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Among healthy vegetables, those of the genus Allium stand out. Antioxidant and anti-
inflammatory properties have been associated with these vegetables, attributed mainly to
organosulfur compounds (OSCs). In turn, they are linked to a protective effect
counteracting cardiovascular disease development. Now, to really ensure the bioactive
efficacy of the said compounds once consumed, it is necessary to previously evaluate the
ADME (absorption, distribution, metabolism, and excretion) profile. Alternatively, in vitro
and in silico methods attempt to avoid or reduce experimental animals’ use and provide
preliminary information on drugs’ ability to overcome the various biological barriers inherent
in the ADME process. In this sense, in silicomethods serve to provide primary information
on drugs’ bioavailability mechanisms. High-performance liquid chromatography (HPLC)
using a stationary phase composed of phospholipids, the so-called immobilized artificial
membrane (IAM), has been widely recognized as a valuable alternative method to extract
and quantify information about the structure and physicochemical properties of organic
compounds which are extensively used in studies of quantitative structure–activity
relationships (QSARs). In the present study, the chromatographic capacity factors (log
k’ (IAM)) for 28 OSCs were determined by IAM-HPLC. In order to evaluate the ability of the
IAM phase in assessing lipophilicity of the compounds under study, several quantitative
structure–retention relationships (QSRRs) were derived from exploring fundamental
intermolecular interactions that govern the retention of compounds under study on
IAM phases. As expected, the hydrophobic factors are of prime importance for the
IAM retention of these compounds. However, the molecular flexibility and specific polar
interactions expressed by several electronic descriptors (relative negative charge, RNCG,
andMulliken electronegativity) are also involved. We also evaluated the IAM phase ability to
assess several ADME parameters for the OSCs under study obtained using the
SwissADME web tool integrated into the SwissDrugDesign workspace and the
PreADMET web tool. The human gastrointestinal absorption (HIA), blood–brain barrier
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(BBB) permeation, and skin permeability were investigated through QSARmodeling, using
several chemometric approaches. The ADME properties under study are strongly
dependent on hydrophobic factors as expressed by log k’(IAM), which provide
evidence for the great potential of the IAM phases in the development of QSAR models.

Keywords: QSAR, IAM, permeability, biological barrier, organosulfur compounds

INTRODUCTION

The current guidelines recommend diets rich in fruits and
vegetables as an important factor in reducing the risk of
developing chronic diseases (Yu et al., 2018). Among healthy
vegetables, those of the genus Allium stand out. Particularly,
abundant literature supports garlic and its by-products’ health-
promoting effects associated with bioactive compounds present
in their matrix (Corzo-Martinez et al., 2007; Santhosha et al.,
2013; Ramirez et al., 2021). Amid these bioactivities,
cardiovascular protection is one of the most well-known
beneficial effects related to garlic or garlic-based products’
intake (Banerjee and Maulik, 2002; Santhosha et al., 2013;
Schwingshackl et al., 2016). In this sense, evidence has shown
that organosulfur compounds (OSCs) present in different garlic
matrices interfere against inflammation, oxidative stress,
obesogenic effects, and mitochondrial dysfunction (Quesada
et al., 2020) by multiple actions, such as modifying signaling
pathways that trigger chronic diseases.

Now, if we focus on the bioactive efficacy, we must first ensure
that the phytochemical compounds manage to reach the target
sites within the body where they will exert their biological effect,
so it is necessary to previously evaluate in vivo the ADME
(absorption, distribution, metabolism, and excretion) profile of
the said compounds (Rein et al., 2013). Considering the
previously mentioned biological steps, cellular permeability of
bioactive compounds is one of the key physicochemical
parameters to be considered when selecting potential
therapeutic candidates (Gozalbes et al., 2011). To estimate
cellular permeability there have been several absorption
models that are proposed, including cell-based models, using
the human colorectal adenocarcinoma (Caco-2) cell line and
the Madin-Darby Canine Kidney (MDCK) cell line and tissue-
basedmodels, such as in situ rat intestinal perfusion or the Ussing
chamber system employing rat or human intestinal tissues
(Berben et al., 2018). Although these models are useful in
terms of permeability prediction, they have several drawbacks,
including high-cost and complex experimental procedures as well
as ethical issues associated with animal-based assays (Grumetto
et al., 2015a).

A recent work from our research group has determined that
intestinal absorption proved to be a limiting step for OSC
availability (Torres-Palazzolo et al., 2018). However, it is
necessary to delve deeper into the structural basis of the
permeability stage mechanisms based on a molecular level
(Butina et al., 2002). Alternatively, computational approaches
(in silico) serve to provide primary information on drugs’
bioavailability mechanisms (Yen et al., 2005). In this context,
alternative methods, such as chromatographic ones, employing

immobilized artificial membrane (IAM) chromatographic
columns, have been widely recognized as a valuable tool to
model processes in the biophase since the components of both
chromatographic and biological systems are comparable. This is
supported by the fact that some biological processes, such as
passive cellular diffusion, have much in common with the
processes that take place in some chromatographic separations
(Escuder-Gilabert et al., 2003). To delve deeper into the
physicochemical processes that are involved in cellular
permeability, the information resulting from chromatographic
data using membrane-like systems, such as stationary phases
containing phosphatidylcholine or similar lipid-like ligands, is
used to develop statistical models called quantitative
structure–activity relationship (QSAR) models, using several
chemometric tools.

Based on the above-mentioned models, the chromatographic
capacity factors (log k’ (IAM)) for 28 OSCs were determined by
IAM-HPLC and various quantitative structure–retention
relationships (QSRRs) were derived to explore the
fundamental intermolecular interactions that govern the
retention of compounds under study on the IAM phases.
Thus, the partial least squares (PLS) approach was used to
model the IAM chromatographic data determined for these
compounds. The molecular characterization was carried out by
calculating numerous nonempirical descriptors, which were
subsequently used to construct QSRR models.

On the other hand, we also attempted to evaluate the IAM
phase ability to assess several ADME parameters for the OSCs
under study using the SwissADME web tool integrated into the
SwissDrugDesign workspace and the PreADMET web tool. The
human gastrointestinal absorption (HIA), blood–brain barrier
(BBB) permeation, and skin permeability were investigated
through QSARmodeling, using several chemometric approaches.

MATERIALS AND METHODS

Organosulfur Compounds Under Study,
Reactives, and Analytical Grade Solvents
Garlic cysteine compounds, like S-methyl-L-cysteine and
S-propyl-L-cysteine, were purchased from Sigma (St. Luis,
MO, United States), whereas S-allyl-L-cysteine (SAC) was
purchased from LKT Laboratories Inc. (St. Paul, MN,
United States). S-Alk(en)yl-L-cysteine sulfoxides (ACSOs) such as
(+)-S-methyl-L-cysteine sulfoxide (methiin), (+)-S-trans-1-propenyl-
L-cysteine sulfoxide (isoalliin), and diallyl thiosulfinate (allicin) were
synthesized in our laboratory as previously described (Thomas and
Parkin, 1994). Alliin, (+)-S-allylcysteine sulfoxide, was purchased from
Extrasynthese (Lyon-Nord, France).
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Sulfide-based compounds, such as diallyl sulfide (DAS), diallyl
disulfide (DADS), and diallyl trisulfide (DATS), were purchased
from Sigma-Aldrich (St. Luis, MO, United States). Ethyl disulfide
(ES), furfuryl disulfide (FuDS), propyl disulfide (PDS), allyl
methyl sulfide (AMS), and dimethyl disulfide (DMDS) were
obtained from Aldrich (United States). Ethyl sulfide (ES) was
obtained from Fluka® (Munich, Germany). Allyl mercaptan was
purchased from Sigma-Aldrich (St. Luis, MO, United States).

E-Z Ajoene and vinyldithiins compounds were synthesized
following a previously reported procedure by our research group
(Ramirez et al., 2017). Then, the synthesized OSCs were
concentrated under reduced pressure and characterized by
UV-spectroscopy and GC–MS analysis.

Allyl ITC (AITC), sulforaphane (SF), indole-3-carbinol (I3C),
and phenyl ITC (PITC) were obtained from Sigma-Aldrich (St.
Luis, MO, United States). Phenethyl ITC (FITC), S-sulforaphene
(SE), and benzyl ITC (BITC) were purchased from LKT
Laboratories Inc. (St. Paul, MN, United States).

Potassium phosphate monobasic and dibasic (anhydrous)
were of PA grade and were purchased from Biopack.

Acetonitrile (ACN) was of chromatographic grade and was
purchased from Merck (United States). Ultrapure water
(18 MΩcm) was obtained from a Milli-Q water purification
system (Millipore, France).

Chromatographic Conditions and
Instrumentation
Chromatographic analysis was performed using a Shimadzu LC
20A chromatograph coupled to a diode array detector, operated
at a range of 210–260 nm, depending on the analyzed compound.
A biomimetic commercially available column was used in all
experiments: IAM. PC.MG12 µm (150 × 4.6 mm) was purchased
from Regis Chemical Company (Morton Grove, IL).

OSC separation conditions under IAM-HPLC were adapted
from Luco et al. (2003) and Barbato et al. (1998), with
modifications. The chromatographic mode consisted in an
isocratic elution used as the mobile phase ACN/0.035 M
phosphate buffer −pH 6.8− (30:70 (v/v)) at 0.5 ml min−1. The
column dead time (T0) was estimated by ascorbic acid retention
time which was measured at 210 nm. The obtained retention data
were used to calculate the chromatographic parameter
corresponding to the capacity factor k’ as follows: k’ �
(Tr–T0)/T0. All capacity factors given represent the mean of
2–4 determinations of each sample solution.

For this study, we considered 28 phytochemical compounds
containing sulfur-based groups. Supplementary Table S1 shows
their name and chemical structure. Most of these compounds are
garlic-derived substances with bioactive functions. However, we
also included seven phytochemicals—sulforaphane,
sulforaphene, I3C, allyl ITC, phenethyl ITC, phenyl ITC, and
benzyl ITC—that correspond to glucosinolates degradation
products, such as isothiocyanates and indole-3-carbinol. We
chose them because of their bioactive functionality and their
similar metabolism within the plants and human body. Each
analytical standard stock solution was prepared in the mobile
phase at concentrations ranging from 100 to 800 µg ml−1,

depending on the solubility of the compound and their DAD
detector response. Peak identification in samples was carried out
by comparing retention times with reference standards.

Molecular Descriptors and ADME
Properties
To characterize each OSC, a set of molecular descriptors were
calculated using different software packages, including Dragon vs.
3.0 and the Online Chemical Modeling Environment (OCHEM)
web platform. As for indicators of the molecular size and
structural descriptors, the following were considered: molar
volume (Vm), molecular weight (MW), rotatable bonds,
H-donors, H-acceptors, and TPSA (topological polar surface
area). To explain lipophilicity effects, several calculated
partition coefficients were obtained: log D, iLOGP, XLOGP3,
WLOGP, MLOGP, Silicos-IT Log P, and Consensus Log P. These
parameters were obtained from different online web tools, such as
SwissADME (developed and maintained by the Molecular
Modeling Group of the Swiss Institute of Bioinformatics) and
Chemicalize© 1998-2021 (ChemAxon, Ltd.).

Another group of structural descriptors included quantum
chemical indexes obtained by the HyperChem package (release
7.5 for Windows). Three-dimensional molecular structures were
built using two different software: the MM + molecular
mechanics potential energy function employing the
HyperChem package and on the other side the CORINA
Classic online service. In a follow-up procedure, complete
optimization of the geometrical parameters was carried out by
using the PM3 method, implemented in the standard version of
MOPAC 6.0. The following indices obtained from molecular
orbital calculations were considered: total energy (Etotal), heat of
formation (ΔHf), energy of highest occupied molecular orbital
(HOMO), energy of lowest unoccupied molecular orbital
(LUMO), dipole moment (µ), absolute total charge (Qtotal),
the most positive and the most negative absolute charges
(qp,max, qn,max), and the positive and negative relative charge
(RNCG and RPCG). Furthermore, other descriptors obtained
from Dragon software were considered such as Mulliken
electronegativity, LDip, and several WHIM descriptors.
Multivariate analyses including principal components analysis
(PCA) and a stepwise multiple regression procedure, based on the
algorithms forward selection and backward elimination, were
used for the inclusion or rejection of descriptors in the screened
models.

Finally, to assess permeability parameters for the OSCs under
study, several calculated properties were obtained from the
SwissADME web tool and the PreADMET web-based
application (© 2005-2017 BMDRC. | Designed by Y.-M. Kang).
The human gastrointestinal absorption (HIA), blood–brain
barrier (BBB) permeation, and skin permeability (Log KP)
were investigated.

To ensure the reliability of the in silico data about HIA, BBB
passage, and Kpskin calculated from the SwissADME and
PreADMET web platforms, the predictor space of each
platform was analyzed. By doing so, the applicability domain
(AD) of each QSAR model which serves to calculate the
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TABLE 1 | IAM chromatographic data, ADME parameters, and molecular descriptors.

OSCs Retention
time
(min)

Log
(k’IAM)a

HIA% Log KP

(cm/s)
BBB

permeant
pKa1
(acidic)

pKa2
(basic)

Rotatable
bonds

TPSA iLOGP RNCG_1 ElecMullk Tm_1 TE1 TPSA_1

Propyl disulfide 33.44 0.913 98.141 −5.30 Yes b b 5 50.60 2.63 0.221 5.624 7.281 4.149 0.000
Isoalliin 4.31 −0.734 73.041 −9.83 No 1.84 8.44 4 99.60 0.88 0.293 4.735 8.189 11.123 177.913
S-allyl-L-cysteine 3.93 −1.102 81.972 −8.75 No 2.53 9.14 5 88.62 1.22 0.285 4.581 7.758 6.222 163.722
Alliin 3.71 −1.710 73.041 −9.89 No 1.84 8.45 5 99.60 0.55 0.283 5.071 8.386 11.192 172.185
S-propyl-L-cysteine 3.72 −1.645 78.546 -8.59 No 2.62 9.14 5 88.62 1.18 0.283 4.724 9.452 6.656 161.751
S-methyl-L-cysteine 3.81 −1.322 74.078 −9.06 No 2.44 9.15 3 88.62 0.74 0.322 4.745 5.43 5.675 161.734
Methiin 3.68 −1.922 62.663 −10.25 No 1.61 8.45 3 99.60 0.24 0.314 5.021 5.805 10.051 265.833
2-vinyldithiin 9.92 0.237 98.169 −5.55 Yes b b 1 50.60 1.98 0.244 4.695 4.263 3.595 0.000
Diallyl disulfide 16.68 0.554 98.169 −5.63 Yes b b 5 50.60 2.49 0.166 5.630 6.75 3.512 0.000
Ethyl disulfide 13.21 0.420 97.832 −5.88 Yes b b 3 50.60 2.17 0.276 5.615 4.424 2.883 0.000
Dimethyl disulfide 7.14 −0.017 97.185 −5.62 Yes b b 1 50.60 1.69 0.473 5.688 2.993 1.944 0.000
Ethyl sulfide 6.54 −0.099 100.000 −5.47 Yes b b 2 25.30 1.92 0.282 4.609 3.649 2.452 0.000
Allyl methyl sulfide 3.99 −1.021 100.000 −5.76 Yes b b 2 25.30 1.77 0.314 4.520 3.663 2.490 0.000
E-Ajoene 7.46 0.022 99.314 −6.52 No 14.9 b 8 86.88 2.74 0.285 5.637 16.744 10.291 41.722
Z-Ajoene 7.41 0.015 99.314 −6.52 No 14.9 b 8 86.88 2.74 0.287 5.681 13.945 10.421 36.282
Diallyl sulfide 9.71 0.222 100.000 −5.46 Yes b b 4 25.30 2.11 0.170 4.482 6.067 3.223 0.000
Methyl Propyl Trisulfide 27.12 0.810 98.302 −5.65 Yes b b 4 75.90 2.33 0.333 5.945 6.979 3.055 0.000
Furfuryl disulfide 22.44 0.713 98.910 −6.19 Yes b b 5 76.88 2.62 0.147 5.504 10.911 4.647 34.289
Allicin 5.06 −0.409 98.312 −6.36 Yes b b 5 61.58 1.95 0.339 5.686 6.92 6.924 36.453
Allyl mercaptan 5.95 −0.197 96.865 −5.93 Yes 10 b 1 38.80 1.51 0.333 4.643 3.137 1.532 0.000
Sulforaphane 4.75 −0.514 97.884 −6.38 No b 0.87 5 80.73 2.11 0.384 4.963 12.924 8.191 67.965
Sulforaphene 4.74 −0.521 98.344 −6.32 No b 0.66 4 80.73 2.17 0.379 5.051 12.5 7.732 62.692
Diallyl Trisulfide 25.6 0.781 98.996 −5.51 Yes b b 6 75.90 2.65 0.165 5.970 8.334 3.549 0.000
Indole-3-carbinol 5.91 −0.204 89.057 −6.45 Yes 15.1 b 1 36.02 1.36 0.246 4.234 5.623 5.450 78.717
Allyl isothiocyanate 8.42 0.118 98.086 −5.19 Yes b 0.65 2 44.45 1.93 0.409 4.891 6.325 1.620 57.462
Phenethyl
isothiocyanate

20.38 0.663 97.812 −4.83 Yes b 1.36 3 44.45 2.47 0.167 4.904 11.256 3.006 19.910

Phenyl isothiocyanate 23.9 0.746 98.001 −4.80 Yes b −1.83 1 44.45 2.09 0.236 4.813 7.947 2.192 53.721
Benzyl isothiocyanate 17.18 0.571 97.906 −4.97 Yes b 0.34 2 44.45 2.19 0.193 4.883 7.262 2.574 19.380

aFor an explanation of the symbols, refer to the text.
bNonionizable compound.
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prediction values offered in the web tools can be tested. In silico
prediction systems feature the capability to evaluate if a query
molecule is a part of the developed model’s AD or not and,
therefore, gave an improved sense of reliability at the individual
prediction level (Kar et al., 2018). For this, a series of
physicochemical descriptors were calculated, both for each of
the compounds that make up the predictor space associated with
each permeation response (241 compounds from the data set to
build the HIA permeation model (Zhao et al., 2001), 260
compounds from the data set were used to calculate BBB
passage (Daina and Zoete, 2016), and 96 compounds from the
data set were used to calculate Kpskin, as well as for our 28 OSCs.
From these data, we then performed a PCA, and it was evaluated
whether our OSCs belong to the predictive space generated by the
compounds used in such platforms.

Statistical Methods
A multivariate analysis was used primarily. Multiple regression
analysis (MLR) and partial least squares projections (PLS) were
the selected methods to build different statistical models between
IAM chromatographic parameters and the structural descriptors.
The determination of the significant number of PLS components
was made by cross-validation. MLR analysis was performed using
MINITAB® Release 17, whereas PLS analysis was carried out
using SIMCA-P 7.01 software obtained from Umetri AB, Umea,
Sweden. To avoid overestimations or difficulties in the
interpretation of the resulting models, pairs of variables with r
≥ 0.75 were classified as intercorrelating ones, and only one of
these was included in the screened model. The predictive ability
of the models were evaluated by the squared correlation
coefficient (R2) and the Fisher F statistic (F). In PLS models,
we also evaluated the cross-validation coefficient (Q2), which is
based on the prediction error sum of squares (PRESS).
Considering the QSAR models to assess permeability
parameters, we used TableCurve 2D® to build a nonlinear
curve-fitting model for HIA vs. log k’IAM, MINITAB® Release
17 to carry out a discriminant analysis to assess BBB permeation,
while skin permeation was evaluated using a PLS analysis
(SIMCA-P 7.01 software). Principal component analysis to
check OSCs belonging to the predictor space of each
permeation response, according to the different web platforms,
was carried out using MINITAB ® v.17.

RESULTS

OSC Lipophilicity Determination Using IAM
and Physicochemical Parameters
First, we evaluated the IAM phase ability in assessing OSC
lipophilicity. For this, we studied to what extent the log k’IAM
values were related to the calculated values of the partition
coefficient log P, obtained from the SwissADME web tool.
Table 1 shows the chromatographic data and the
corresponding physicochemical parameters of the compounds
under study. In this case, we built a MLR model based on iLOGP
(implicit Log P). This parameter is a calculated value
corresponding to the n-octanol/water partition coefficient

descriptor based on the GB/SA approach. It has been proven
to be an efficient physicochemical parameter showing a strong
linear correlation between the computed solvation free energy in
implicit solvents and the experimental log Po/w on more than
17,500 molecules (Daina et al., 2014). The regression equation
using the whole set of compounds was as follows:

log k’(IAM) � −2.08(0.2484) + 1.02(0.1284) iLOGP
(0.000) (0.000)

R2 � 0.721;R2(cv) � 0.683; s � 0.444; n � 28;F � 67.29;
WiLOGP � 0.8492 (1)

In Eq. 1 and the following equations, n is the number of compounds,
s is the standard deviation, R2 is the squared correlation coefficient,
R2(cv) is the squared cross-validation coefficient, and F is the Fisher F
statistic. Values in parentheses correspond to the standard deviations
and p-values of coefficients, and the term W represents the
standardized regression coefficient.

The model statistical quality is suitable as seen in the quality of
fit and predictive ability, expressed by R2 and R2cv coefficients,
respectively. However, some aspects should be considered to
further improve the statistics of Equation 1. The relationship
between the log k’(IAM) and iLOGP values is depicted in
Figure 1. There, it is possible to distinguish different
subgroups of compounds, marked by different colors,
corresponding to nonionizable OSCs (mostly sulfide-based
compounds), ionizable OSCs (ACSOs and cysteine-containing
compounds), sulfoxide-based compounds (allicin, sulforaphane/
ene, and E-Z-ajoene), and two special cases (I3C and AMS). This
suggests a divergence between the different compounds that may
be due to the sulfoxide groups’ different interactions, both with
phosphatidyl choline in the IAM phase as well as with octanol,
when we consider the octanol–water partition. These interactions
will be explained in more detail in the next section, and they will
be discussed accordingly.

QSRR Models to Assess OSC Interactions
With the IAM Phase
Several QSRR equations were built to evaluate the fundamental
intermolecular interactions that govern the retention of the
different OSCs on the IAM phases. As shown in the previous
section, lipophilicity is an essential factor to be considered in the
quantitative structure–retention relationship (QSRR) models.
Nevertheless, since lipophilicity can be described by the
contribution of two components, namely molecular size and
molecular polarity, models that incorporated both molecular
properties were examined. The best regression equation that
included the iLOGP parameter was as follows:

log k’(IAM) � −3.40(0.4967) + 0.633(0.1188)Mulliken Electronegativity
(0.000) (0.000)

−2.61(0.5974)RNCG_1 + 0.876(0.0807) ILOGP-0.201(0.0251)Rotatable bonds
(0.000) (0.000) (0.000)

R2 � 0.936;R2(cv) � 0.907; s � 0.226; n � 28;F � 84.1;

WiLOGP � 0.726;WMullk.Elec. � 0.362;WRot.Bonds � −0.481;WRNCG 1 � −0.252 (2)

This equation is highly significant, and there are no strong
intercorrelations among the selected molecular descriptors,
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which is fundamental to reach a correct physicochemical
interpretation. An interesting point to highlight in this
equation is an improvement in the statistical parameters when
compared to Eq. 1, which suggests not only a better predictive
ability but also, as hypothesized, that specific interactions
regarding OSC behavior in the IAM phase precisely emerge
from the other terms that are added to the model, besides iLOGP.

As an alternative way to evaluate the reliability and robustness
of the QSRR model, we carried out a different statistical approach
using the same descriptors included in the MLR model.
Accordingly, we performed the analysis of molecular
descriptors using partial least squares regression. The statistical
significance of the QSRR-PLS derivative models was evaluated by
means of the variance of the matrices X and Y (R2X and R2Y), the
square correlation coefficient (R2), standard deviation (RMSS),
and the statistical F. The predictive ability was evaluated by the
cross-validation coefficient (Q) which is based on the prediction
error sum of squares (PRESS). The PRESS statistic is computed as
the squared differences between observed and predicted values
when the observations are kept out of the derived model (Luco
et al., 2003).

The model was built using the total set of OSCs, resulting in
two statistically significant components (CPLS), whose
parameters are detailed in Table 2. As shown in Figure 2, the

agreement between the measured and calculated data from the
derived PLS model is very satisfactory. There was also a linear
tendency of the residuals when observing the normal probability
plot of the said values (Data not shown), which indicates that the
error terms were normally distributed.

The only compound that showed an outlier behavior was the
AMS, which, while observing the standardized residuals, showed
more than two standard deviations with respect to the centralized
tendency of the rest of the compounds. Thus, considering this
outlier, a second PLS model was built without AMS (compound
14), and as expected the PLS model’s—with two
components—statistical quality improved (R2 � 0.953; Q �
0.763; and F � 240.76).

QSAR Models to Assess Permeability
Parameters for the OSCs Under Study
IAM Phase Ability to Assess OSC Human Intestinal
Absorption
To evaluate the effectiveness of the IAM phase in the prediction of
human intestinal absorption percentage (HIA%), we built several
QSAR models based on MLR analysis. Since there is a lack of
information regarding organosulfur compounds’ HIA in-vivo
values, we used calculated values obtained from the
PreADMET web application. First, we assessed the reliability
of PreADMET data in relation to our OSCs. As shown by Kar
et al. (2018), to analyze howmuch a certain model’s prediction for
a query compound can be trusted, in our case for the target OSCs,
it is necessary to evaluate the applicability domain (AD) of that
particular QSAR model. In this sense, it is important to recognize
that QSARs are associated with restrictions in terms of the
grouping of chemical structures, physicochemical properties,
and mechanisms of action for which the models can produce

FIGURE 1 | Relationship between log k’ (IAM) and iLOGP for the 28 compounds shown in Table 1. Key: Nonionizable organosulfur compounds Ionizable
organosulfur compounds Compounds with sulfoxides Unusual observations.

TABLE 2 |Statistical parameters of the PLSmodel resulting fromOSC interactions
with the IAM phase.

Comp R2X (CUM) R2Y(CUM) Q2(CUM) RMSS F statistical

CPLS-1 0.452 0.749 0.712 8.60 175.46
CPLS-2 0.675 0.933 0.614

(R2 � 0.9335) (Q � 0.8886)
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reliable predictions. To evaluate the AD space of a specific model,
AD approaches follow a range in descriptor values or distance-
based hypothesis. Based on the previous concepts and
considering the data set from Zhao et al., 2002, 241 molecules
used to build the HIA-QSAR model that supports the
PreADMET web server prediction values, we calculated several
descriptors such as nHBAcc; nHBDon; MLogP;
McGowan_Volume; TopoPSA; MW; AMW; and XLogP. We
also calculated these parameters corresponding to our OSCs

set. We then carried out a PCA, since principal components
analysis has showed to be a valid approach to assess the AD space
of a QSAR model (Kar et al., 2018). Results are shown in the
Supplementary Material section. Shortly, it was possible to
confirm OSCs belonging to the original data predictor space
that supports PreADMET web server values. The Mahalanobis
distance plot (Supplementary Figure S2) serves to probe the
previous approach, where it can be seen that OSCs showed
acceptable Mahalanobis distance. The Mahalanobis distance

FIGURE 2 | Relationship between observed and calculated values using the PLS approach for log k’IAM.

FIGURE 3 | Nonlinear QSAR model showing the relationship between log k’ (IAM) and (HIA %).
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measures the distance from each point in multivariate space to
the overall mean or centroid, utilizing the covariance structure of
the data. All these results serve to assure that HIA predicted
values of the OSCs under study are actually reliable to build the
following QSAR models (Minitab v.17; Minitab Inc.; State
College, PA 2010).

Focusing on our QSAR models, considering a linear
estimation, a poor statistical correlation was found for the
target OSCs (S � 6.04354; R2 (adj) � 46.8%; PRESS � 371.285;
F � 6.27). Hence, based on the previous results and OSC
disposition when plotting log k’ (IAM) vs. HIA (Figure 3), a
nonlinear estimation was performed to model the data. In this
case, employing TABLE 2D® an exponential function was
obtained with good statistical fitting. The resulting regression
equation was:

HIA(%) � 93.0(2.494) − 7.66(1.202)[logk’(IAM)]2 + 4.60(1.613) e[logk’(IAM)]
(0.000) (0.000) (0.009)

R2 � 0.763;R2(cv) � 0.713; s � 5.381; n � 28;F � 40.35 (3)

Even though a reasonable estimation was achieved to model
OSC behavior regarding HIA, notably, a deviation in the fit
was observed due to the behavior of ionizable OSCs (ACSOs,
cysteine containing compounds, and I3C). In this sense,
previous reports have treated ionizable compounds
separately based on their lipophilicity values, and the
occurrence of polar and/or electrostatic intermolecular
interaction forces (Grumetto et al., 2015b; Russo et al.,
2017). So, for better adjusting estimations, these compounds
were separately modeled. In this case, a simple regression
analysis and a fitted line plot were carried out for the seven
ionizable compounds. As stated by Russo et al. (2017), the
polar surface area is a critical factor to model HIA when

dealing with ionizable compounds, since electrostatic and
polar interaction forces affect the analyte–phospholipid
partition. Therefore, the total polar surface area (named
TPSA_1 to differentiate from the acronym
TPSA—topological polar surface area—was considered in
the model as follows.

HIAionizableOSCs(%) � 100(4.182) − 0.143(0.023)TPSA_1
(0.000) (0.000)

R2 � 0.884;R2(cv) � 0.837; s � 3.087; n � 7;F � 38.20;
WTPSA_1 � −0.940 (4)

Figure 4 shows the relationship between HIA % and total
polar surface area (TPSA_1) for the following compounds: alliin,
isoalliin, methiin, S-allyl-L-cysteine, S-methyl-L-cysteine,
S-propyl-L-cysteine, and indole-3-carbinol.

Blood–Brain Barrier Permeation QSAR Modeling
Given that IAM chromatography has been successfully applied to
drug permeability predictions across the blood–brain barrier
(Luco and Marchevsky, 2006), a QSAR model based on IAM
phase parameters was built to assess the BB barrier permeation of
the target OSCs. Acknowledging that there is no BBB-empirical
data reported for OSCs, the BBB-QSAR model was built using
estimated data from the SwissADME web tool. The reliability of
SwissADME BBB permeation data with regard to our OSCs was
evaluated following the steps previously discussed in IAM Phase
Ability to Assess OSCs Human Intestinal Absorption. Results
from a PCA including several physico-chemical parameters
(nHBAcc; nHBDon; MLogP; McGowan_Volume; TopoPSA;
MW; AMW; and XLogP) are shown in the Supplementary
Material section. The principal components analysis showed

FIGURE 4 | Scatterplot of ionizable OSCs showing the relationship in Figure 6. The relationship between actual and calculated log KP skin permeability values
using the PLS approach.
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that our OSC data set actually belongs to the BBB-permeation
predictor space generated from the 260 molecules used to
developed BBB-permeation QSPR model by SwissADME
(Daina and Zoete, 2016); therefore, OSC BBB-permeation data
from SwissADME could be used to build the corresponding
QSAR model.

BBB permeation data from the SwissADME web tool shows
which compound could permeate the BBB (marked as Yes value, in
Table 1) and which one could not (marked as No value, in
Supplementary Table S1). Since BBB permeation was a
categorical variable, a discriminant analysis using cross-
validation was carried out. The grouping variable was BBB
permeation, while the predictors were log k’ (IAM) and TPSA.
The discriminant ability was assessed by the correct classifications
percentage, and the discriminant function quality was evaluated
using theWilks parameter, λ, which was obtained by a multivariate
analysis of variance that tests the equality of group means for the
variable in the discriminant model. The standardized
discriminating function was

DFstandard � −0.716667 log k’(IAM) + 0.901356TPSA
F � 54.425;Wilks’lambda(λ) � 0.18678;P(value) � 0.0000; n � 28

(5)

The DF equation is highly significant as p < 0.00001, and amongst
the 28 observations used to fit the model, 28 (or 100.0%) were
correctly classified. The correct classification rate was evaluated
using cross-validation, and 100% was obtained (28 of 28). Figure 5
plots the relationship between log k’ (IAM) vs. TPSA, considering
OSC distribution using BBB permeation as the grouping classification
variable. Therefore, it is possible to observe two different groups: BBB
permeating organosulfur compounds (group 1) and BBB not-
permeating organosulfur compounds (group 0).

IAM Phase Ability to Assess OSC Skin Permeability
To study the influence of OSC chemical structures on skin
permeability a PLS analysis was carried out. For this purpose,
several calculated values obtained from the SwissADME web tool
were used, including log KP, a skin permeability coefficient
resulting from a quantitative structure–property relationship
model built by Potts and Guy (1992). As in the previous
sections, we checked whether our OSC data set belonged to
the data predictor space used to build KP predictions values in
the SwissADME web tool. These results are shown in the
Supplementary Material section.

As an indicator of polarity and size, and given that these
properties showed influence in other skin permeability in silico
models (Guth et al., 2014), the TPSA descriptor was also

FIGURE 5 | Scatterplot showing the relationship between log k’ (IAM) vs. TPSA, considering OSC distribution using BBB permeation as the grouping classification
variable. BBB permeating organosulfur compounds (group 1), and BBB not-permeating organosulfur compounds (group 0).

TABLE 3 | Statistical parameters of the PLS model resulting from OSC log KP skin

permeability with the IAM phase and physico-chemical parameters.

Comp R2X (CUM) R2Y(CUM) Q2(CUM) RMSS F statistical

CPLS-1 0.611 0.814 0.791 38.87 142.94
CPLS-2 0.902 0.920 0.897

(R2 � 0.9196) (Q � 0.897)

TABLE 4 | PLS-1 skin permeability regression coefficients.

Log KP (cm/s) Log KP (cm/s) standardized

Constant −49.401 0.000
Log k’ (IAM) 1.046 0.531
TPSA −0.023 −0.349
TE1 −0.152 −0.293
Tm_1 0.112 0.237

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 6907079

Ramirez et al. OSC Permeability Assessed by IAM-QSAR

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


considered in this model as a predictor. The other descriptors
used here were Tm_1 (WHIM descriptor) and TE1 (Charge
descriptor), which resulted from a stepwise regression analysis
(SRA) and VIP (variable importance in the projection)
parameter. Statistical significance of the QSRR-PLS derivatives
models was evaluated by means of variance of the matrices X and
Y (R2X and R2Y), the square correlation coefficient (R2),
standard deviation (RMSS), and the statistical F. The
predictive ability was evaluated by the cross-validation
coefficient (Q). The complete set of OSCs was used, resulting
in two statistically significant components (CPLS), whose
parameters are detailed in Table 3. The obtained regression
coefficients are shown in Table 4.

Graphically, a high agreement between observed log KP skin

permeability values and the corresponding calculated ones derived
from the PLS-1 model can be seen in Figure 6. There was also an
approximately linear tendency of the residuals, when observing
the normal probability plot of the said values (data not shown),
which indicates that the error terms were normally distributed,
except for isoalliin, which showed more than 2 standard
deviations from the central tendency of the remaining OSCs.

DISCUSSIONS

The main purposes of the present study were, first, to build
different QSRR models to obtain some insight into the
mechanism of IAM retention for the 28 phytochemicals with
sulfur-containing groups under study. Secondly, the present
study aimed to establish whether, and to what extent, the
IAM-chromatographic measures for the target OSCs, serve to
assess ADME parameters. Given the chemical nature of the
phospholipids that make up the IAM columns’ stationary

phase, it was only logical to, first, study lipophilicity
parameters associated with OSCs. It is well-known that passive
absorption of orally consumed substances is related to drug
lipophilicity, commonly expressed as the logarithm of the
n-octanol/water partition coefficient, log P. And this partition
phenomenon is a driving force for the membrane passage
(Grumetto et al., 2015b). So, in order to evaluate IAM phase
ability in assessing OSC lipophilicity, we studied the relation
between log k’IAM values and calculated partition coefficient log
P values, obtained from the SwissADME web tool (iLOGP). The
regression model’s obtained results showed that even though
there was a suitable fitting between the iLOGP and log k’IAM
variables (both physicochemical parameters carry similar
information regarding lipophilicity), they do not encode the
same information regarding specific interactions, as shown
below. This fact agrees with the other reports (Grumetto et al.,
2015a; Russo et al., 2017) which proposed that when a compound
is ionizable and/or presents a polar surface area ≠ 0, the
interactions with the two partition phases, i.e., n-octanol and
phospholipids, are differently affected by electrostatic and polar
interaction forces. Thus, it may be concluded that the balance
between polar and hydrophobic effects is not the same toward the
n-octanol and IAM phases. Figure 1 supports this conclusion,
where these “extra” intermolecular interactions become indirectly
visible because of the observed divergence between the different
classes of compounds. In view of this, it seems reasonable to
consider a common interaction mechanism between the
compounds containing sulfoxide groups, in which some of
them, in turn, present charged groups and different pKa
values (see Table 2) and the phospholipid constituents of the
IAM stationary phase. This fact explains the modest fit observed
between the log k’ (IAM) and iLOGP parameters, indicating the
octanol partition system’s inadequacy to mimic the complex

FIGURE 6 | Relationship between actual and calculated log KP skin permeability values using the PLS approach.
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interactions between the IAM phase and the ionized forms of the
OSCs under study. At this point, it is important to highlight that
we did not address log D evaluation because, at the experimental
pH used during OSC chromatographic analysis, the log D and log
P values were the same.

All these results gave us the guidelines to further explore other
molecular descriptors to explain OSC-retention behavior in the
IAM phase adequately. From a stepwise regression analysis and
using the VIP (variable importance in the projection) parameter,
different descriptors were selected, and an MLR, as well as a PLS
model, were built based on the best subset of structural
parameters. From the analysis of the results obtained, and as
previously discussed, the specific polar interactions were better
modeled by two electronic descriptors, the Mulliken
electronegativity and the relative negative charge (RNCG_1).
These results are in agreement with the findings by other
authors, who have shown that the polar/electrostatic molecular
properties affect the phospholipid–analyte partition (Grumetto
et al., 2015b; Russo et al., 2017). The presence of rotatable bonds
descriptor in the model requires a separate discussion. In the
most general sense, it may be considered as conveying
information about molecular flexibility, and interestingly, this
property appears to be also involved in the IAM retention
process. The molecular flexibility plays an important role
when analyzing orally administered drugs, since increased
rotatable bonds count (meaning a greater molecular flexibility)
has been reported to negatively affect the permeation rate (Li
et al., 2003). In this way, our results agree with the latter, since the
negative sign of the rotatable bonds variable in the developed
models suggests that the higher the molecular flexibility, the
weaker the interaction with the IAM phase, and consequently,
a shorter retention time could be observed. However, it must be
considered that molecular rigidity is a much more complex issue
than the simple counting of rotatable bonds. Thus, this molecular
property’s appearance in the models suggests the importance of
conformational constraints in the OSC-IAM partition.

Once the molecular factors that govern OSCs’ retention in the
IAM column were elucidated, we assessed the predictive
performance of IAM retention data on some permeability
parameters obtained from the SwissADME web tool, and the
PreADMET web-based application. Accordingly, the human
gastrointestinal absorption percentage (HIA%), blood–brain
barrier (BBB) permeation, and skin permeability (Log KP)
were investigated. It should be highlighted that there are no
experimental permeability data for these OSCs in the literature.
To assure the reliability of these predicted values, we first checked
our OSC data set belonging to each predictor space that supports
the corresponding HIA, BBB passage, and KP skin values obtained
from the web servers.

Regarding HIA (%), it has been previously shown by other
authors that the nonlinear approaches outperform linear models
in explaining HIA% data variance, since linear models tend to
overestimate the HIA % for low permeable drugs, but this bias is
not so marked in nonlinear models (Talevi et al., 2011). Given
that an MLR model based on HIA (%) vs. log k’ (IAM) showed a
poor statistical correlation between the target compounds, and
based on OSC disposition when plotting log k’ (IAM) vs. HIA (%)

(Figure 3), a nonlinear estimation was performed to model the
data. As proposed by Talevi et al., the nonlinear estimation
explained better the OSC-IAM partition. Moreover, Yen et al.,
2005 have discussed that when molecules contain one or more
ionizable groups, their lipophilicity changes with respect to pH
resulting in a nonlinear relationship with gastrointestinal
absorption. However, considering the results from the QSRR
models and based on the OSC scatterplot of HIA (%) vs log k’
IAM, it is possible to see that log k’ (IAM) describes better the
neutral compounds’ behavior (Ermondi et al., 2018). But it is not
possible to achieve a successful prediction of HIA permeability
using only log k’ IAM for all 28 OSCs.

A separate modeling of ionizable compounds shows that the
total polar surface area (TPSA_1) explains better the behavior of
sulfoxides- and cysteine-containing compounds, whose HIA
permeation is reduced compared to the other OSCs. This
descriptor has been already proven as a fundamental molecular
parameter to describe the electrostatic/polar interaction in the
absorption process (Grumetto et al., 2015b; Russo et al., 2017).
Singh and Singh (2010) have found similar results with regard to
HIA estimation of ACSOs, which showed moderate permeation
capabilities, and they also discussed the importance of polar
surface interactions in this matter. In short, membrane
partitioning, during passive passage, has been exposed as a two-
step process. In the first step, lipophilicity impulses the compounds
into the phospholipid bilayer. On the other side, in the second step, the
drug is transferred into the phospholipid bilayer’s interior, and the
main interactions between the bilayer and polar parts of a solute are
related to hydrogen bonding and polarity. Therefore, the permeation
rate depends mainly on simple molecular descriptors such as
hydrogen bond capacity, lipophilicity, and size and charge of the
molecule. In this sense, the polar surface area (PSA), which is generally
assumed to be related to hydrogen bonding capacity, becomes an
excellent predictor of passive membrane permeability, especially for
ionizable and/or polar compounds (Artursson and Bergstrom, 2003).

On another note, organosulfur blood–brain barrier permeation
(OSC-BBB) was studied using a QSAR model based on the obtained
IAM retention parameters. In this case, a linear discriminant analysis
(LDA) was used to fit the classification of OSCs as BBB(+) or BBB(-)
penetrators of the BBB. The use of the log k’ (IAM) parameter was
necessary to obtain a reasonable classificatory model, but it is not
enough to fully explain the OSC-BBB permeation. Thus, the
combination of log k’ (IAM) and TPSA yielded the best OSC-BBB
model classificatory. TPSA has also been related to BBB permeation
models in several investigations (Luco, 1999; Luco and Marchevsky,
2006; Janicka et al., 2020) showing that the polar surface area is one of
the most important factors determining the passage of molecules
through the BBB.

Finally, the IAM phase ability to assess OSC skin permeability,
expressed as the permeability coefficient Log KP skin permeability,
was evaluated by a PLS model. As found in the previous models
presented here, lipophilicity and polar interactions would appear
to affect the skin permeation ability of the target OSCs, also in
agreement with other authors (Barbato, 2006). But it is
noteworthy that the other two molecular features seem to
influence the skin biopartitioning phenomenon. Tm_1 (T total
size index/weighted by mass) is a WHIM—weighted holistic
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invariant molecular—descriptor, that accounts for 3D molecular size
and atomdistribution (Todeschini andGramatica, 1997), andTE1 is a
topographic electronic descriptor. These descriptors, therefore, show
the influence of molecular shape, size, and charge in OSC permeation
through the skin.

In relation to ADME data about these compounds, it has been
argued that allicin, one of the major bioactive garlic-related
compounds, can easily permeate cell membranes of
phospholipids bilayers, where it carries out its activity
intracellularly and interacts with the SH group. Even though
this has high permeability, allicin is rapidly metabolized and
transformed into other active compounds. Other OSCs such as
SAC, diallyl disulfide, and diallyl trisulfide have also shown high
cellular permeability, although their permeability passage varies
from each compound and tissue (Rahman, 2007). On another
note, vinyldithiins’ pharmacokinetic properties were investigated.
1,3-Vinyldithiin seems to be less lipophilic and was rapidly eliminated
from serum, the kidney, and fat tissue, whereas 1,2-vinyldithiin is
more lipophilic and showed a tendency to accumulate in fat tissues
(Egen-Schwind et al., 1992). Torres-Palazzolo et al. (2018) showed that
allicin, DAS, and 2VDwould be able to permeate less than 5% through
the intestine. Something that has been extensively discussed is the
rapid reaction of OSCs with blood components, resulting in different
metabolites with possible bioactive effects in the organism (Lawson
and Gardner, 2005). To summarize, something to highlight from the
models built here in relation to the different permeation capacities of
the OSCs under study is the possibility of delving into the molecular
mechanisms that govern these properties and ends up affecting the
variations in OSC permeation rates in different tissues. We could
observe the influence of the hydrophobic factors that govern OSC
membrane passage, as well as the high effect of simple molecular
descriptors such as hydrogen bond capacity, size, and charge of the
molecules, particularly considering the polar surface area–related
parameters, which greatly affect the ionizable compounds’ passage.
It is necessary though, to delve deeper in organosulfur compounds’
ADME properties, for example, by comparing our results with cell-
based and tissue-basedmodels to validate the QSARmodels proposed
here for future uses.

CONCLUSION

To assure OSC bioefficacy, a first evaluationmust be conducted in
terms of the pharmacokinetic potential of the said phytochemical

agents. So far, our results proved that an in silico–based QSAR
modeling was a convenient approach to assess different OSC
permeability parameters. All this information serves to give an
insight into the mechanisms implied during the OSC-membrane
interaction. In brief, the evidence presented here suggests that in
general lines, organosulfur compounds with sulfide groups
showed a higher chromatographic retention using the IAM
column, and accordingly, a higher permeation capability,
which was mainly associated with lipophilic/polar interactions.
On the contrary, ionizable OSCs showed a lower permeation
capability as a result of different membrane–analyte interactions.
Therefore, it may be concluded that the ADME properties under
study are strongly dependent on hydrophobic factors as expressed
by log k’ (IAM), which provides evidence for the great potential of
the IAM phases in the development of QSAR models.
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