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MACHINE LEARNING

Lighting up protein design
Using a neural network to predict how green fluorescent proteins 
respond to genetic mutations illuminates properties that could help 
design new proteins.

GRZEGORZ KUDLA AND MARCIN PLECH

Protein engineering is a growing area of 
research in which scientists use a variety of 
methods to design new proteins that can 

perform certain functions. For instance, enzymes 
that can biodegrade plastics, materials inspired 
by spider silk, or antibodies to neutralize viruses 
(Lu et al., 2022; Shan et al., 2022).

In the past, protein engineering has commonly 
relied on directed evolution, a laboratory proce-
dure that mimics natural selection. This involves 
randomly mutating the genetic sequence of a 
naturally occurring protein to create multiple vari-
ants with slightly different amino acids. Various 
selection pressures are then applied to iden-
tify the ‘fittest’ variants that best carry out the 
desired role (Chen et  al., 2018). Alternatively, 
researchers can use a rational design approach, 
in which new proteins are built using principles 
learned from the study of known protein struc-
tures (Anishchenko et al., 2021).

Now, in eLife, Fyodor A Kondrashov (from the 
Institute of Science and Technology Austria and 
the Okinawa Institute of Science and Technology 
Graduate University) and colleagues – including 
Louisa Gonzalez Somermeyer as first author – 
have combined elements of both approaches 

to engineer new variants of naturally occur-
ring green fluorescent proteins (GFP; Gonzalez 
Somermeyer et al., 2022). First, the team (who 
are based at various institutes in Austria, Japan, 
the United States, the United Kingdom, Germany 
and Russia) generated tens of thousands of GFP 
variants that differed from each other by three to 
four mutations on average, and measured their 
fluorescence. This was used to create a ‘fitness 
landscape’ showing how the genetic sequence of 
each mutant relates to its performance (Figure 1). 
The data was then fed in to a neural network 
that can expand the landscape by predicting the 
performance of variants that were not observed 
experimentally.

Using this machine learning approach, 
Gonzalez Somermeyer et al. were able to design 
fluorescent proteins that differed from their 
closest natural relative by as many as 48 muta-
tions. This is remarkable because in most protein 
mutagenesis experiments it only takes a few 
mutations before the function of the protein 
deteriorates. Evolution, on the other hand, 
can generate functional variants that differ by 
hundreds of mutations through a process of trial 
and error, which is akin to walking along a narrow 
ridge of high fitness one mutational step at a 
time. The neural network, however, appears to 
have jumped straight to a distant peak of high 
fitness (Figure 1). So, how did the network know 
where to take a leap?

To answer this, Gonzalez Somermeyer et 
al. experimented with three GFP proteins that 
originated from evolutionarily distant species. 
They found that machine learning was better at 
generating functional variants of cgreGFP than 
its two homologues, amacGFP and ppluGFP2 (a 
fourth homologue, avGFP, was also studied, but 
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not in the machine learning experiment). This 
allowed the team to look for properties within 
each protein’s genetic sequence and fitness land-
scape which correlated with its machine learning 
performance.

Analysis of the fitness landscape revealed 
that the homologues differed in the number of 
mutations they could tolerate: it took on average 
three to four mutations until the fluorescence of 
cgreGFP and avGFP deteriorated, but seven to 
eight mutations were needed to compromise 
the function of amacGFP and ppluGFP2. The 
proteins also differed in their general sturdiness: 
ppluGFP2 was stable when exposed to high 
temperatures, whereas the structure of cgreGFP 
was more sensitive to changes in temperature.

Finally, Gonzalez Somermeyer et al. found 
that the increased mutational sensitivity of avGFP 

and cgreGFP (and to a lesser degree ppluGFP2) 
was due to negative epistasis – that is, when an 
individual mutation is well tolerated, but has a 
negative effect on the protein’s function when 
combined with other mutations (Bershtein et al., 
2006; Domingo et  al., 2019). The reduced 
fluorescence of amacGFP, however, could be 
ascribed almost entirely to additive effects, with 
each mutation incrementally making the protein 
less functional.

In order to generate functional variants, the 
network needs an opportunity to learn which 
properties of the fitness landscape are relevant 
from the data provided. The findings of Gonzalez 
Somermeyer et al. suggest that to predict a 
protein’s function, the algorithm only requires 
data on the effects of single-site mutations and 
low-order epistasis (interactions between small 
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Figure 1. The fitness landscape of green fluorescent proteins. Fitness landscapes provide a graphical 
representation of how a protein’s genetic sequence relates to its performance, leading to a multidimensional 
surface made up of peaks, ridges, and valleys. In the fitness landscape shown, horizontal distance represents the 
number of mutations that separate variants of a protein, while vertical elevation represented by contour lines 
indicates the fluorescence of each mutant. Two naturally occurring green fluorescent proteins (GFPs; dots outlined 
in black) reside on different peaks of the landscape (top left and top right) and are connected by a narrow ridge 
(area of high fitness). Mutant proteins at the peaks and ridges are all functional and able to fluoresce (green 
dots), whereas those in the valleys are non-functioning (grey dots). Application of a machine learning algorithm 
expanded the fitness landscape (right; blue contour lines) by including mutations that are not generated by 
evolution. This led to the creation of functional, synthetic variants (green dot, bottom right) that reside on different 
fitness peaks to variants that are naturally occurring.

Image credit: Marcin Plech & Grzegorz Kudla (CC BY 4.0).
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sets of mutations). This is good news for the 
protein engineering field as it suggests that prior 
knowledge of high-order interactions between 
large sets of mutations is not needed for protein 
design. Furthermore, it explains why the neural 
network is better at generating new variants of 
cgreGFP, which has a sharp fitness peak and high 
prevalence of epistasis.

In sum, these experiments provide a 
successful case study in protein engineering. 
An interesting extension would be to analyse 
the three-dimensional structures of the vari-
ants using AlphaFold, an algorithm which can 
predict a protein’s structure based on its amino 
acid sequence (Jumper et al., 2021). This would 
reveal if data from AlphaFold improves the 
prediction of functional variants, and help to 
identify structural features that rendered some of 
the variants non-fluorescent despite them being 
predicted to work. In the near future, assessing 
a new variant’s structure before it is synthesized 
could become a standard validation step in the 
design of new proteins. Furthermore, studying 
the fitness landscapes of multiple related vari-
ants, as done by Gonzalez Somermeyer et al., 
could reveal how a protein’s genetic sequence 
and structure changed over the course of evolu-
tion (Hochberg and Thornton, 2017; Mascotti, 
2022). A better understanding of the evolution of 
proteins will help scientists to engineer synthetic 
molecules that carry out specific roles.
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