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Abstract

Replicability, the degree to which a previous scientific finding can be repeated in a distinct set of data, has
been considered an integral component of institutionalized scientific practice since its inception several hun-
dred years ago. In the past decade, large-scale replication studies have demonstrated that replicability is far
from favorable, across multiple scientific fields. Here, I evaluate this literature and describe contributing factors
including the prevalence of questionable research practices (QRPs), misunderstanding of p-values, and low
statistical power. I subsequently discuss how these issues manifest specifically in preclinical neuroscience re-
search. I conclude that these problems are multifaceted and difficult to solve, relying on the actions of early
and late career researchers, funding sources, academic publishers, and others. I assert that any viable solution
to the problem of substandard replicability must include changing academic incentives, with adoption of regis-
tered reports being the most immediately impactful and pragmatic strategy. For animal research in particular,
comprehensive reporting guidelines that document potential sources of sensitivity for experimental outcomes
is an essential addition.
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Significance Statement

For hundreds of years, scientists have written about different forms of poor scientific practice. In the past
decade, scientists have shown that replicability of scientific findings is far from optimal across fields and
likely impacted by questionable research practices (QRPs), along with related incentives to publish positive
findings. Animal research is the arena for testing novel biomedical hypotheses and treatments before being
studied in clinical trials. Understanding how different factors compromise replicability in preclinical neuro-
science research, and solutions to mitigating them, is critical to identifying new neurologic and psychiatric
treatments to improve the human condition, and reducing research waste. Two essential strategies to align
scientific incentives with rigor are the adoption of registered reports and comprehensive reporting
guidelines.
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Introduction
Replication of scientific findings is fundamental to

the cumulative development and validation of theories,
medical treatments, and methods. Over the past decade,
large-scale investigations regarding replicability of pub-
lished findings have been conducted in various scientific
fields, including but not limited to psychology (Klein et al.,
2014, 2018, 2019; Open Science Collaboration, 2015;
Ebersole et al., 2016), cancer biology (Prinz et al., 2011;
Begley and Ellis, 2012; Errington et al., 2021), social sci-
ences (Camerer et al., 2018), economics (Camerer et al.,
2016), and machine learning (Beam et al., 2020; Pineau et
al., 2020; Table 1). These studies have demonstrated that
replicability is alarmingly low in many fields of science. A
2016 survey by Nature showed that these issues are well
known to scientists, 90% of 1576 researchers answered
the question “Is there a reproducibility crisis?” with “Yes,
a significant crisis” (52%) or “Yes, a slight crisis” (38%;
Baker, 2016). It is estimated that at least $28 billion is
wasted on irreproducible preclinical science annually in the
United States alone (Freedman et al., 2015). Proposed fac-
tors in the perceived “replication crisis” include widespread
questionable research practices (QRPs) such as publication
bias (results affecting choices to publish or not, also known
as the “file-drawer problem”), p-hacking (analytical flexibility
with the goal of calculating a p , 0.05), and HARKing
(“Hypothesizing After Results are Known,” also known as
post hoc accommodation of theories; John et al., 2012), in-
centives imposed by a publish-or-perish academic culture
that only emphasizes positive results to the exclusion of null
findings (Nosek et al., 2012), low base rates of true effects
(Wilson and Wixted, 2018), inadequacies of null hypothesis
significance testing (NHST), andmany others. Efforts to miti-
gate replicability issues include but are not limited to greater
transparency of data and research methodology (e.g., ex-
perimental protocols, analysis code; Munafò et al., 2017),
preregistration and registered reports (Chambers and
Tzavella, 2022), specification curve analysis (also known
as “multiverse analysis”; Patel et al., 2015), changing the
standard threshold of statistical significance from 0.05 to
0.005 (Benjamin et al., 2018), adopting Bayesian statis-
tics (Etz and Vandekerckhove, 2016), justifying a levels
and sample sizes (Lakens et al., 2018; Lakens, 2021a), nor-
malizing the publication of negative findings (Wasserstein et
al., 2019), computer-generated results files (Lakens and
DeBruine, 2021), and countless others.
As a field, psychology has undertaken the deepest con-

versation about these issues and traveled farthest toward
integrating potential solutions into scientific practice.
Large-scale replication projects of psychological studies
have been conducted that include multiple sites and sam-
ple sizes multiple times larger than the original studies

(hence greater statistical power). In many of these replica-
tions, effects are much smaller than those in the original
studies (Open Science Collaboration, 2015; Camerer et
al., 2018; Klein et al., 2018). Replication projects in other
fields show similar results. These replication projects are
the most informative efforts to date about the extent of
the replicability crisis and have galvanized conversations
on how to improve various facets of scientific practice to
mitigate it. Proposed solutions to these issues are appli-
cable to many scientific fields beyond psychology, and
are worth examining.
The goal of this commentary is to introduce neuro-

science researchers to metascience by examining deficits
of replicability demonstrated by the results of these large-
scale replication projects, proposed sources of and solu-
tions to mitigate them, and contextualizing their impact in
particular on preclinical neuroscience research. I examine
the impact of these issues on the quality of published
work, specific solutions in scientific and institutional prac-
tice that can be made to combat them, and pragmatic im-
plementations of these solutions that can benefit early
career and senior researchers, funding sources, and aca-
demic publishers.
I begin by reviewing the literature on large-scale replica-

tion projects to quantify the gap between original studies
and replications in terms of reported effect sizes, statisti-
cal significance, and other measures of replication suc-
cess. I then examine a few potential contributors to this
gap, and solutions to bridge it. This provides the founda-
tion for examining replicability specifically within preclini-
cal neuroscience, and what can be learned from efforts
being made (primarily within Psychology) to mitigate
these problems. Finally, I make the case for why any via-
ble solution to improve replicability must include, and
ideally begin with, preregistration in the form of registered
reports. For animal research, comprehensive reporting of
environmental and other conditions that can impact re-
sults is a critical addition. In each section, I will discuss
how the specific issues being addressed impact preclini-
cal neuroscience research.
A quick note about terminology: this commentary pri-

marily deals with “replicability,” as opposed to “repro-
ducibility” or “robustness,” the definitions of which are
borrowed from a recent review (Nosek et al., 2021).
Replicability refers to the ability to answer the same
question with new data and obtain similar results com-
patible with prior studies. Reproducibility refers to the
ability to answer the same question with the same data
using the same analysis strategy and achieve the same
result. Robustness refers to the ability to answer the
same question with the same data using a different
analysis strategy and achieve the same result.

Large-Scale Replication Projects
Demonstrate that Replicability Is Far from
Optimal across Scientific Fields
In the past decade, replication studies in psychology,

cancer biology, and other fields have demonstrated
that replicability is often difficult to achieve (Table 1).
Replicability is typically defined and described using
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the following criterion: (1) p-values that are below a par-
ticular a threshold (almost always 0.05); (2) effect size
magnitude and directionality; (3) meta-analysis of origi-
nal and replication effect sizes; (4) whether the point es-
timate effect size of an original study is within the
confidence interval of the replication effect size (and
vice-versa); (5) subjective assessments by replication
teams. Replication studies can be designed in many dif-
ferent ways. The Open Science Collaboration published
a replication of 100 studies originally published in 2008
in three prominent psychology journals (Open Science
Collaboration, 2015), with less than half of replications
being deemed successful.
The first two “Many Labs” replication studies, also in

psychology, replicated classic and contemporary psy-
chological effects published between 1936 and 2014
and showed similar results (Klein et al., 2014, 2018).
Many Labs 4 replicated a single classic effect in 21
labs, and measured the effect of involvement of the
original authors on replication success. Nine labs were
advised by one of the authors of the original study, and
12 were not. Only 1/21 labs showed a statistically sig-
nificant effect, and this lab was not advised by the
original author.
Replication projects from other fields have not fared

better. In 2011, scientists from Bayer published a replica-
tion of 67 preclinical cancer, cardiovascular, and women’s
health studies (Prinz et al., 2011). Approximately 20–25%
of original findings were completely in line with the repli-
cations, and 32% were replicated to some degree. In
2012, Amgen published a replication of 53 preclinical can-
cer studies considered “landmark” studies, and only
six successfully replicated (Begley and Ellis, 2012). More
recently, the Reproducibility Project: Cancer Biology
repeated 50 experiments from 23 papers, testing 158
effects, where 136 of the original effects were positive
(Errington et al., 2021). For original positive effects,
43% of replication effects were both statistically sig-
nificant and in the same direction as the original, 49%
showed null results, and 7% were significant in the op-
posite direction. For original null effects, 73% of repli-
cation effects are also null. Critically, 92% of all
replications of positive effects had effect sizes smaller
than the originals, mean replication effect size was

78% smaller than the mean original effect size, and
median replication effect size was 85% smaller than
the median original effect size.
Replications of findings from top journals are not much

more successful. In 21 replications of social science stud-
ies published in Nature or Science (Camerer et al., 2018),
13 (62%) had a statistically significant effect in the same
direction, and effect sizes were on average 50% of the
original effect sizes.
These and other results demonstrate that replicability

may not be ideal across multiple scientific fields, with rep-
lication effects being ;50% smaller, and ;50% showing
statistical significance in the same direction as original
studies.
What do these results mean for preclinical neuro-

science? There are sparse replication projects in neuro-
science generally, let alone preclinical neuroscience, but
they are very much worth discussing. In one study, 41 vis-
ual field asymmetries (i.e., differential processing efficien-
cies between left and right visual fields) studied across
nine experiments were replicated and yielded evidence of
these processing asymmetries for emotions, faces, and
words, but not stimuli with high or low spatial frequencies
(Brederoo et al., 2019). With regards to robustness, a
2020 study showed that when 70 teams tested the same
nine hypotheses using the same functional magnetic res-
onance imaging dataset, no two teams used the same
workflow to analyze the data, leading to highly varied re-
sults (Botvinik-Nezer et al., 2020). While not a replication
study per se, this study indicates that analytical flexibility
could strongly impair replication success in neuroimaging
studies. The only large-scale replication project focused
on neuroscience, still in progress, is the #EEGManyLabs
project, which aims to replicate findings from 20 of the
most influential studies in the field in three or more inde-
pendent laboratories, with experimental designs and pro-
tocols to be reviewed before data collection as registered
reports (Pavlov et al., 2021).
Since there are no completed large-scale replication

projects focused on neuroscience, one can only guess
what the results would be. In the aforementioned replica-
tion projects, roughly half of effects reached statistical
significance in the same direction as their original studies,
and effect sizes were typically half those of the originals,

Table 1: Statistics reported in six replication projects spanning cancer biology, economics, psychology, and social
sciences

Reference Field

Number of
original positive
outcomes

Effect size,
originals, mean
(SD) or median

Effect size,
replications, mean
(SD) or median

% replications
statistically significant,
same direction

% original point
estimates in CI
of replication

Klein et al. (2014) Psychology 15a 0.745 (0.276) 0.887 (0.796) 80 26.67
Open Science

Collaboration (2015)
Psychology 97 0.403 (0.188) 0.197 (0.257) 36 47

Camerer et al. (2016) Economics 18 0.474 (0.239) 0.279 (0.234) 61 66.7
Klein et al. (2018) Psychology 28 0.6 0.15 54 0
Camerer et al. (2018) Social sciences 21 0.459 (0.229) 0.249 (0.283) 62 61.9
Errington et al. (2021) Cancer biology 97b 6.15 (12.39) 1.37 (3.01) 43 18

Effect sizes for original and replication studies were reported as either means or medians. Effect sizes without a value in parentheses are medians. Confidence in-
tervals are either 95% or 99%. Replications of original null outcomes are not considered here. SD = standard deviation; CI = confidence interval.
aKlein et al. (2014) replicated 16 original positive effects, but one did not have an original effect size reported and is not considered here.
bErrington et al. (2021) replicated 136 original positive effects, but only 97 were reported as numerical values; others were reported as images.
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though these results certainly do not necessitate that a
neuroscience-focused project would show the same re-
sults, and replicability may vary widely across subfields of
neuroscience.
A critical question asked by all is what are the sources

of the lack of replicability seen across multiple fields. It is
impractical to give an in-depth view of all factors, so I con-
fine the discussion to QRPs, incentives within academia,
misunderstanding of p-values, and low statistical power.

QRPs and Academic Incentives
QRPs refer to actions taken in the design, analysis, or

reporting of a scientific study that can confer a bias, usu-
ally in support of some desired conclusion on the part of
the scientist (Banks et al., 2016). Here, I describe QRPs,
evidence of their prevalence, and why scientists may en-
gage in them.

• QRPs include but are not limited to selective reporting
of hypotheses or results (e.g., ones that “work”), p-
hacking (also known as “data dredging,” in an effort to
present statistically significant p-values), HARKing,
rounding of p-values, premature stopping or purpose-
ful extension of data collection in hopes of reaching a
desired conclusion, selective outlier removal, and data
falsification. It is worth noting that HARKing is only
problematic in the context of confirmatory research,
not exploratory research where hypotheses are not
being tested, but rather generated.

• QRPs have a long history. P-hacking has been de-
scribed since at least 1830 in Charles Babbage’s
Reflections on the Decline of Science in England, and
on Some of its Causes (referred to as “cooking,” and
Babbage also described selective outlier removal,
what he referred to as “trimming”; Babbage, 1830).

• The prevalence of QRPs is difficult to know, but the
evidence is not optimistic. A survey of 2155 psycholo-
gists for their estimates of the prevalence of and their
own engagement in 10 QRPs showed self-admission
rates ranging from 0.6% to 63.4%, with prevalence es-
timates 5–20% higher for all but one QRP (John et al.,
2012).These results were replicated in a cohort of 277
Italian psychologists with a translated questionnaire
(Agnoli et al., 2017), and largely agree with several
other surveys of QRP engagement (for a summary,
see Table S5 in a review by Nosek and colleagues;
Nosek et al., 2021; see also Fanelli, 2009; Banks et al.,
2016; Fiedler and Schwarz, 2016; Motyl et al., 2017;
Krishna and Peter, 2018; Janke et al., 2019; Rabelo et
al., 2020; Moran et al., 2021).

• Why do scientists engage in QRPs? The answer may
be that academic research incentivizes them to
(Edwards and Roy, 2017). Researchers advance their
careers by securing grants and publishing papers in
high-impact journals. High impact factor journals tend
to publish positive data, with null findings typically
considered failures or otherwise not useful. Because
of the emphasis of academic journals on positive find-
ings, scientists may engage in QRPs to obtain positive

results and exclude null results (i.e., publication bias).
To clarify, the current academic culture, where the two
primary currencies are publishing high-impact papers
and obtaining grants, does not alone incentivize en-
gagement in QRPs, but rather the emphasis on posi-
tive findings from funding sources and journals in
achieving these two ends.

• The effects of the emphasis on positive findings are
many. One is how the frequency of published null find-
ings has changed over time across fields. In a sample
of 4656 papers across disciplines published between
1990 and 2007, full or partial support of hypotheses in-
creased over 20% during this interval, with stronger
trends in psychology/psychiatry, economics, and so-
cial sciences (Fanelli, 2012). In a sample of 2434 pa-
pers across 20 scientific fields, the percentage of
papers reporting support for the tested hypothesis
ranged from 70.2% to 91.5%, with psychology and
psychiatry having the most (91.5%; Fanelli, 2010). For
the sake of argument, suppose these trends do not in-
dicate QRPs, but that science is improving in terms of
proposing successful hypotheses and identifying true
effects. The two problems with this supposition are
the following: (1) this would contradict the observed
deficits in replicability across fields; and (2) if this were
true, it would mean science is being too conservative
and not taking enough risks in making novel discov-
eries. Accounting for the incentives to publish positive
results, the increasing percentage of reported positive
results, and the issues of replicability observed across
fields, I can suppose that a substantial percentage of
published findings are false positives and that a large
number of null findings are not published.

• Most journals do not encourage the submission of
replications, and even if they do, editorial policies
are often not followed (Martin and Clarke, 2017;
Nieuwland, 2018).

• The percentage of biomedical and life-science re-
search articles retracted because of fraud increased
10-fold between 1975 and 2012, and misconduct ac-
counted for 67.4% of retractions as of 2012, including
fraud (43.4%), duplicate publications (14.2%), and
plagiarism (9.8%; Fang et al., 2012).

• What does the public think? As the primary funder of
science, it is worth examining how the public views
scientists who engage in QRPs and what repercus-
sions, if any, are considered reasonable. Pickett and
Roche conducted surveys of American adults (n =
821) using Amazon Mechanical Turk about what pen-
alties should be imposed on scientists who engage in
two specific QRPs: data falsification/fabrication, and
selective reporting (Pickett and Roche, 2018). For data
falsification, over 90% of respondents said scientists
should be fired and banned from receiving govern-
ment funding, and 66% said it should be considered a
crime. These results are not so surprising as this is
quite an egregious practice, and the surveys men-
tioned previously support this behavior being rare.
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More relevant are the perceptions of selective report-
ing: 63% of respondents advocated firing, and 73%
for a ban on receiving funding. Only 37% said selec-
tive reporting should be considered a crime. If the pun-
ishments specified by the public were carried out,
there may be a large purge of the scientific workforce.
Recent work has begun to sketch the contours of a
criminological framework for studying research mis-
conduct (Faria, 2018; Bülow and Helgesson, 2019).

In sum, QRPs are widespread and take many forms in-
cluding p-hacking, selective reporting, and HARKing.
QRPs reduce the quality of the scientific literature and are
incentivized in the current academic climate where jour-
nals prioritize positive findings, and publications in these
journals are essential to winning grants and advancing
one’s career overall. The definition of what is publishable
in prestigious journals is having a detrimental effect on re-
search quality, and as the academic job market is com-
petitive (Langin, 2019), this may lead to a race-to-the-
bottom in terms of engagement in QRPs. Surveys of the
public advocate for professional and legal punishment for
engaging in not only severe QRPs like data falsification,
but also selective reporting, which surveys show is quite
common.
I contend that QRPs and the incentives for their en-

gagement (i.e., publishing decisions based on positive/
significant findings) represent the single largest obstacle
to improving replicability in science and living up to the
description of science as a self-correcting enterprise.
While there are no published surveys of neuroscientists
related to engagement in QRPs, the same incentive struc-
tures described are arguably inherent to neuroscience,
and the prevalence of QRPs in neuroscience remains an
open question.

Misunderstanding of P-Values
Aside from QRPs increasing false positive rates, an-

other major obstacle to improving replicability in sci-
ence is the incorrect use and understanding of p-values
(Greenland et al., 2016). A p-value represents the prob-
ability of obtaining a result, or one more extreme, on the
condition of a point hypothesis being true (Benjamin et
al., 2018). Goodman names 12 common misconcep-
tions of the p-value (Goodman, 2008), four of which are:
(1) if p = 0.05, the null hypothesis has only a 5% chance
of being true; (2) if p � 0.05, there is no difference be-
tween experimental groups; (3) p = 0.05 means that I
have observed data that would occur only 5% of the
time under the null hypothesis; (4) with a p = 0.05
threshold for significance, the chance of a Type I error
will be 5%. All 12 are worth examining, but I will explain
these four here. (1) is false because the p-value has noth-
ing to say about the probability of the null hypothesis
being true. It is already assumed that the null hypothesis
is true, and the p-value refers to the probability of obtain-
ing data, or data more extreme, under this assumption.
(2) is false because p � 0.05 only means that a null effect
is statistically consistent with the observed results, but
so are the effects within the confidence interval. It does

not make the null effect the true or most likely effect. (3)
is false because p= 0.05 means that I have observed
data that would occur, along with data more extreme,
only 5% of the time under the null hypothesis. Finally, (4)
is not necessarily either true or false. If you have a null
hypothesis that you know to be true, then the probability
of a Type I error is actually 5% if the assumptions of the
statistical test used are met (Wilcox, 2016). If you know
the null is false, there is no Type I error because any
positive result would be a true positive. This point also
does not address scenarios where multiple compari-
sons are made and the Type I error rate for any individ-
ual comparison is increased beyond 5%, requiring
statistical correction.
Trafimow and Earp give a short checklist of things the

p-value does not tell us (Trafimow and Earp, 2017): (1) the
probability of the null hypothesis being true; (2) the proba-
bility of the alternative hypothesis being true; (3) a valid
index of effect size; (4) a valid index of the degree of gen-
eralizability of the findings; (5) a valid indicator of the prob-
ability of replication.
Theoretical and practical recommendations to improve

the integrity and utility of the use of p-values relate to
more rigorously linking theoretical claims with experimen-
tal models to justify dichotomous claims (Tunç et al.,
2021), confirming that researchers’ questions are answer-
able using p-values (Lakens, 2021b), and justifying a lev-
els (Lakens et al., 2018) and sample sizes (Lakens,
2021a). Others have proposed changing the customary a
threshold from 0.05 to 0.005 (Benjamin et al., 2018), aban-
doning the concept of statistical significance altogether
and treating p-values with a less dichotomous and more
continuous view (Amrhein et al., 2019; McShane et al.,
2019), and supplementing or replacing frequentist statis-
tics with Bayesian statistics (with the Bayes factor as the
replacement for the p-value; Greenland and Poole, 2013;
Wagenmakers et al., 2018).
I do not take a hard stance on any of these proposals

because in my view, the incentives of research represent
the largest barrier to improving replicability. Regardless of
which p-value threshold is used or whether the p-value is
replaced by the Bayes factor, incentives to publish posi-
tive results will lead to any statistical decision rule that
impacts publishing decisions and career advancement
being gamed and manipulated. Researchers should be
better-educated about what exact information different
statistical approaches can provide, the dangers of data
dredging without multiple testing correction or transpar-
ent reporting of all comparisons, how to justify study
parameters (sample size, power), and other aspects of
proper use and potential pitfalls of statistical practice. But
with the current incentives for positive findings, no set of
purely statistical norms will prevent researchers from
identifying opportunities for analytical flexibility (e.g., data
dredging, outlier removal) that can both yield positive re-
sults and be minimally justifiable for publication without
being outright fraud.
How does the misunderstanding of p-values manifest in

preclinical neuroscience? One major way is in how inter-
action effects are studied (Nieuwenhuis et al., 2011). As
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an example, suppose you were studying the effect of
reward-associated cues on neural firing in the ventral
tegmental area (VTA) in wild-type and mutant strains of
mice. You discover that the difference in VTA firing be-
tween the cued and un-cued conditions is statistically
significant in wild-type mice (p, 0.05), but not the mu-
tants (p. 0.05). Declaring this a strain-specific effect
is incorrect, albeit common, because the two strains
have not been directly compared in, for example, a
two-way analysis of variance. “When making a com-
parison between two effects, researchers should re-
port the statistical significance of their difference
rather than the difference between their significance
levels” (Nieuwenhuis et al., 2011).
Another common example of this error is when the

expression of a gene is compared between two experi-
mental groups within multiple brain regions, where the
group-level comparison is significant in one region but
not the others, and this is labeled a “region-specific ef-
fect.” This is incorrect for the same reason, the signifi-
cance levels of each region are being compared, but
not the differences of expression.
A specific case of this error involves the reporting of sex

differences. If an experimental treatment shows a statisti-
cally significant effect in, for example, females but not
males, this is often presented as a sex-specific effect.
This is again incorrect, and bibliometric analyses show
that this error is committed in the majority of articles
claiming sex differences (Garcia-Sifuentes and Maney,
2021). As the measurement of sex differences has been a
component of NIH guidelines since 2014 (Clayton and
Collins, 2014), the prevalence of these statistical errors
demands the neuroscience community’s attention in
quelling them.
Other cases in neuroscience relate to how data from

specific experimental techniques are analyzed. Temporal
correlations in neuronal data from electrophysiology can
lead to spurious identification of action-value representa-
tions, and analytical and experimental techniques used to
parse these action-value representations from other deci-
sion variables are often inadequate (Elber-Dorozko and
Loewenstein, 2018). Specific to human studies, Héroux
and colleagues examined 1560 papers by 154 survey
respondents who conduct electrical brain stimulation
research, and found that 25% admitted to adjusting
statistical analyses to obtain positive results (43%
claimed to be aware of others doing this; Héroux et al.,
2017). Luck and Gaspelin demonstrate how analytical
flexibility in event-related potentials studies can lead
to statistically significant yet incorrect results and de-
scribe steps that can be taken to prevent this (Luck
and Gaspelin, 2017).
In sum, p-values are often misinterpreted, and these

misinterpretations affect the accuracy of results reporting
in neuroscience and many other fields.

Low Statistical Power
Aside from misinterpretations and misuses of p-values,

another basic statistical consideration that is often inad-
equate is statistical power.

Statistical power is the probability of not committing a
Type II error (false negative), and the complement of the
Type II error rate b (statistical power is 1-b ). Restated,
statistical power is the probability that a point hypothesis
will be rejected (by obtaining a statistically significant re-
sult) when it is false, and calculating it depends on the a
threshold, sample size, and a smallest effect size of inter-
est (Cohen, 1992; Morey and Lakens, 2016). The typically
prescribed level of statistical power is 80% for a given
study design, smallest effect size of interest, and a
threshold. Low statistical power to detect a smallest ef-
fect size of interest introduces two important vulnerabil-
ities to a scientific study: (1) higher probability of Type II
error, and (2) lower likelihood that a statistically significant
result reflects a true effect (Button et al., 2013a). (2) is less
discussed than (1), and is illustrated in the following for-
mula linking statistical power with positive predictive
value (probability that a statistically significant effect re-
flects a true effect):

PPV ¼ ð½1� b � �RÞ=ð½1� b � �R þ aÞ;
where (1-b ) is statistical power, b is the Type II error rate,
a is the Type I error rate, and R is the prestudy odds of an
effect not being a null effect among the effects measured
(Button et al., 2013a).
There is evidence that a substantial portion of published

studies have low statistical power to detect their associ-
ated effect sizes. Dumas-Mallet and colleagues examined
660 meta-analyses published between 2008 and 2012 of
biological, environmental, and cognitive/behavioral meas-
ures related to neurologic, psychiatric, and somatic dis-
ease in humans (Dumas-Mallet et al., 2017). Statistical
power of their composing studies was measured assum-
ing the meta-analytic effect sizes were the true population
effect sizes. ;50% of studies had statistical power be-
tween 0% and 20%, and 18% of studies had 80% power
or greater. When only analyzing studies from meta-analy-
ses with statistically significant effects (n=420), ;50% of
studies had statistical power between 0% and 40% and
,30% of studies had 80% power or greater.
Discussions of low statistical power in published litera-

ture extend at least since 1962, when Cohen examined
the power of studies published in the 1960 issue of the
Journal of Abnormal and Social Psychology, and found
that average power to detect small, medium, and large
effects was 18%, 48%, and 83%, respectively (Cohen,
1962). In 1989, Sedlmeier and Gigerenzer examined ar-
ticles published in the same journal in 1984 and found
that mean power to detect a medium effect decreased to
37%, in addition to reviews of other journals showing sim-
ilar statistics as Cohen’s original study (Sedlmeier and
Gigerenzer, 1989). In a small 2014 survey asking how sci-
entists justified sample sizes, 58.5% answered “The num-
ber is typical for my area” or “I used the same sample size
as another study” (Vankov et al., 2014). Only 9.6% of re-
spondents answered “I ran a formal power analysis.”
In neuroscience, studies tend to be underpowered to

detect the effect sizes that are published at an a threshold
of 0.05 (Button et al., 2013a; Nord et al., 2017). Button
and colleagues analyzed 49 meta-analyses published in
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2011 (composed of 730 original studies) and found that
the median statistical power was 21%, under the as-
sumption that the meta-analytic effect size was the true
population effect size (Button et al., 2013a). Nord et al.,
re-analyzed these data using Gaussian mixture models to
quantify heterogeneity of statistical power across neuro-
science subfields and found that median statistical power
ranged from 11% to 57% (genetic: 11%; treatment: 20%;
neuroimaging: 32%; neurochemistry: 47%; psychology:
50%; miscellaneous: 57%), highlighting candidate gene
studies as having particularly low power (Nord et al.,
2017). This large set of studies also did not show a statis-
tically significant correlation between statistical power
and impact factor (Brembs et al., 2013).
It is critical to also mention the evidence that meta-ana-

lytic effect sizes are biased upwards because of publica-
tion bias and selective reporting (Kvarven et al., 2020).
Kvarven and colleagues compared 15 meta-analyses to
15 multilab replications of the same effects and found
that 12/15 (80%) meta-analyses had statistically signifi-
cantly larger effect sizes than their corresponding multi-
lab replications (3/15 did not differ). If this trend is true
for the meta-analyses examined by Dumas-Mallet and
colleagues and Button and colleagues then their post
hoc estimates of statistical power are likely biased
upwards.
Some scientists make the error of neglecting statistical

power if they observe large effects, because they assume
that if a large effect is observed while underpowered to
detect it, then a higher-powered study would yield an
even larger effect. Loken and Gelman describe this fallacy
as “assuming that that which does not kill statistical sig-
nificance makes it stronger (Loken and Gelman, 2017).”
This is wrong for two reasons: (1) if there was analytical
flexibility present, this would raise the probability of statis-
tically significant effects that do not reflect true effects
(i.e., inflated false positive rate); and (2) statistical signifi-
cance in a low-power, noisy setting is not strong evidence
for the sign or magnitude of a true effect because these
data typically have high standard errors. These notions
are supported by simulations of the impact of measure-
ment error on effect size when sample sizes range from
50 to 3000, demonstrating that noise can exaggerate ef-
fect size estimates in low N studies (Loken and Gelman,
2017). Low N studies have much less precise estimates of
effect size and can result in what Gelman and Carlin called
type M (exaggerated magnitudes of effects) and type S
(when the sign of an effect is incorrect) errors (Gelman
and Carlin, 2014). Because low sample sizes lead to
greater standard errors around the mean, if a measured
effect is statistically significant, it necessarily must be ex-
aggerated (Vasishth et al., 2018). Larger sample sizes re-
duce standard errors and in turn yield more precise
estimates of effect size. It is worth mentioning that this re-
duction of standard errors resulting from increased sam-
ple sizes raises the probability of statistically significant
results for small effects, and this point was raised in re-
sponse to the study of statistical power in neuroscience
conducted by (Button et al., 2013b; Quinlan 2013).
However, this point overlooks that the effect sizes of

statistically significant effects in low-powered settings are
likely exaggerated, and it is arguably most important for a
field to precisely estimate effect size magnitudes, rather
than only if they are statistically significant or not (Button
et al., 2013b). Knowing precise effect sizes will enable a
field to know how interesting an experimental intervention
is, and whether it is worth following up on.
Along with the studies of statistical power across

neuroscience from Button, Nord, and colleagues,
Szucs and Ioannidis examined effect sizes and statisti-
cal power in 26,841 statistical tests from 3801 cognitive
neuroscience and psychology papers published be-
tween 2011 and 2014 in 18 specialty journals (Szucs
and Ioannidis, 2017). Across these studies, the median
effect size was 0.93 (interquartile range: 0.64–1.46), and
median power was, for differently sized effects: 0.12
(small, Cohen’s d = 0.2), 0.44 (medium, d = 0.5), 0.73
(large, d = 0.8). Importantly, cognitive neuroscience
studies tended to have larger effect sizes and lower de-
grees of freedom (indicating low sample sizes), and
these were associated with publication in higher impact
journals. Indeed, this tendency yielded negative corre-
lations between journal impact factor and median sta-
tistical power for small (r = �0.42 [�0.63; �0.09]),
medium (�0.46 [�0.71; �0.09]), and large (�0.45 [�0.77;
�0.02]) effects.
The Editorial board of the Journal of Neuroscience re-

cently recommended that studies be designed with two
experimental stages: an initial exploratory stage that may
provide evidence for an effect, albeit a likely inflated one
because of the twin issues of low sample sizes and low
statistical power, and a second stage focused on most
precisely estimating the magnitude of this effect (Society
for Neuroscience, 2020). Here, the first stage can be pow-
ered to only detect medium and large effects, but the sec-
ond stage should be powered to detect small effects. Not
only would this design entail a replication of an initially
measured effect, but it also coincides with Fisher’s origi-
nal recommendation for how to use the p-value threshold of
0.05 (that an experiment should be repeated) (Goodman,
2008). Further, it would refine dichotomous experimental
questions of whether an effect exists or not, to precisely es-
timating the magnitude and direction of said effects.

Issues Specific to Animal Research
Replicability is a serious and widespread issue across

scientific fields, and there is a significant contribution of
social (QRPs, inappropriate incentives) and statistical
(misunderstanding of p-values, low statistical power)
factors to low replicability. But how do these issues im-
pact animal research in particular, as a large portion of
neuroscience is conducted in animals, and certainly
that which aims to establish theoretical foundations or
clinically translational constructs?
There is evidence that the animal research literature

tends to be under-powered. In 2003, Jennions and Møller
conducted a survey of behavioral ecology and animal be-
havior studies (Jennions and Møller, 2003). Across 697
papers in 10 journals, the power to detect small, medium,
and large effects was 13–16%, 40–47%, and 65–72%,
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respectively, with 10–20% of studies exceeding 80% sta-
tistical power. A 2018 survey of 410 experiments across
122 articles in the rodent fear conditioning literature
yielded a mean effect size of 37.2% for well-powered,
statistically significant effects, and only 12.2% of studies
had 80% statistical power or greater (Carneiro et al.,
2018).
To combat low statistical power, the field must increase

sample sizes, which contrasts with the 3Rs of animal re-
search (Replace, Reduce, Refine; Würbel, 2017). How is
the statistical power and replicability of animal studies
supposed to improve if animal researchers are encour-
aged to use as few animals as possible? While minimizing
animal suffering is essential, low statistical power reduces
the scientific value of animal studies. However, I argue
that increasing the statistical power of animal studies is
not currently the highest priority for improving the quality
of preclinical animal research. I argue that the most impor-
tant issue with preclinical animal research is the incentive
structure that leads to engagement in QRPs. Animal re-
search is essential to alleviating human suffering and has
produced myriad breakthroughs and interventions that
have immensely improved the human condition, but to in-
flict discomfort on animals and engage in QRPs is strongly
unethical.
The publication rate alone in animal research is

alarming. Van der Naald and colleagues in their “plea
for preregistration,” examined 67 animal study proto-
cols approved by the animal ethics committee at the
University Medical Center Utrecht between 2008 and
2009 that were conducted to completion (van der Naald
et al., 2020). First, only 46% (31/67) of these protocols
had a resulting publication, and this increased to 60%
(40/67) when conference abstracts were included, al-
ready an indication of publication bias. Out of 5590 ani-
mals used in all 67 protocols, only 26.3% (1471) were
published that were associated with these 40 protocols.
Limiting the scope to these 40 protocols, only 33% of
animals were published (1471/4402). The publication
rate specifically for small animals (mice, rats) was 23%
(1190/5014) and the rate for large animals (pigs, dogs,
sheep) was 52% (299/576). 115.3 million laboratory ani-
mals are estimated to have been used worldwide in
2005 alone (Taylor et al., 2008; although the authors say
this “is still likely to be an underestimate”), and assum-
ing van der Naald’s percentage (26.3%) is representa-
tive, this means 85 million animals from 2005 are
unpublished. The number of laboratory animals used is
surely higher presently.
Other studies have shown higher but nevertheless

alarmingly low rates of publication for animal research.
Wieschowski et al., found a publication rate of 67%
across 158 animal research protocols at two German
university medical centers, and this decreased to 58%
when doctoral theses were excluded (Wieschowski et
al., 2019). A Dutch survey conducted in 2011 of 421
animal researchers working at not-for-profit institutes
showed estimates that 50% of animal research is pub-
lished (interquartile range: 35–70%; Riet et al., 2012).
It is worth nothing that low publication rates do not ne-

cessitate publication bias or selective reporting–perhaps

some of these animals were used for pilot studies, testing
new techniques, studies were not continued after receiv-
ing revisions, or other reasonable activities such as want-
ing to publish null data but being denied by journals. But
even if I consider a liberal adjustment that accounts for
double the percentage of animals used according to
van der Naald and colleagues (52.6%), this still means
54.7 million animals are unpublished and unaccounted
for from 2005 alone. The exact magnitude of the con-
tribution of publication bias to animal publication rates
is difficult to know because it requires knowing the
exact reason for publication or nonpublication of spe-
cific animals. However, there is evidence from meta-
analyses of animal research and surveys of animal
researchers about the presence of publication bias.
Across 21 meta-analyses assessing publication bias in
animal research, evidence was found in 62% (13/21),
though the methods for statistically assessing publica-
tion bias are imperfect (e.g., Egger’s test for funnel
plot asymmetry, “trim-and-fill” analysis; Korevaar et
al., 2011). Across 16 systematic reviews (composed of
525 studies) of interventions for acute ischemic stroke
tested in animals, 2% of publications reported no ef-
fects on infarct volume, 1.2% reported no statistically
significant findings, and Egger’s regression and trim-
and-fill analysis identified publication bias in 16 and 10
reviews, respectively, with publication bias potentially
accounting for 1/3 of reported efficacy (Sena et al.,
2010). Further, a survey of 454 animal researchers es-
timated that 50% [median; 32% (Q1)�70% (Q3)] of an-
imal experiments are published (Riet et al., 2012), and
that the “important causes of non-publication” are (in
descending order; 5-point scale): “Lack of statistically
significant differences (‘negative’ findings)” (4; 4–5),
“Instrumentation/technical problems” (4; 3–4), “Many
studies are seen as pilot studies only” (3; 3–4), “Loss
of interest” (2.5; 2–3), and “Lack of time to write manu-
scripts” (2; 2–3). These findings agree with the anony-
mous survey of psychologists mentioned earlier that
showed a 45.8–50% self-admission rate and 60%
prevalence estimate of “Selectively reporting studies
that ‘worked’” (John et al., 2012). Overall, animal publi-
cation rates are low, and whether findings are positive
appears to strongly impact publication decisions, giv-
ing support to the notion that publication bias is wide-
spread in animal research.
These grim statistics illustrate the low publication rates,

with some contribution of publication bias, in animal re-
search. Worse still, one can only guess the prevalence of
other QRPs in the animal research studies that actually
make it to publication. For these reasons, I contend that
before the scientific community can focus on increasing
sample sizes to mitigate low statistical power, it is incum-
bent on us to change the incentives of the field to publish
more of the animals the field is currently using and cease
engagement in QRPs more generally. It is bad enough for
61/100 psychology studies with human participants who
are not harmed in any way to not replicate Open Science
Collaboration (2015), but it is much worse for studies con-
ducted with animals where potentially 75% of them are
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not even published, with some percentage of the remain-
ing 25% tainted by the presence of other QRPs. If animal
studies had to be preregistered in the same manner as
clinical trials (van der Naald et al., 2022), with primary out-
comes and analysis plans, it is possible this would lead to
a decline in the rate of published positive results, as it has
in clinical trials (Kaplan et al., 2015).
A case can be made for increasing sample sizes to

reach adequate levels of statistical power, but in-
creased sample sizes in the presence of QRPs is even
more unethical than underpowered QRP-ridden stud-
ies. Animal research will be more scientifically valuable
if incentives are shifted away from positive results, and
toward honestly and transparently using animal mod-
els to answer important questions with rigorous meth-
odology. With the amount of trust given to researchers
that conduct animal research, engaging in QRPs is un-
ethical and unfortunate, but is a sad result of the incen-
tives for positive findings rather than well-conducted
experiments. Individual researchers and laboratories
are not to blame for these problems as they reflect the
norms and traditions that have coalesced over time, with
the scientific enterprise as a whole to be held accountable
for their creation and hopefully, rectification.
Other obstacles to high-quality animal research include

low prevalence of blinded outcome assessment, ran-
domization, statements of conflicts of interest, and sam-
ple size calculations. In 2671 studies published between
1992 and 2011 of drug efficacy in animal models of vari-
ous diseases identified in systematic reviews, blinded
assessment of outcome was reported in 788 publica-
tions (29.5%), randomization in 662 (24.8%), a statement
of conflict of interest in 308 (11.5%), and a sample size cal-
culation in 20 (0.7%; Macleod et al., 2015). Encouragingly,
blind outcome assessment increased from 16.3% in 1992
to 39% in 2011, randomization from 14% to 42%, and con-
flict of interest reporting from 2.3% to 35.1%. Sample size
calculations did not change across time, and this is a clear
contributor to low statistical power, and in turn, low replica-
bility. Examining the relationship between the presence of
these practices and journal impact factor, reporting conflicts
of interest was associated with a 2.6 higher impact factor,
but randomization was associated with a 0.4 lower impact
factor. There were no significant relationships for blinded
outcome assessment or sample size calculation.
These issues with animal research are general, not spe-

cific to neuroscience, but should give neuroscientists
pause in considering how they may impact their own
studies.

Sensitivity of Results in Animal Research:
Generalizability and Replicability
If a replication experiment does not successfully reca-

pitulate the findings of an original study, this may be
partially explained by the original study’s findings not gen-
eralizing to specific conditions that were varied in the rep-
lication experiment. For example, there is a substantial
literature documenting the sensitivity of results in animal
research to various factors such as lab site, shipping ver-
sus in-house rearing, cage enrichment, housing

temperature, protein and fat content of chow, animal
strain, complex gene-environment interactions, and many
others (Hylander and Repasky, 2016; Jarvis and Williams,
2016; Kafkafi et al., 2018). These issues may lead to re-
sults that do not replicate across labs or are statistically
significant in opposite directions, and pose significant
barriers to replicability more generally. While the issues I
have already discussed (e.g., QRPs, misunderstanding of
statistics, low power) undoubtedly contribute to them,
these problems naturally accompany animal research and
represent interesting scientific questions that will serve
the scientific community by answering and understanding
them. For example, if a particular effect is true and repro-
ducible in one strain of rat but does not hold in another,
this is not an issue of replicability, but of generalizability
(Redish et al., 2018; Yarkoni, 2022). The general distinc-
tion is that replicability refers to how robust an effect is in
terms of direction, magnitude, and statistical significance
when the same experiment is re-run, and generalizability
refers to how robust an effect is when certain parameters
of an experiment (e.g., animal strain, housing tempera-
ture) or analysis (e.g., covariates, software used) are var-
ied. Questions of generalizability relate to the sensitivity of
conditions that can produce different results and enable a
deeper understanding of the physiological and environ-
mental variables of the models used and the experiments
conducted.
As another example, it is known that housing tempera-

ture can affect antitumor responses (Hylander and
Repasky, 2016), and if it can repeatedly be shown that
housing temperature affects other results, this is again
not an issue of replicability, but rather a scientific question
about how housing temperature can affect the results of
these experiments. These sensitivities represent scientific
questions about the generalizability of findings, whereas
QRPs and low statistical power directly harm replicability
and the quality of scientific studies, only enhancing the
difficulties raised by problems of generalizability that are
often biological in nature, depending on the problem. It is
critical to mention that issues of replicability (e.g., QRPs,
low power) only compound with the problems of general-
izability. The advantage of assessing generalizability in
preclinical research is that the variables which research-
ers may incorrectly take for granted to generalize (e.g.,
temperature, animal strain, lighting sensitivity) are control-
lable and testable for their effects. The high controllability
of animal experiments is both a blessing and a curse, for
the ability to control extraneous factors and identify bio-
logical mechanisms beyond what can ethically be done in
humans, with the caveat that many factors (co-housing,
food/water, strain) may still compromise the replicability
and generalizability of results.

Case Studies in Neuroscience of
Replicability/Generalizability Issues
I will now describe a few case studies in neuro-

science that document how environmental and other
experimental factors can influence results and indicate
barriers to generalizability. A well-known case is that
of Crabbe, Wahlsten, and Dudek (Crabbe et al., 1999)
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where six behaviors were tested in mice in three differ-
ent labs, with efforts to standardize apparatus, testing
protocols, and animal husbandry, using the same in-
bred strains, along with one null mutant strain. These
behaviors were: locomotor activity in an open field
(day 1; D1), elevated plus maze (D2), rotarod (D3),
swimming to a visible platform (D4), locomotor in-
crease after cocaine injection (D5), and preference for
ethanol versus tap water (D6). To assess the effects of
animal shipping, all three labs compared shipped mice
to mice reared in-house. Comparing results across the
three sites, there were strong and statistically signifi-
cant effects for distance traveled and number of verti-
cal movements in the open field, arm entries and time
spent in the open arms of the plus maze, and body
weight [partial v2 (effect size) in a complete factorial
ANOVA ranged from 0.157 to 0.327, all p, 0.00001].
Additionally, there was a strong and significant inter-
action of genotype and site for arm entries in the plus
maze (partial v2 0.21, p, 0.00001), and weaker inter-
action effects on cocaine locomotor increase and
body weight (partial v2 0.086 and 0.071 respectively,
p, 0.001). Encouragingly, there were no statistically
significant differences across sites for water maze es-
cape latency or alcohol consumed. There was an effect
of shipping versus local rearing on water maze escape
latency, though this effect was weak and would likely
not pass statistical correction. Interaction of genotype
and shipping showed no statistically significant ef-
fects. Responses to this article highlighted the impact of
social dominance hierarchies among group-housed mice
on behavior, substrains and modifier genes in knock-out
mouse colonies, differences in local tap water and Purina
diet composition, and other potential sources of variation.
Wahlsten et al. (2006) compared behavioral data from

inbred mouse strains across five decades and multiple
laboratories and showed high stability for ethanol prefer-
ence and locomotor activity, but large variance for ele-
vated plus maze exploration, even across sites within the
same university.
Richter and colleagues examined how systematic het-

erogenization of behavioral experiments affected replica-
bility (Richter et al., 2011). Six laboratories each ordered
64 female mice of two inbred strains (C57BL/6NCrl, DBA/
2NCrl), and conducted five behavioral tasks (barrier test,
vertical pole test, elevated zero maze, open field, novel
object test), under two experimental contexts (standar-
dized or heterogenized). In the standardized condition,
mice were tested at 12weeks old, with only nesting mate-
rial in their cages. In the heterogenized condition, mice
were tested at either 8 or 16weeks old, with either shelter
or climbing structures in their cages. In both standardized
and heterogenized conditions, order of tests, protocols,
animal supplier, number of animals per cage, housing pe-
riod before testing, cage position within racks, and cage
change interval were all kept constant. Left to vary were
local tap water, food, nesting material, cage size, testing
room (layout, humidity, lighting, temperature), apparatus
and tracking software, identification method (e.g., ear
punches, fur markings), test time of day, and experimenter.

In the standardized condition, 22/29 variables meas-
ured across the five behavioral tasks showed statisti-
cally significant effects of laboratory (ps� 0.001). In
the heterogenized condition, 23/29 variables showed
these effects. Additionally, effects of strain were observed
in the vast majority of measurements (not surprising given
these two strains are known to differ behaviorally), along
with interactions of lab and strain. In some cases, direc-
tionality of differences between C57BL/6NCrl and DBA/
2NCrl differed by lab. It is worth noting that while multiple-
testing correction is not shown in this study, the vast ma-
jority of significant effects had p-values below 0.001, indi-
cating that many would pass correction, but the true
number is unknown.
A highly instructive and valuable recent case comes

from the International Brain Laboratory, where 140 mice
in seven labs from three countries were trained on a modi-
fied two-alternative forced-choice task (International Brain
Laboratory et al., 2021). While the learning rates for the
task differed across labs, after reaching stability the mice
showed marked similarities in decision-making and reli-
ance on visual stimuli, past correct and incorrect trials, and
estimates of prior probabilities for stimuli. This study dem-
onstrates that large samples collected across multiple lab-
oratories, with open preregistration and standardization of
experimental protocols and analyses can yield replicable
results. It is worth noting that along with behavioral appara-
tus, training protocols, hardware, software, and analysis
code, also standardized were the protein and fat content
ranges of the chow, mouse strain and providers, handling
protocols, cage enrichment (nesting material and house, at
minimum), weekend water (measured or with citric acid),
and other variables. While it is possible that varying these
factors would have impacted the results, particularly
mouse strain (Crabbe et al., 1999), the space of variation
explored gives credence to the generalizability of these
results.
These and other studies demonstrate that variability in

results can occur across laboratories conducting the
same experiment. Discussions of systematic heterogeni-
zation are of continued interest and provide insight into
how experimental designs can be modified to increase
the generalization of individual studies without requiring
larger sample sizes (Voelkl et al., 2020). One issue high-
lighted is that abundant standardization of experimental,
environmental, and other factors, while potentially im-
proving replicability across experimenters and sites, re-
stricts the “inference space” that a study’s findings can
be generalized to, and this is an important issue of discus-
sion for animal researchers.
Less surprisingly, variability across strains is also preva-

lent across myriad phenotypes. Jung and colleagues dis-
covered that Fisher 344 and Wistar-Kyoto rats differ in
their reactivity to recent and reinstated fear memories,
and showed overlapping and divergent blood transcrip-
tome profiles, with strain-specific differentially expressed
genes exhibiting different functional enrichments and co-
expression (Jung et al., 2020).
Jin et al. (2017) discovered that citalopram reduces im-

mobility time in the forced swim and tail suspension tests
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in DBA/2J mice but not C57BL/6J mice, with fluoxetine
showing opposite results. Serotonin transporter affinity
for citalopram was 700 times higher in DBA/2J mice,
and fluoxetine 100 times higher in C57BL/6J mice.
These same drug-strain effects were observed when
measuring the effects of high-dose citalopram or fluox-
etine on [3H]5-HT uptake in mouse cortical synapto-
somes. Paroxetine showed consistent effects across
strains.
Cabib and colleagues discovered that C57/BL6J and

DBA/2J mice show opposite effects in place conditioning
(preference and aversion, respectively) for amphetamine,
but that food restriction reverses the aversion seen in the
DBA/2J mice (Cabib et al., 2000). These and other results
(Nguyen, 2000; O’Connor et al., 2021) yield valuable in-
sights about the generalizability of effects observed using
preclinical models that model aspects of psychiatric
disorders.
Kafkafi and colleagues have written an excellent dis-

cussion of replicability, sensitivity, and interpretation of
animal research (Kafkafi et al., 2018), along with several
others (Landis et al., 2012; Crabbe, 2016; Jarvis and
Williams, 2016; Percie du Sert et al., 2020; Voelkl et al.,
2020; Drude et al., 2021; Hunniford et al., 2021; Lewis et
al., 2021).
Not only can these genetic and environmental factors

impact the replicability of animal research, they can
also impede the translatability of animal findings to hu-
mans (Ioannidis, 2012; Lapchak et al., 2013; Garner,
2014; Kimmelman et al., 2014; McGonigle and Ruggeri,
2014). In a comparison of preclinical, early phase, and
Phase 3 clinical trials of neuroprotective agents for
acute stroke, 69.08% of preclinical studies were posi-
tive, in contrast to 32% of early clinical and 6% of
Phase 3 trials (Schmidt-Pogoda et al., 2020). Funnel
plot asymmetry and trim-and-fill analyses showed pub-
lication bias in preclinical and early phase trials, and the
mean power of experimental studies was 17%. Less
than half of preclinical studies reported randomization,
,60% reported blinded outcome assessment, and
sample sizes were smaller in a step-wise fashion be-
tween the three study types, all contributors to poor
replicability.
Hylander and Repasky give a valuable set of recom-

mendations in their careful discussion of how housing
temperature can affect results in mouse models of can-
cer, immunity/inflammation, metabolism, adrenergic
stress, energy homeostasis, and other physiological
measures (Hylander and Repasky, 2016). They recom-
mend that proper reporting practices be widely imple-
mented for animal research, including the specification
of environmental parameters such as housing, handling,
food, lighting, and noise, as these affect behavior and
brain chemistry. They state that while these parameters
may be considered “seemingly mundane details,” they
can potentially have large effects on experimental re-
sults. I agree that replicability in animal research would
be helped by transparent reporting of environmental
parameters, protocols, and raw data, rigorous sample
size estimation, group randomization, blind outcome

assessment, multiple testing correction, and certainly
the ceasing of engagement in QRPs, issues I return to
later when discussing solutions.
I assert that animal research-specific barriers to replica-

bility (e.g., effects of housing temperature, site, strain)
support the urgency of removing the incentives to engage
in QRPs simply because the compounding of the former
and the latter is far worse than the former alone. A critical
addition to changing the incentives in animal research is
the enforcement of comprehensive reporting guide-
lines that can enable scientists to most correctly repli-
cate studies, and to understand potential influences
on experimental results more generally. While I have
focused on preclinical animal research, these recom-
mendations would be beneficial to solving issues of
replicability related to in vitro research as well (Hirsch
and Schildknecht, 2019).

Solutions
I contend that the two most practical steps to be taken

that will have the greatest impact in improving the replica-
bility, transparency, and overall quality of animal research
are the widespread adoption of (1) registered reports, and
(2) comprehensive reporting guidelines. Registered re-
ports carry all of the benefits of preregistration for higher-
quality science, with incentivized benefits for scientists,
journals, and funding sources. The major distinction be-
tween preregistration and registered reports is that regis-
tered reports guarantee a publication, provided that the
researchers adhere to preregistered experimental proto-
cols that have been granted in-principle-acceptance.
Additionally, because of the variability seen in the results
of animal research across laboratories and animal strains,
comprehensive reporting guidelines will enable research-
ers to control for as many extraneous factors as possible
to maximize the chance of replicating and building on pre-
vious results.

Registered Reports
Preregistration is a good scientific practice, but cannot

alone realign scientific incentives, whereas registered
reports can. Preregistration is the act of registering all ex-
perimental and analysis plans (hypotheses, design, proto-
cols, analysis methods) before conducting a study. There
have been several discussions about whether animal
studies should be preregistered in the same manner as
clinical trials to improve transparency, reduce miscon-
duct, and improve replicability (Baker, 2019; van der
Naald et al., 2020, 2022; Naald et al., 2021). I fully support
the preregistration of animal studies, but preregistration
as a scientific practice that improves transparency and
replicability does not carry strong enough incentives to
become adopted by the scientific community. In contrast,
registered reports are an implementation of preregistra-
tion where a study plan (rather than a completed study) is
submitted to a journal for peer review (Phase 1; Chambers
and Tzavella, 2022). During Phase 1 peer review, re-
viewers evaluate the scientific question, experimental de-
sign, analysis methods, and all other methodological
factors of a study. If a plan is agreed to between the
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scientists and the journal, it is preregistered with the jour-
nal and given the status of in-principle-acceptance, that
is, the journal agrees to publish the completed study re-
gardless of the results, as long as the study adheres to
the preregistered plan. After the study is completed, the
final manuscript is submitted to the journal only to confirm
that it adhered to the preregistered study protocols
(Phase 2). Phase 2 is designed to be shorter and more
straightforward than Phase 1 and is followed by final
acceptance and publication. The primary benefit of reg-
istered reports is the realignment of incentives away
from positive findings that encourage engagement in
QRPs, and toward answering relevant scientific ques-
tions with rigorous methodology.
The emphasis on questions and methods rather than

results removes the incentives to p-hack, HARK, se-
lectively report, and engage in QRPs more generally.
Nonpreregistered experiments and analyses can still
be included in a separate Results section, and the idea
that registered reports limit creativity or exploration is
a common misconception. When a study is completed
and written up, the results of the preregistered analyses
are included, with optional inclusion of nonpreregistered
analyses. Nonpreregistered analyses conducted after new
ideas arise from each piece of collected data are allowed.
Registered reports do not aim to prohibit analytical or ex-
perimental flexibility, indeed much of biomedical research
is exploratory, but rather to enable readers to evaluate the
severity of all experimental and statistical tests, and part of
this effort is to clearly define which tests were and were not
preregistered. Deviations from preregistered analysis plans
are not problematic in and of themselves; deviations that
increase type 1 error rates (e.g., multiple testing without
correction, stopping or continuing data collection based on
statistical significance, selective outlier removal) and mis-
represent the epistemic status of claims (e.g., HARKing)
are. Frequently asked questions about registered reports
are answered in a 2014 editorial and a recent comprehen-
sive review (Chambers et al., 2014; Chambers and
Tzavella, 2022)
Preregistration alone is an important tool to prevent ex-

cessive analytical flexibility after results are collected, but
because of current incentives for positive findings, many
researchers do not want to take the risk of being stuck with
null findings that may be difficult to publish. Registered re-
ports are the solution to this issue because researchers are
assured a publication, enabling the primary focus to be
placed on designing a study to rigorously answer an inter-
esting scientific question, using protocols agreed on jointly
between researchers and peer reviewers.
It is important to note that not all types of publications

are suitable for registered reports. Studies that are purely
exploratory with no hypotheses being tested do not need
to be registered reports, nor do studies concerned with
methods development. Registered reports are meant to
be used for hypothesis-driven, confirmatory research.
Preregistration helps to keep experiments honest by

disallowing excessive analytical flexibility, HARKing, and
other QRPs. But again, preregistration collides directly
with the incentives to obtain positive results. The major

obstacle to preregistration becoming standard practice is
the emphasis on positive findings in scientific publishing. I
contend that preregistration is essential to improving the
rigor and replicability of animal research, that the most
pragmatic implementation of preregistration is registered
reports, and that registered reports benefit researchers,
journals, and funding sources. In the context of a regis-
tered report, researchers no longer have to worry about
obtaining a positive result because the focus is placed en-
tirely on answering a relevant scientific question with rig-
orous methodology. Hence, there is no incentive to
engage in QRPs. For journals, peer review is more stream-
lined because Phase 1, when successful, declares a
methodology to be used, and Phase 2 only confirms com-
pliance with this methodology. For funding sources, regis-
tered reports would likely reduce the amount of funds
wasted on false positive studies, increase the amount of
overall disseminated science in the form of null findings
(preventing future repeats of null studies), and positive data
would likely be less contaminated by QRPs. Funding mod-
els may emerge where funding is dispensed simultane-
ously with in-principle-acceptance for a registered report
(Chambers and Tzavella, 2022).
Along with removing incentives for researchers to en-

gage in QRPs, registered reports protect researchers
from peer reviewers who dislike their experimental design
or ask for additional experiments, a burden especially for
early career researchers with less disposable funding.
Once a study is accepted in principle before data collec-
tion, the only requirement for publication is that research-
ers do not deviate from the preregistered study plan.
Registered reports would reduce the amount of time a
study is in peer review after data collection, and reduce
the burden on researchers in their efforts to publish.
Different publishing models for registered reports are
emerging such as the Peer-Community In Registered
Reports, a researcher-run platform that can peer review
and help facilitate the completion of registered reports,
with subsequent acceptance to a journal without further
peer review (Eder and Frings, 2021).
Since preregistration and registered reports have seen

growing adoption for roughly 20 and 10 years, respec-
tively, recent work has compared the results of preregis-
tered studies to studies of related topics that are not
preregistered.

The Growing Track Record of Registered
Reports
There are patterns emerging on the impact of preregistra-

tion and registered reports on subjectively-related research
quality, frequency of reported positive results, and replica-
tion success. As more registered reports are published, in-
ferences can be made about the kinds of results they report,
the quality of the studies themselves, and how they com-
pare to nonpreregistered studies of similar topics. A recent
study (Soderberg et al., 2021) recruited 353 researchers to
peer review and compare pairs of psychology and neuro-
science papers where one was a registered report (out of 29
total) and one was a standard report (57 total). Pairs were
constructed to address similar topics, with half having the
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same first or corresponding authors or being published in
the same journal. Papers were evaluated on 19 criteria
measured before knowing study outcomes (8), after know-
ing study outcomes (7), and after finishing the paper (4).
There were no differences in rated novelty and creativity, but
large differences in rigor of methodology and analysis, along
with overall paper quality in favor of registered reports.
Nonpreregistered studies did not score higher than prereg-
istered studies on any of the 19 criteria. This study gives pre-
liminary evidence that registered reports are at least not of
lesser quality than standard reports, and may be of higher
quality in certain respects.
Results published in registered reports tend to show

fewer positive findings than in standard reports. In a com-
parison of the frequency of positive results in psychology
studies between registered reports and a random sample
of standard reports, 44% of results in registered reports
were positive, compared with 96% in standard reports
(Scheel et al., 2021). In a comparison of effect sizes pub-
lished in preregistered (93 effects) versus standard (900
effects) psychology studies, the mean and median effect
size for preregistered effects were 0.21 and 0.16, and for
standard reports, 0.4 and 0.36 (Schäfer and Schwarz,
2019). Effect sizes were mediated by study sample size in
that larger sample sizes yielded smaller effects in both
preregistered and standard reports, but less so in prereg-
istered reports. This halving of effect sizes between
standard and preregistered studies matches that seen in
the large-scale replication projects of psychology studies.
Looking at the results of randomized controlled trials

funded by the National Heart, Lung, and Blood Institute,
57% of studies published before 2000 reported significant
improvements on primary outcomes, compared with
8% of studies published after 2000, when preregistra-
tion of primary outcomes became mandatory for clini-
cal trials after Congress passed the Food and Drug
Administration Modernization Act in 1997 (Kaplan and
Irvin, 2015; ClinicalTrials.gov, 2021). This policy change
showed the strongest association with the decline in posi-
tive findings, and neither increased use of active compara-
tors (i.e., comparing interventions to one another rather
than placebos) or decreased industry sponsorship showed
this association. These results demonstrate that when re-
searchers are incentivized to not deviate from a prespeci-
fied study plan, the frequency of positive results is often
much lower.
Whether the replicability of registered reports (or pre-

registered studies in general) is higher than standard re-
ports is an open question (Chambers and Tzavella, 2022),
however evidence is emerging that this is the case. In
a replication of 16 studies with “best practices” in place
(i.e., preregistration, high statistical power to detect mini-
mum effect sizes of interest, open methods), 86% of repli-
cations had statistically significant effects in the same
direction as the original studies, and effect sizes were
97% of the originals (Protzko et al., 2020). Registered re-
ports also show a similar percentage of null findings in
both original research and replications. Allen and Mehler
found that registered reports of original research were
composed of 54.5% null findings, and registered reports

of replications 66%, in contrast to the 5–20% of null find-
ings in standard reports (Allen and Mehler, 2019).

Applying Registered Reports to
Sequences of Dependent Experiments in
Neuroscience
A common misconception about registered reports is

that they are only applicable in contexts where a single
hypothesis is being tested (Chambers and Tzavella,
2022). An important consideration is how registered reports
could be implemented for studies that include sequences of
experiments that are dependent on one another. As an ex-
ample, suppose a study is based on pilot data supporting
a genetic perturbation that increases neuronal activity in a
particular brain region of interest. To move forward, three
potential experiments could test whether this increase of
activity is resulting from differences in intrinsic excitability,
increases in excitatory synaptic drive, or decreases in inhi-
bition, or a combination of these. This represents at least
seven distinct hypotheses, and each of these alternatives
may logically preclude a different follow-up experiment. If a
difference is seen in excitatory synaptic drive, the follow-
up may be to determine whether this is presynaptic or
postsynaptic (or both), yielding three hypotheses. If the
change in drive is postsynaptic, it could be tested whether
this is accompanied by differences in receptor number or
ratios, synapse size, dendritic spine density, or other fea-
tures. The combinatorial space for a sequence of experi-
ments that each test multiple hypotheses can grow very
quickly, and different experiments will likely have different
requirements for adequate statistical power and positive/
negative controls.
Three approaches to publishing an investigation of this

kind as a registered report are (1) preregistering a decision
tree of experiments with an if-else structure, with corre-
sponding analysis plans for distinguishing between multi-
ple alternative hypotheses; (2) iterative Stage 1 submission
of individual, subsequent experiments after Stage 2 accep-
tance of previous experiments; and (3) including nonprere-
gistered studies as preliminary experiments, and only
preregistering the final experiment, which would be using
registered reports for a single experiment rather than multi-
ple experiments.
In the context of preregistering a decision tree, different

potential outcomes are associated with specific analysis
plans, decision rules, effect sizes of interest, interpreta-
tions, statistical assumptions, and follow-up experiments.
The preregistration may also include an outcome where
the results do not align with any of the preregistered po-
tential outcomes, necessitating a different approach to
the subsequent experiment that would require a separate
Stage 1 submission. Exploratory work can be added at
any point in the decision tree.
An example of this approach is a registered report by

Ait Ouares et al. (2019; Fig. 1) of how light stimulation pa-
rameters typical of optogenetics experiments can affect
neuronal firing in three cell types of the olfactory bulb and
striatum in mice, when external opsins are not expressed
(Ait Ouares et al., 2019). In their preregistered protocol (Ait
Ouares et al., 2018, p. 1), pilot data are used to support
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two stages of proposed experiments. Stage 1 aimed at re-
producing and expanding on their pilot data across two
experiments, and Stage 2 included eight novel experi-
ments that were dependent in several ways on those from
Stage 1 that could easily generalize to many contexts
within neuroscience. In these 8 experiments, two had two
parts (E3 and E4), and the authors made clear that E4P2,
and E6-E8 were exploratory and did not include power
analyses for them. A flowchart in their protocol described
the dependencies and decision rules between these ex-
periments and choice of parameters. Briefly, the first
three Stage 2 experiments explored the impact of light
stimulation on slice temperature (E1), mitral cell firing (E2),
and the dependence of changes in firing on stimulation
duration (E3). Next, the decision tree becomes relevant.
E4 examined the contribution of GABAergic inhibitory in-
terneurons to these effects in mitral cells through the ad-
ministration of GABAA and GABAB receptor antagonists.
If E4 showed that GABA antagonists block the effects of
light stimulation on mitral cell firing, then E4P2 would be a
repeat of E4 but in granular cells. The subsequent experi-
ments would examine the contribution of G-protein-
coupled receptors (GPCRs) to these effects in granular
cells (E5), the effects of light stimulation on properties of
membrane potential and action potentials (E6–7), and the
effects of light on other cell types (tufted cells in olfactory
bulb, medium spiny neurons in striatum, cerebellar
Purkinje neurons, and hippocampal CA1 pyramidal neu-
rons; E8). If E4 showed that GABA antagonists do not
block the effects of light stimulation on mitral cell firing,
then E5-8 would focus on the effects of G-protein antago-
nists on light-induced mitral cell firing (E5), mitral cell
membrane properties (E6-7), and the effects of light on fir-
ing in other cell types (E8). E4 did show that GABA antag-
onists did not block the effects of light on mitral cell firing,
so subsequent experiments focused on mitral cells. All
data and figures are clearly labeled as representing

exploratory experiments and analyses. This study demon-
strates that sequences of dependent experiments can be
preregistered as a decision tree where experimental re-
sults determine the choice of subsequent experiments.
In the context of iterative Stage 1 submissions, the first

Stage 1 submission and in-principle acceptance will likely
take longer than those for each additional experiment. The
initial submission establishes the background and focus of
a study, and each additional experiment will only include
the rationale, potential outcomes, and corresponding inter-
pretations for one experiment, keeping the amount of work
limited for researchers and reviewers. Additionally, while
the preregistration for a subsequent experiment is being
prepared or reviewed, pilot data may be collected to sup-
port the preregistration of this experiment, with the prereg-
istration serving as a replication of the pilot data, similar to
the two-stage process being piloted at the Journal of
Neuroscience (Society for Neuroscience, 2020). For any
iteration, exploratory tests that were not preregistered can
be conducted to inform the preregistration of the subse-
quent experiment.
In the context of including nonpreregistered experi-

ments as support for a subsequent preregistered experi-
ment, we can use as an example a study by Heycke, Aust,
and Stahl of different theories of preference acquisition
(Heycke et al., 2017). Here, three experiments are pre-
sented, the first two being unregistered, the third being
preregistered. Experiment 1 had a power analysis and
sample size justification based on effect sizes from the liter-
ature, and experiment 2 tested the generalization of experi-
ment 1. The purpose of experiment 3 (preregistered) was to
replicate the findings of experiments 1 and 2 in a larger
sample, with additional exploratory analyses about the sen-
sitivity of results to different participant exclusion criteria
and the order of dependent variables. The article includes a
discussion of the limitations of all three experiments, and
how the results of the unregistered experiments impacted

Figure 1. Flowchart of proposed experiments in the Stage 1 submission of Ait Ouares et al. (2019; reproduced with permission).
“MC = mitral cells; CG = granular cells. The number of sweeps and cell recorded for the experiment performed on MC will be calcu-
lated depending on the outcome of Stage I experiments. The number of sweeps and cell recorded for the experiment performed on
GC will be calculated depending on the outcome of Stage II experiments 4 bis.”
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specific design decisions in the preregistered experiment.
This study demonstrates that registered reports are appli-
cable to contexts where only the last experiment is prereg-
istered, with prior studies included as unregistered support
for the preregistered experiments. A study of this kind
could be the first preregistration in a sequence of preregis-
trations as described in the second approach.
Regardless of the final arrangement for any particular

study, at a minimum, hypotheses are specified to prevent
HARKing, and results will not be subject to publication
bias, which will likely increase the proportion of published
null data as has been shown previously (Allen and Mehler,
2019; Scheel et al., 2021). On the other hand, registered
reports and preregistration more generally are not meant
to be straitjackets that prevent exploratory or serendipi-
tous research. On the contrary, these approaches neces-
sitate the explicit designation of hypotheses that are
confirmatory or exploratory, clarifying the contribution of
results from each.
If the trend of low statistical power (Button et al., 2013a;

Dumas-Mallet et al., 2017) conflicts with the process of
registered reports, where studies are not granted in-prin-
ciple acceptance because they are underpowered, this
would be a benefit as it would raise the standard for sta-
tistical power in neuroscience research. Registered re-
ports certainly do not prohibit exploratory research, but
confirmatory research must meet the standard of being
adequately powered.

Comprehensive Reporting Guidelines in
Animal Studies
Along with the benefits of registered reports for improv-

ing replicability by removing incentives to engage in QRPs,
I contend that animal research would benefit tremendously
from more comprehensive reporting of genetic, environ-
mental, and other variables that can influence study out-
comes. Documenting environmental variables and sources
of sensitivity is critical for improving the replicability and
generalizability of animal research (Weissgerber et al.,
2016). Sets of reporting guidelines have been proposed, in-
cluding the ARRIVE 2.0 guidelines (Animal Research:
Reporting of In Vivo Experiments; Percie du Sert et al.,
2020), PREPARE (Planning Research and Experimental
Procedures on Animals: Recommendations for Excellence;
Smith et al., 2018), and others (Landis et al., 2012; Medical
Research Council, 2015; Han et al., 2017; Bert et al., 2019;
Smith, 2020; Gladman, 2021). The ARRIVE guidelines con-
sist of a set of Essential 10 pieces of information that are
proposed as a minimum requirement for reporting of ani-
mal studies, along with a Recommended Set of 11 other
points that would ideally be integrated into publishing prac-
tice after the Essential 10 are established.
The Essential 10 consist of: study design [control/ex-

perimental groups and units (e.g., animal, litter, cage of
animals)]; sample size (units per group, experiment total,
sample size justification/calculation); inclusion/exclusion
criteria (including number and justification of exclusions);
randomization (method used and strategy for minimiza-
tion of confounders); blinding; outcome measures; statis-
tical methods (including software used, methods to

assess whether statistical assumptions were met and al-
ternative strategies if not); experimental animals (including
health/immune status, genetic modifications, genotype,
previous procedures); experimental procedures (including
controls, enough detail to replicate, and the what/where/
when/why of them); results (summary/descriptive statis-
tics for each group, including a measure of variability, and
an effect size with a confidence interval). The ARRIVE
Essential 10 include all of the reporting guidelines advo-
cated by the National Institute of Neurologic Disorders
and Stroke after their 2012 meeting (Landis et al., 2012).
The ARRIVE Recommended Set consists of: recommen-
dations for information included in abstracts and back-
ground sections of manuscripts; clearly stated objectives;
ethical statements; housing and husbandry conditions;
animal care and monitoring; interpretation and scientific
implications of findings; descriptions of generalizability
and translation; protocol registration; data access state-
ments; declarations of interest.
The PREPARE guidelines, meant to aid in planning stud-

ies (in contrast to the ARRIVE guidelines for reporting stud-
ies), consists of 15 items: literature searches; legal issues;
ethnical issues, harm-benefit assessment, and human
endpoints; experimental design and statistical analysis;
objectives and timescale, funding, and division of labor;
facility evaluation; education and training; health risks,
waste disposal and decontamination; test substances
and procedures; experimental animals; quarantine and
health monitoring; housing and husbandry; experimental
procedures; humane killing, release, reuse or rehoming;
necropsy (Smith et al., 2018).
These two sets of guidelines share several points and

provide a valuable roadmap to informing readers of ani-
mal studies of specific details that are important for con-
ducting follow-up studies and replicating results. Their
enforcement would be valuable to animal research, and
while mostly incumbent on editorial and journal staff, all
animal researchers should be aware of these guidelines
as they evaluate new literature.
Many of the recommendations in the ARRIVE and

PREPARE guidelines are endorsed in a recent report from
the NIH Advisory Committee to the Director Working Group
on Enhancing Rigor, Transparency, and Translatability in
Animal Research (Gladman, 2021). The report focuses on
five themes: (1) improving study design and data analysis;
(2) addressing incomplete reporting and QRPs; (3) improving
selection, design, and relevance of animal models; (4)
improving methodological documentation and results re-
porting; (5) measuring and evaluating the costs and effec-
tiveness of these four efforts. For improving study design
and data analysis, the report recommends more statistical
training and collaborations between animal researchers and
statisticians, along with the creation of avenues in the NIH
grant process to facilitate expert feedback on investigators’
study plans. For addressing incomplete reporting and
QRPs, the report recommends increasing awareness about
preregistering studies and the launching of pilot programs
for preregistration and registered reports. For improving se-
lection, design, and relevance of animal models, it is recom-
mended that investigators justify their choice of animal
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model, exchange best practices for animal models, and that
the NIH fund comparative animal-biology studies, along
with public education of the benefits of animal research.
For improving methodological documentation and
results reporting, the report recommends increasing
awareness among researchers of environmental factors
that can affect research outcomes and should be docu-
mented, and supporting researchers in documenting
long-term care of larger and long-lived animals. The re-
port explicitly recommends the use of the ARRIVE
Essential 10 checklist for reporting animal studies,
along with statistical measures of uncertainty and effect
size when reporting results.
I support the efforts of the NIH to bring attention and

pilot solutions to these issues, and those of journals to en-
force consistent reporting guidelines for animal studies
that enable researchers to conduct precise replication
and rigorous follow-up studies. Comprehensive reporting
guidelines are a critical tool in facing the challenges aris-
ing from “seemingly mundane details” (Hylander and
Repasky, 2016; e.g., housing temperature, lighting condi-
tions, animal strain) that may influence the replicability
and generalizability of scientific findings.

Adversarial Collaborations
Another fascinating development that would resolve the

problematic incentives for positive data are the use of ad-
versarial collaborations (Mellers et al., 2001). Here, two or
more opposing parties design and conduct a set of ex-
periments to resolve some scientific debate, sometimes
with the involvement of a neutral separate party. The op-
position among involved parties provides a set of checks
and balances to prevent analytical flexibility, publication
bias, confirmation bias, and QRPs more generally which
may coerce experimental results to suit a particular narra-
tive. While interpretations of the final results may differ
among the parties, the experimental design and data
analysis are agreed on before any data are collected. In
neuroscience, an adversarial collaboration is currently
taking place to test two competing theories of conscious-
ness: global neuronal workspace theory, and integrated
information theory (Melloni et al., 2019, 2021). This adver-
sarial collaboration is making use of multiple neuroimag-
ing modalities (functional magnetic resonance imaging,
electrocorticography, and magnetoencephalography si-
multaneous with electroencephalography) to study con-
scious vision in adult human participants. The study will
consist of two preregistered experiments, designed by
neuroscientists and philosophers, conducted across six
independent laboratories, with open data and protocols,
along with internal replications in separate subject sam-
ples. The leaders of this project frame it as building on the
successes of “big science” approaches to answering big
questions as exemplified by efforts in physics such as
the Large Hadron Collider at the European Organization
for Nuclear Research (CERN) or the Laser Interferometer
Gravitational-Wave Observatory (LIGO), with counterparts
in neuroscience such as the Allen Institute for Brain
Science.

Other Strategies
While registered reports would be effective for realigning

academic incentives, comprehensive reporting guidelines
for enabling scientists to replicate/generalize studies, and
adversarial collaborations for pitting proponents of theories
against one another to reduce bias, there are other scien-
tific practices that may improve the quality of studies in ani-
mal research.
A further development that aims to improve the repli-

cability and transparency of results reporting is ma-
chine-readable documents that store hypotheses, data,
statistical results, decision rules, and other information
in an easily reusable format that is useful for other sci-
entists who want to examine the data, and meta-re-
searchers who could more easily collate data about
entire topics or fields (Lakens and DeBruine, 2021).
It is worth mentioning that along with QRPs and low

statistical power contributing to low replicability, low
prestudy odds strongly contribute as well (Wilson and
Wixted, 2018; Ulrich and Miller, 2020). If a field predomi-
nantly tests incorrect hypotheses but publishes false
positive findings, then replications are more likely to be
unsuccessful. Additionally, studies with a large number
of tested relationships without any selection procedures
have lower positive predictive value (Ioannidis, 2005).

Recommendations
I conclude with a short set of recommendations (Table

2) to improve replicability in neuroscience, all of which
have been advocated previously (Simmons et al., 2011;
Munafò et al., 2017; Chambers and Tzavella, 2022). The
first and most important is that registered reports be
widely adopted because of their removal of incentives to
engage in QRPs, in turn improving the quality of published
studies, and the safety net they provide researchers who
may obtain null findings in assuring publication. Implicit in
the recommendation of adoption of registered reports is
prevention of analytical flexibility, prespecified stopping
and data removal rules, adequate statistical power and
sample size justification, reporting all dependent varia-
bles, experimental conditions, and animals/participants,
and separation between confirmatory and exploratory
analyses. Registered reports will also make peer review
much easier on researchers, and this will be most valuable
for early career researchers who may not have the resour-
ces to satisfy reviewer requests. Second, I advocate the
adoption and enforcement of comprehensive reporting
guidelines (e.g., ARRIVE, PREPARE) for animal studies
which will enable researchers to most carefully and pre-
cisely replicate and generalize scientific findings. Third, I
recommend greater openness and transparency in the
form of sharing raw data, detailed protocols, analysis
code, reagent information, and other materials. Fourth,
greater importance should be placed on methodological
and statistical training about the influence of p-hacking
and other QRPs on false positive rates, what questions
different statistics (e.g., p-value, effect size, Bayes factor)
can and cannot answer, statistical power and sample size
justification, multiple testing correction, blinded outcome
assessment, randomization, and positive predictive value.
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Fifth, we must incentivize replication studies and adversa-
rial collaborations to severely test old and new hypothe-
ses and theories through public and private funding
models. Finally, I recommend a greater awareness and
valuing of practices that promote openness and replica-
bility when hiring or promoting scientists, as they typically
do not influence these decisions (Rice et al., 2020).

Conclusion
Evidence from large replication projects clearly demon-

strates that replicability is low across scientific fields.
Factors contributing to low replicability include QRPs,
misunderstanding of p-values, and low statistical power.
One of the most significant factors in low replicability is
academic incentives to engage in QRPs that increase the
rate of published false positive findings. All of these issues
are present in animal research, the most striking of which
are the low publication rate of animal studies, low rates of
blinded outcome assessment and randomization, low sta-
tistical power, and high rate of statistically significant find-
ings. While the awareness of QRPs goes back centuries,
only in the past 10–15 years have we obtained empirical
data from large-scale replication projects demonstrating
that replicability is far from ideal. This confers a responsi-
bility on the current generation of scientists to do some-
thing about it. Two of the most practical and impactful
steps to be taken in combating low replicability and im-
proving overall research quality in animal research are the
widespread adoption of registered reports and comprehen-
sive reporting guidelines. Registered reports realign aca-
demic incentives to answer scientifically relevant questions
with rigorous methodology instead of obtaining positive re-
sults, and comprehensive reporting guidelines inform re-
searchers about study parameters that can have significant
effects on experimental results.
One of the goals of this commentary is to galvanize con-

versations about QRPs, registered reports, statistical power,
and replicability more generally among animal researchers.

To date, the vast majority of discussion of these issues
has been among psychologists and statisticians, and I
hope these trends spread to other fields. I applaud the
growing awareness of these issues among animal re-
searchers as can be seen in a recent editorial in the
Journal of Neuroscience (Society for Neuroscience,
2020), a May 2021 special issue of Animal Behavior
and Cognition about replicability in animal behavior
research (Brecht et al., 2021), and innovative ideas
about using historical control group data to increase
statistical power (Bonapersona et al., 2021). I also ap-
plaud the growing movement toward registered re-
ports, with over 300 journals offering them at the time
of writing (Center for Open Science, 2022), and recent
calls for their widespread adoption on ethical grounds
that they would help science more effectively serve
society (Van Calster et al., 2021).
Some may argue that the rate of ongoing scientific pro-

gress is adequate, and that scientific practice does not re-
quire systemic modification to improve replicability.
Recent scientific achievements like the swiftly developed
COVID-19 vaccines, CRISPR, and declining cancer mor-
tality rates are all impactful, but this picture excludes the
counterfactual that if replicability were improved, the time
required to make these advancements and the suffering
and waste accrued along the way would be reduced. How
many lines of research have been pursued based on prior
p-hacked, HARKed, or otherwise low-quality studies and
ended in failure, wasted time and resources? How many
lives have been and are going to be lost to the pursuit
of doomed-to-fail research programs that are based on
false positive findings tainted by QRPs and low power?
Arguments about long-run advancement and self-correc-
tion do not justify the waste of time, money, and loss of
lives that could be saved if the scientific enterprise were
to remove incentives to engage in QRPs, and was fo-
cused on questions and methods rather than results.
There are clear, actionable, pragmatic paths forward to
reduce the time to major scientific advancements, and I

Table 2: Issues and recommendations to improve the replicability of neuroscience, and their recent developments

Problem Solution Developments/examples
QRPs (e.g., p-hacking, publication
bias)

Registered reports improve incentives while pre-
serving career advancement

.300 journals1; PCI-RR; ACD
(theme 2)

Lack of detail to replicate/generalize
studies

Adopt and enforce comprehensive reporting
guidelines

ARRIVE; PREPARE; ACD
(theme 4)

Lack of methods transparency Share protocols, raw data, and analysis code OSF; ACD (theme 5)
Incorrect analyses (e.g., identifying
sex differences)

Improve methodological and statistical training and
facilitate collaborations between experimental sci-
entists and statisticians

ACD (theme 1)

Lack of incentives to replicate stud-
ies, test theories through adversari-
al collaborations

Incentivize replication studies and adversarial col-
laborations through funding opportunities

GAC

Lack of incentives to engage in open,
pro-replication practices

Reward scientists who engage in scientific practices
of openness, transparency, and rigor

Hiring, promotion2

ACD: Advisory Committee to the Director of NIH Working Group on Enhancing Rigor, Transparency, and Translatability in Animal Research (Gladman, 2021);
PCI-RR: Peer Community In-Registered Reports (Eder and Frings, 2021); ARRIVE: Animal Research: Reporting of In Vivo Experiments (Percie du Sert et al.,
2020); PREPARE: Planning Research and Experimental Procedures on Animals: Recommendations for Excellence (Smith et al., 2018); OSF: Open Science
Framework; GAC: Generative Adversarial Collaborations (2021; Retrieved April 24, 2022, from https://gac.ccneuro.org/); CoS: Center for Open Science.
1 https://www.cos.io/initiatives/registered-reports.
2 (Rice et al., 2020).
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urge the scientific community to pursue them. It is incum-
bent on funding sources, government research institu-
tions, universities, and individual researchers to improve
replicability and the incentives of science to ensure proper
use of and returns on public and private investment.
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