and signaling,
leading to reduced focal adhesion turnover and
defective neuritogenesis.29 However, this
mechanism cannot explain the effects of PrP

silencing in monocytes since these cells do not
express fibronectin (at least not in detectable
amounts). Interestingly though, both studies
show increased levels of polymerized actin in
PrP-deficient neurons and monocytes as well as
enhanced activation of the RhoA-cofilin path-
way leading to cofilin inactivation. Cofilin is
crucial for the spatiotemporal regulation of
actin dynamics. It induces actin filament depo-
lymerization and severing, which provides free
barbed ends for further actin polymerization at
the leading edge and it is hence essential for
leukocyte migration.30,31 Cofilin activity is
controlled by an inactivating phosphorylation
at Ser3 by LIMK downstream of RhoA.30 It is
therefore possible that altered actin dynamics
in PrP-deficient cells reduces the lateral mobil-
ity and clustering of integrins in leukocytes as
well as focal adhesion turnover in adherent
cells. Interestingly, uPAR induces cofilin phos-
phorylation in prostate cancer cells.32 Collec-
tively, these studies suggest that cofilin plays a
role in the regulation of actin dynamics by
GPI-APs.

In addition to changes in cytoskeletal
dynamics, PrP silenced monocytes contain
lower levels of active ERM proteins.20 ERM
proteins are cytoplasmic proteins recruited to
the cytoplasmic domain of surface adhesion
receptors and link them to the actin cytoskele-
ton. For this to occur, ERM proteins need to be
activated by phosphorylation of a C-terminal
threonine residue leading to the disruption of
intramolecular interactions.33 ERM proteins
have been involved in leukocyte adhesion and
migration: ERM protein silencing impairs lym-
phocyte adhesion to the vascular endothe-
lium,34 whereas the expression of
constitutively active ezrin reduces T cell diape-
desis, possibly through increasing membrane
rigidity and tension.35

In addition to their regulation of integrins,
GPI-APs can induce cell adhesion by means of
their binding to different extracellular matrix
proteins including vitronectin (uPAR and PrP),
fibronectin (CD157) and laminin (PrP).36-39

GPI-AP binding to these matrix ligands is suffi-
cient to induce cell adhesion and spreading
independently of integrin engagement.38,40,41

Recently, a mechanism was described for the
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uPAR-dependent, integrin-independent cell
adhesion in which binding of uPAR to vitronec-
tin increases membrane tension leading to
ligand-independent integrin signaling and cell
spreading in the absence of uPAR/integrin
interactions.40 However, it is unlikely that this
is the only mechanism underlying adhesion
regulation by GPI-APs since the specific matrix
protein ligand is absent in in vitro assays of leu-
kocyte adhesion to immobilized VCAM-1 and
ICAM-1.

GPI-APs in leukocyte migration and
uropod formation

Uropod formation requires uropod-sub-
strate adhesion as well as the forward pulling
of the leading edge42 and the absence of any
of these 2 events prevents shape polarization.
In contrast, excessive integrin-mediated
adhesion at the uropod induces the formation
of long tails and hampers cell motility.43,44

Consistent with their role as adhesion

FIGURE 2. PrP silencing prevents shape polarization of monocytic cells following arrest on the
endothelium. Snapshots extracted from time-lapse movies showing U937 cell adhesion to and
transmigration across endothelial monolayers (TNFa-activated and coated with CXCL12) under
laminar flow conditions. After U937 cell arrest on the endothelial surface (t D 3 min), control cells
polarize into a leading edge (a) and a uropod (b) (t D 6 min) before transmigrating through the
endothelial monolayer. In contrast, PrP-deficient cells fail to acquire a flattened polarized shape
and remain round (t D 6 min). However, both control and PrP-deficient cells are able to diapedese
between two adjacent endothelial cells (t D 9 min) suggesting that shape polarization is not essen-
tial for leukocyte transmigration.20 (Time points correspond to the time lapsed from the perfusion of
monocytes over the endothelial monolayer) (Color figure available online.)
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FIGURE 3. GPI-APs in integrin activation and signaling at the uropod. GPI-APs co-cluster with acti-
vated integrins following integrin activation and/or ligand binding as well as after antibody-mediated
GPI-AP ligation. CD157 and the prion protein (PrP) are two GPI-APs that localize to the uropod of polar-
ized leukocytes and regulate integrin-mediated adhesion and intracellular signaling. These effects might
be mediated through lateral associations of GPI-APs with integrins, by which GPI-APs may promote
integrin activation and/or recruitment to lipid rafts. Some of the pathways known to be regulated by PrP
and/or CD157 include Src-family kinases (SFK), mitogen activated protein kinases (MAPK) and the sur-
vival kinase Akt. In addition, PrP regulates actin dynamics by the RhoA-cofilin pathway. Since GPI-APs
lack cytoplasmic domains, it has been postulated that they transmit signals by lateral association with
transmembrane proteins. In the case of integrin-mediated adhesion, it is unclear whether GPI-AP-
dependent signaling is downstream or upstream of integrin activation/clustering. A possibility is that
GPI-AP regulate RhoGTPases by integrin-independent pathways to induce local changes in actin
dynamics that impact on integrin activation and microclustering. (Color figure available online.)
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modulators, GPI-APs also regulate leukocyte
shape polarization and motility.18,20,28,45,46

Polarized leukocytes show an asymmetrical
distribution of GPI-APs: uPAR localizes to
the leading edge whereas Thy-1, PrP and
CD157 colocalize with the uropod markers
GM1 and/or flotillin.6,19,46,47 Antibody-medi-
ated ligation of CD157 induces uropod for-
mation.28 Conversely, PrP silencing impairs
uropod formation in 2D migrating monocytic
cells, both on immobilized VCAM-1 and on
the surface of endothelial cells20 (Fig. 2).
Consistent with an anchoring role of the uro-
pod in leukocytes moving on 2D surfaces as
well as during transendothelial migration,4,42

PrP-deficient cells lacking a uropod migrate
faster on VCAM-1 and show increased dia-
pedesis across endothelial monolayers.20

How does PrP regulate uropod formation?
As explained above, PrP silencing reduces b1
integrin adhesion without significantly decreas-
ing b1 integrin affinity, suggesting that PrP
may regulate uropod adhesiveness through
integrin valency changes. In support of this
idea, Morin et al48 have shown that uropod
adhesion depends on integrin valency, whereas
leading edge advance is mediated by increases
in integrin affinity. In addition, regulation of
ERM protein phosphorylation by PrP could
also contribute to uropod formation in leuko-
cytes. Active phosphorylated ERM proteins
localize to the rear of migrating leukocytes
where they associate to the cytoplasmic tail of
several adhesion receptors (i.e. CD44, ICAM3
and PSGL1)5 and have a critical role in uropod
formation.35,49,50 Silencing of ezrin and moesin
abolished uropod extension by T cells migrat-
ing on VCAM-1 but not on ICAM-1, suggest-
ing that the role of ERM in uropod formation is
dependent on b1 integrin adhesion.34 It is there-
fore possible that decreased ERM protein phos-
phorylation contributes to defective b1 integrin
adhesion to the substrate explaining the defects
in uropod formation observed in PrP-silenced
cells.20

In conclusion, GPI-APs are involved in the
regulation of several pathways controlling leu-
kocyte adhesion and migration, including integ-
rin activation and signaling as well as actin
cytoskeleton dynamics (Fig. 3). However, the

molecular details of the mechanism involved in
the control of integrin adhesion by GPI-APs
still need to be elucidated.
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