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Events that happen at a particular place and time come to define our episodic memories.
Extensive experimental and clinical research illustrate that the hippocampus is central to
the processing of episodic memories, and this is in large part due to its analysis of con-
text information according to spatial and temporal references. In this way, hippocampus
defines ones expectations for a given context as well as detects errors in predicted contex-
tual features. The detection of context prediction errors is hypothesized to distinguished
events into meaningful epochs that come to be recalled as separate episodic memories.
The nature of the spatial and temporal context information processed by hippocampus is
described, as is a hypothesis that the apparently self-regulatory nature of hippocampal
context processing may ultimately be mediated by natural homeostatic operations and
plasticity. Context prediction errors by hippocampus are suggested to be valued by the
midbrain dopamine system, the output of which is ultimately fed back to hippocampus
to update memory-driven context expectations for future events. Thus, multiple network
functions (both within and outside hippocampus) combine to result in adaptive episodic
memories.

Keywords: hippocampus, prediction errors, prefrontal cortex, dopamine, striatum, memory, decision making

INTRODUCTION
Events are typically defined by the situations that are associated
with significant outcomes. Each situation, or context, is multifac-
eted in that it includes not only the external sensory environment,
but also our intrinsic motivational and emotional state, as well as
social considerations. Thus it should not be surprising that the cells
of the hippocampus, long thought to mediate episodic or event-
based memories (e.g., O’Keefe and Nadel, 1978; Tulving, 2002),
have been found to represent a variety of context-defining infor-
mation. The challenge has been, however, to understand how these
hippocampal representations of context-specific information are
used to generate episodic memories. The following discusses the
view that hippocampus represents context information in order to
determine whether the expected contextual features match those
currently being experienced. The identification of mismatches
(termed context prediction errors) may lead to a cascading series of
assessments through connected brain regions that could ultimately
alter future decisions and update memories.

SPATIAL CONTEXT-DEPENDENCY OF HIPPOCAMPAL
NEURAL CODES
It is generally accepted that hippocampus processes contextual
information (e.g., Hirsh, 1974; Myers and Gluck, 1994; Anagnos-
taras et al., 2001; Maren, 2001; Fanselow and Poulos, 2005; Bouton
et al., 2006). There are numerous demonstrations in which con-
ditioned responses to contextual stimuli are eliminated with hip-
pocampal damage while responses to discrete conditioned stimuli
are unaffected (e.g., Kim and Fanselow, 1992; Phillips and LeDoux,
1992, 1994). Also, animals with hippocampal or entorhinal corti-
cal damage do not show the normal decrement in conditioned
responding after a shift in context (Penick and Solomon, 1991;
Freeman et al., 1996a,b). The hippocampus of freely behaving

animals is predisposed to represent context information within
a spatial framework: during unrestrained navigation, hippocam-
pal neurons fire selectively as animals traverse restricted areas of
their environment, referred to as place fields (O’Keefe and Dostro-
vsky, 1971). As decades of research have shown (summarized in
Mizumori, 2008), place fields are dynamic and integrated rep-
resentations of multiple types of context-defining information.
For example, changing any modality of cues, the motivational
state, or the behaviors needed to perform the task result in alter-
ations of place field properties, a process commonly referred to as
remapping.

The readiness of place fields to remap is evident when changes
are made to the visual environment (e.g., Ranck, 1973; O’Keefe,
1976; Olton et al., 1978; Muller and Kubie, 1987), such as
its geometric features (e.g., Gothard et al., 1996; O’Keefe and
Burgess, 1996; Wiener, 1996). Other sensory inputs also bias
place field activity, including olfactory (Save et al., 2000), audi-
tory (O’Keefe and Conway, 1978; McEchron and Disterhoft, 1999),
and somatosensory information (Young et al., 1994). Thus, an
extensive literature (Mizumori, 2008) verifies that hippocampal
pyramidal neurons process multimodal sensory input. Hippocam-
pal place fields are also sensitive to changes in a task’s reward
structure (Smith and Mizumori, 2006b; Wikenheiser and Redish,
2011). Smith and Mizumori (2006b) explicitly tested this idea by
training rats to distinguish Context A from Context B accord-
ing to where reward was expected to be found. The motivational,
sensory, and behavioral requirements of task performance were
purposely held constant across the two contexts so that changes in
place fields could be attributed to the recall of a different mem-
ory. Place fields remapped at the beginning of trials in Context
B, a time when there is heightened uncertainty about the con-
text conditions. In a similar experiment, Wikenheiser and Redish
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Mizumori Context prediction and episodic memory

(2011) demonstrated that changes in reward contingency can
modulate the trial-to-trial variability of hippocampal place cell
activity, again suggesting that uncertainty can drive place field
remapping. Finally, the relative contributions of sensory, moti-
vation (including reward), or response information to a given
place field vary with task demands, and this is evidenced by
findings across many laboratories that place fields change when
rats use identical information to solve tasks according to differ-
ent mnemonic strategies (e.g., Ferbinteanu and Shapiro, 2003;
Mizumori et al., 2004; Eschenko and Mizumori, 2007).

In sum, it is clear that place fields can come to represent different
types of sensory, behavioral, and intrinsic information that have
strong spatial and contextual (i.e., experience-dependent) features,
thereby validating the term spatial context when referring to the
informational content of place fields (Nadel et al., 1985; Mizumori
et al., 1999, 2000; Jeffery et al., 2004). If this information indeed
underlies the effective use and generation of episodic memories,
Nadel (2008) has argued that the neural representations that define
a familiar context must be relatively stable and predictable, main-
taining their relationship to each other, until prediction errors are
detected. This pattern of place field responses has indeed been
documented in the literature. Stable place fields, then, can be said
to reflect the integration of stable background sensory information,
internal state or motivational information, as well as response or
behavioral outcome expectancies within a spatial framework as a
function of time.

To the extent that different cognitive strategies are mediated
by different underlying memories, one network pattern of acti-
vated place cells is thought to reflect one memory, and a different
pattern of activated place cells corresponds to a different mem-
ory (e.g., Samsonovich and McNaughton, 1997). When one refers
to place field remapping, then, implicit is the notion that each
map (or collection of activated place cells) is driven by a different
memory.

SPATIAL CONTEXT DISCRIMINATION AND PREDICTION
As striking as location-selective firing is to even the naive observer,
equally impressive is the fact that the otherwise stable place
fields readily remap when most any feature of the spatial context
changes. This sensitivity to changes in context has led many to sug-
gest that a fundamental operation of the hippocampus is to detect
changes in contextual information so that animals can discrim-
inate contexts (e.g., Smith and Mizumori, 2006a,b). The ability
to distinguish contexts likely relies on computations that are often
attributed to hippocampus, including those that underlie the flexi-
ble use of conjunctive, sequential, relational, and spatial algorithms
(e.g., O’Keefe and Nadel, 1978; Foster et al., 1987; Eichenbaum
et al., 1999; Wood et al., 2000; Eichenbaum and Cohen, 2001;
O’Reilly and Rudy, 2001; Fortin et al., 2002). The latter, in turn,
are thought to be supported by various forms of pattern separa-
tion and pattern completion neurocomputations (Mizumori et al.,
2004, 2007b; Penner and Mizumori, 2012a,b).

A Context Discrimination Hypothesis (CDH) postulates
that single hippocampal neuronal representations of context
provide multidimensional data to population-based network
computations that ultimately determine whether expected con-
textual features of a situation have changed (e.g., Mizumori et al.,

1999, 2000, 2007a; Smith and Mizumori, 2006a,b; Mizumori,
2008). Initial suggestive evidence of this interpretation of hip-
pocampal network function was the repeated observation that
upon less than complete changes in a familiar context, many but
not all place fields remap (e.g., Tanila et al., 1997; Mizumori et al.,
1999; Brown and Skaggs, 2002; Knierim, 2002; Lee et al., 2004). The
place fields that remained in the face of changes in a familiar con-
text were considered to represent the stable or expected contextual
features. The place fields that changed, then, could be thought of as
representing current context information. The existence of these
two types of place field responses gave rise to the notion that hip-
pocampus compares expected and experienced context features
(Mizumori et al., 1999). This idea begs the question, then, why
does hippocampus represent both expected (learned) and current
context information? These hippocampal spatial context represen-
tations (O’Keefe and Nadel, 1978; Nadel and Wilner, 1980; Nadel
and Payne, 2002) may contribute to a match-mismatch type of
analysis that evaluates the present context according to how simi-
lar it is to the context that an animal expects to encounter based on
past experiences (e.g., Gray, 1982; Vinogradova, 1995; Mizumori
et al., 1999, 2000; Gray, 2000; Lisman and Otmakhova, 2001; Has-
selmo et al., 2002; Anderson and Jeffery, 2003; Jeffery et al., 2004;
Hasselmo, 2005b; Smith and Mizumori, 2006a,b; Manns et al.,
2007a; Nadel, 2008). Detected mismatches may be signaled by a
change in the pattern of input from hippocampus or possibly by a
specific input pattern. This question remains to be answered. Nev-
ertheless, mismatch signals can be used to identify novel situations
and to distinguish different contexts, functions that are neces-
sary to define significant events or episodes. Mismatch signals also
may engage neural mechanisms that determine the value of the
mismatch so that existing memories can be updated and/or new
memories can be formed. When context match signals are gen-
erated, the effect could be to strengthen currently active memory
networks located elsewhere in the brain (e.g., neocortex). In this
way, hippocampus may play different mnemonic roles depending
on whether or not contexts actually change.

In support of the CDH, disconnecting hippocampus by fornix
lesions impairs context discrimination (Smith et al., 2004), and
hippocampal lesions reduce animals’ ability to respond to changes
in a familiar environment (Good and Honey, 1991; Save et al.,
1992a,b). Spatial novelty detection corresponds to selective eleva-
tion of the immediate early gene c-fos in hippocampus, and not
in surrounding parahippocampal cortical regions (Jenkins et al.,
2004). Also, as described above, hippocampal neurons show sig-
nificantly altered firing patterns when rats experience spatial or
non-spatial changes in a familiar environment (O’Keefe, 1976;
Muller and Kubie, 1987; Wood et al., 1999; Fyhn et al., 2002;
Ferbinteanu and Shapiro, 2003; Moita et al., 2004; Yeshenko et al.,
2004; Leutgeb et al., 2005a,b; Puryear et al., 2006; Smith and Mizu-
mori, 2006b; Eschenko and Mizumori, 2007). As an example,
Smith and Mizumori (2006b) showed that hippocampal neurons
develop context-specific responses only when rats were required to
discriminate contexts. Discriminating neural responses were not
observed when rats were allowed to randomly forage for the same
amount of time. Further, Manns et al. (2007b) demonstrated that
relative to match trials in an odor cue or object recognition task,
CA1 neurons preferentially discharged when animals experienced
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a non-match situation in these same tasks. Also consistent with
the CDH, neuroimaging studies of human performance shows
that hippocampus becomes differentially active during match and
mismatch trials (Kumaran and Maguire, 2007; Kuhl et al., 2010;
Chen et al., 2011; Dickerson et al., 2011; Foerde and Shohamy,
2011; Duncan et al., 2012a,b).

The detection of changes in context is fundamentally impor-
tant for the continual selection of appropriate behaviors that
optimize performance and learning in a variety of tasks (e.g.,
navigation-based learning, instrumental conditioning, or classi-
cal conditioning). Context discrimination engages and prepares
cellular mechanisms for rapid and new learning at potentially
important times (Paulsen and Moser, 1998), as it is generally
known that novelty detection increases attention and exploratory
behaviors in a variety of tasks. Interestingly, hippocampal cell fir-
ing tends to occur during the“encoding phase”of the ongoing theta
rhythm (Hasselmo, 2005a), which is increased during exploratory
and investigatory behaviors (Vanderwolf, 1969). Thus, detection
of a non-match situation can change the relationship between cell
discharge and the local theta rhythm such that encoding functions
are enhanced. Detection of matches, on the other hand, does not
cause changes in the hippocampal neural activity profile, resulting
in efferent messages that continue to retrieve/utilize the currently
active memory network that recently drove the execution of suc-
cessful responses. Context discrimination, then, can be viewed as
being critical for the formation of new episodic memories because
it leads to the separation in time and space one meaningful event
from the next. Such division of memories could facilitate long-
term information storage according to memory schemas (Tse et al.,
2007; Bethus et al., 2010).

Since hippocampus seems particularly sensitive to changes in
the expected (i.e., experience-dependent) context-defining fea-
tures of a situation, its mismatch signals can be considered to
reflect errors in predicted encounters with contextual features, or
context prediction errors. Indeed, it has been shown that the greater
the change in familiar context information, the more place fields
remap (e.g., Leutgeb et al., 2005a). It should be noted, however,
that when hippocampal cells respond differently to two contexts,
it may be because they receive different afferent signals when ani-
mals experience different contexts. A second possibility is that
the hippocampus receives input from memories stores that define
context expectations, and this is actively compared within hip-
pocampus to different input that defines the current context. The
simultaneous presence of both familiar and new context informa-
tion in hippocampus supports the latter possibility. In either case,
however, transmission of a context prediction error signal from
hippocampus may inform distal brain areas that a change in the
context has occurred. Upon receipt of the context prediction error
message, efferent midbrain-striatal structures may respond with
changes in excitation or inhibition that reflect preparations for, or
actual evaluation of, the subjective value of the context prediction
error signal (e.g., Mizumori et al., 2004; Lisman and Grace, 2005;
Humphries and Prescott, 2010; Penner and Mizumori, 2012a). On
the other hand, a hippocampal signal indicating that there was no
prediction error may enable plasticity mechanisms that ultimately
allow new information to be incorporated into existing memory
schemas (e.g., Mizumori et al., 2007a,b; Tse et al., 2007; Bethus

et al., 2010). Thus, hippocampal context analyses become critical
for the formation of new episodic memories not only because pre-
diction signals provide a mechanism that separates in time and
space one meaningful event from the next, but also because the
outcome of the prediction error computation engages appropri-
ate neuroplasticity mechanisms in efferent structures that promote
subsequent adaptive decisions and memory.

The midbrain dopaminergic system is part of a neural net-
work that assesses the value of behavioral outcomes. Reward-
induced excitation of dopamine neurons scales to the magni-
tude of expected and encountered rewards regardless of the task
demands (Schultz et al., 1997; Puryear et al., 2010; Jo et al.,
2013): encounters with large rewards are accompanied by larger
amplitude phasic dopamine responses than encounters with small
amounts of reward. In addition, dopamine cells respond to unex-
pected reward absences by decreasing their firing rates (Schultz
et al., 1997; Puryear et al., 2010). The reduction in firing when
rewards are unexpectedly absent is greater if the expectation was
for a large, and not small, reward. Further, these reward responses
are context-dependent in a manner similar to what is observed
for hippocampal place fields (Puryear et al., 2010), a result consis-
tent with the view that hippocampal information guides reward
value assessment systems of the brain (e.g., Mizumori et al., 2004;
Lisman and Grace, 2005; Puryear et al., 2010) such that the sig-
nificance of context prediction error messages can be determined
(e.g., Penner and Mizumori, 2012a,b). The outcome of the value
determination may ultimately come to bias future behavioral
responding so that desired goals are more likely to be achieved
(see review in Penner and Mizumori, 2012b).

CONTEXT-DEPENDENT TEMPORAL INFORMATION
PROCESSING AND EPISODIC MEMORY
Different episodic memories contain information within unique
spatial and temporal domains (Tulving, 2002). While there is
growing clarity regarding how and why hippocampal neurons
represent spatial context information (e.g., Knierim et al., 2006;
McNaughton et al., 2006; Penner and Mizumori, 2012a,b; Pilly
and Grossberg, 2012; Buzsaki and Moser, 2013), the mechanisms
by which spatial context-defined events are distinguished tempo-
rally in the service of episodic memory functions remains unclear.
However, current evidence support the hypothesis that hippocam-
pus contains an organization structure that permits grouping
of information into a number of different time scales (e.g., as
reviewed in Buzsaki, 2006; Lisman and Redish, 2009; Grossberg
and Pilly, 2013), that are relevant for comparing expected and
experienced context information, and thus for episodic memory.

The activity of single neurons and neural networks naturally
oscillate within hippocampus and across the brain according to a
range of frequencies from low (e.g., 2–4 Hz) to high (e.g., 80 Hz)
(Buzsaki, 2006). Oscillatory activity reflects alternating periods of
synchronous neural firing: synchronous activity is associated with
greater synaptic plasticity and stronger coupling amongst cells of
an ensemble, while desynchronous periods are associated with less
plasticity and weak signal strength (Hasselmo et al., 2002; Has-
selmo, 2005a; Buzsaki, 2006). Thus, inherent in oscillatory neural
activity is the ability to segregate on a (very short) time scale
the processing of event-related information. In fact, the precise
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temporal alignment of place cell firing relative to the phase of the
ongoing (theta) rhythm processes as animals move through the
cell’s place field (referred to as phase precession; O’Keefe and Recce,
1993) suggests the possibility that context-dependent changes in
place cell activity alters the state of synaptic plasticity in hippocampus
according to experience. By extension, then, an important impact
of altered contextual features is the corresponding change in the
nature and/or efficiency of information read into and passed on
from hippocampus. Importantly, hippocampal oscillations may
enable more temporally precise context representations, and there-
fore episodic memory. This in turn may enable more precise
detection of unexpected context information.

Hippocampal circuits are also observed to synchronize their
activity at frequencies greater than the theta frequency. Of par-
ticular interest is the gamma band (30–80 Hz) which has been
observed in many sensory and motor areas of cortex, hippocam-
pus, parietal cortex, and striatum (e.g., Leung and Yim, 1993;
Brosch et al., 2002; Csicsvari et al., 2003; Berke et al., 2004;
Bauer et al., 2006; Hoogenboom et al., 2006; Womelsdorf et al.,
2006). Orchestration of both excitatory and inhibitory networks
within each structure underlies the generation of synchronized
gamma oscillations (e.g., Whittington et al., 1995; Vida et al.,
2006). Although the functional importance of gamma oscillations
remains debated, information carried by the cells that participate
in a gamma-burst is effectively accentuated against a background
of disorganized neural activity. Therefore, it has been suggested
that gamma-bursts represent a fundamental mechanism by which
information becomes segmented, filtered, or highlighted within a
structure, as well as a mechanisms by which to coordinate infor-
mation across structures (Buzsaki, 2006). Theta and gamma have
many common physiological and behavioral relationships, sug-
gesting that they are components of a coordinated and larger scale
oscillatory network. For example, similar to theta rhythms, sin-
gle unit responses that are recorded simultaneously with gamma
oscillations have been found to have specific phase relationships
to the gamma rhythm, and both theta and gamma are at least
in part regulated by dopamine (e.g., Berke, 2009; van der Meer
and Redish, 2009; Kalenscher et al., 2010). Therefore, changes in
context that induce remapping (i.e., that altered the constellation
of activated neurons), likely change patterns of gamma activity
that are characteristic of a familiar context. Since gamma oscil-
lations may effectively select salient information that ultimately
impacts decisions, learning, and behavioral responses (e.g., van
der Meer and Redish, 2009; Kalenscher et al., 2010), it is predicted
that changes in gamma oscillatory patterns are likely to alter future
decisions and learning. Further, gamma-bursts should become
more predictable as learning takes place within a given context.
The relationship between place fields and the overriding theta and
gamma rhythms is then an important mechanism by which spa-
tially organized context information becomes temporally organized
as animals experience an environment (Buzsaki, 2006; Buzsaki and
Moser, 2013). Specifically, this type of temporal relationship may
confer a high level of temporal alignment (and hence accuracy)
between expected and experienced context information, and this
in turn should increase the accuracy of their comparison.

Since multiple brain areas demonstrate rhythmic neural activ-
ity, neural oscillations are likely a fundamental mechanism for

coordinating neural activity across the brain in the service of adap-
tive decisions, learning, and memory (e.g., Buzsaki, 2006; Fries,
2009; Monaco et al., 2011; Penner and Mizumori, 2012b). Numer-
ous laboratories have now reported that synchronous neural activ-
ity (in particular coherence of the theta rhythm) can be detected
within and between memory-related brain structures such as the
hippocampus, striatum, or prefrontal cortex (Tabuchi et al., 2000;
Engel et al., 2001; Fell et al., 2001; Varela et al., 2001; Siapas
et al., 2005; DeCoteau et al., 2007a; Womelsdorf et al., 2007).
For example, hippocampal theta activity can become synchro-
nized with place cell firing, resulting in coordinated timing of
spatial coding (O’Keefe and Recce, 1993; Gengler et al., 2005).
Also, theta oscillations within the striatum can become entrained
to the hippocampal theta rhythm (Berke et al., 2004; DeCoteau
et al., 2007a). Stimulating the striatum can induce hippocampal
theta activity (Sabatino et al., 1985) and increases high frequency
theta power, which is thought to be important for sensorimotor
integration (Hallworth and Bland, 2004). Also, hippocampal and
striatal activity theta activity become increasingly coherent dur-
ing goal-directed navigation (Allers et al., 2002; DeCoteau et al.,
2007a). When neural activity is disrupted in the striatum via
D2 receptor antagonism, striatal modulation of high frequency
hippocampal theta activity is also disrupted. The result is that
motor and spatial/contextual information is not integrated, and
task performance is impaired (Gengler et al., 2005).

Particularly intriguing is a finding common to both hippocam-
pus and striatum, and that is that synchronous activity occurs in
specific task-relevant ways (e.g., Hyman et al., 2005; Jones and
Wilson, 2005) particularly during times when rats are said to be
engaged in decision making (e.g., Benchenane et al., 2010). For
example, striatal theta is modified over the course of learning
on an egocentric T-maze task, increasing in coherence as the rat
chooses and initiates turn behavior (DeCoteau et al., 2007a,b).
Rats that learn the task develop an antiphase relationship between
hippocampal and striatal theta oscillations, while rats that do not
learn the task also do not show this type of theta relationship. This
coherence has also been observed during striatal-dependent clas-
sical conditioning (Kropf and Kuschinsky, 1993). Coherent theta
oscillations across distant brain structures can be enhanced with
application of dopamine (Benchenane et al., 2010). Dopamine,
then, may play a crucial role in coordinating ensemble activity
across brain areas during times of decision making during naviga-
tion. Functionally, this type of control by dopamine suggests that
information about the saliency of reward may determine which
brain systems become synchronized (and desynchronized). This
in turn guides the nature and type of information that is used to
update memories and to determine future responses.

Task demands, then, seem to dictate the nature of neural syn-
chrony across distal brain structures, and this synchrony may take
the form of comodulation of existing theta and gamma rhythms
as well as the generation of an additional rhythm. The latter was
illustrated in a recent study by Fujisawa and Buzsaki (2011). They
demonstrated that the existence of very low frequency (4 Hz)
entrainment of local field potentials, e.g., the 7–12 Hz theta oscil-
lation, that emerges only during phases of a maze task when rats
made decisions (i.e., in the stem of a T-Maze). During decision
periods, the 4 Hz rhythm was phase locked to theta oscillations
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in both the prefrontal cortex and VTA. Some of the individual
prefrontal and VTA neurons were also phase locked to hippocam-
pal theta oscillation at this time. Importantly the 4 Hz rhythm
was present only during a decision making period when theta
oscillations were also present. The findings of this study suggest
that a 4 Hz rhythm may coordinate activity in distal brains struc-
tures specifically as animals make decisions during goal-directed
navigation.

Assuming that“orchestrating”rhythms such as the 4 Hz rhythm
also incorporate hippocampal neural activity, place field remap-
ping is expected to have effects that extend well beyond hippocam-
pal computations. When an expected context changes, evidence
shows that place fields change by either increasing or decreasing
firing rates and/or changes in their spatial specificity and reliabil-
ity. This period of place field change corresponds to the period of
uncertainty that is generated with by the context change. There-
fore, as uncertainty decreases, place fields become more stable,
and this in turn should result in the generation of more sta-
ble comodulation of specific frequencies of EEG across brain
structures.

To fully understand the role of the hippocampus in episodic
memory requires an understanding of how hippocampus relates
event-specific details to particular temporal features of a task.
Recently many (Manns et al., 2007b; Pastalkova et al., 2008; Gill
et al., 2011; McDonald et al., 2011; Kraus et al., 2013) have suggest
the existence of “time cells” in addition to place cells in hippocam-
pus. These studies demonstrate that the timing of cell firing by a
subpopulation of hippocampal neurons is not directly related to
spatial or behavioral metrics such as distance, location, or running
speed but rather they appear tuned to the timing of task-relevant
events. Another challenge for future research is to better define how
hippocampal context prediction error signals are interpreted and
valued by neural systems responsible for decisions based on the
most recent context analysis, and ultimately, by neural systems that
update memories (Lisman and Grace,2005; Penner and Mizumori,
2012a,b). The midbrain dopaminergic system is likely involved
in this assessment process since dopamine neurons are not only
known to respond to changes in the learned value of rewards,
and to cues that predict future rewards (Schultz et al., 1997),
but also they respond to changes in reward values in a context-
dependent manner when rats perform a hippocampal-dependent
task (Puryear et al., 2010).

Dopamine neural responses to the expectation of rewards seem
to be regulated at least in part by prefrontal cortex (Jo et al.,
2013), suggesting that the prefrontal cortex may relay to dopamine
neurons information based on stored memories about past con-
sequences of behavior. Penner and Mizumori (2012b) recently
reviewed an extensive literature that describes how dopamine cell
responses to hippocampal-based context information can come to
regulate subsequent choices and response selection as information
is processed through iterative striatal-to-cortex information loops
(Haber et al., 2000). The result of this sequence of striatal-cortical
processing is the determination of the degree to which expected
behavioral outcomes occurred, and the updating of long-term
memory. The latter, in turn, updates the definition of expected
context features that cortex subsequently provides hippocampus
(Penner and Mizumori, 2012a,b; Mizumori and Jo, 2013). Indeed

Martig and Mizumori (2011) have shown that inactivation of the
VTA results in unstable hippocampal place fields and behavioral
errors when rats perform a hippocampal-dependent spatial task.
Since the outcome assessment by VTA impacts the subsequent
stability of hippocampal neural codes and behavioral accuracy on
a spatial working memory task, it is likely that hippocampus and
the VTA-striatal circuitry comprise key components of an adaptive
loop of neural processing that allows organisms to continuously
update memories and memory representations according to the
outcomes of choices made within circumscribed epochs of time.

HOMEOSTATIC REGULATION OF NEURAL SIGNALS OF
PREDICTION ERRORS
An emerging view is that the brain has evolved in large part to
allow organisms to accurately predict the outcomes of events and
behaviors (e.g., Llinas and Roy, 2009; Buzsaki, 2013; Buzsaki and
Moser, 2013; Mizumori and Jo, 2013). More specifically, it has
been suggested that organisms have been able to adapt to envi-
ronments and societies of increasing complexity because brains
evolved more complex neural circuitry that support the abil-
ity to make dynamic and conditional decisions and predictions.
These neural ensembles evolved to retain information over times
of varying scales depending on the desired goal. Different brain
areas are known to generate and retain sequences of informa-
tion, and this ability can be accounted for by state-dependent
changes in network dynamics (Mauk and Buonomano, 2004),
internally generated oscillatory activity (Pastalkova et al., 2008),
and/or dedicated “time cells” (Kraus et al., 2013). Thus, many
elemental features of prediction analyses seem to be intrinsic, or
self-generated. This property is likely very important for it may
provide a mechanism by which prediction analyses can occur auto-
matically so that organisms naturally seek control of the outcomes
to their behaviors. What, then, might be the mechanism of a self-
generated, and thus auto-regulated, brain prediction system? It is
suggested here that such a mechanism may to some extent mirror
principles of self-regulation at synaptic and neural circuit levels
(e.g., Turrigiano, 1999, 2008, 2011; Marder and Prinz, 2003; Turri-
giano and Nelson, 2004; Marder and Goaillard, 2006; Shetty et al.,
2012; Mizumori and Jo, 2013).

Marder and Goaillard (2006) suggested that homeostatic neu-
roplasticity may be nested: calcium sensors may monitor neural
firing rates, then up or down regulate the availability of glutamate
receptors to ramp up or down firing rates toward an optimal firing
rate set point. Groups of neurons or neural networks may sense
changes in firing collectively to regulate experience-dependently
population activity levels and patterns of activation. In this way
homeostatic plasticity enables groups of neural circuits to find
a balance between flexible and stable processing as needed to
learn from experiences, and to be responsive to future changed
inputs. The details of how networks of cells or their connec-
tions engage in homeostatic regulation remain to be discovered.
Nevertheless, it is worth noting that homeostatic regulation at
the neural systems level is clearly evident from studies of brain
development, as well as from studies of reactive or compensatory
neuroplasticity mechanisms that occur in response to experience
(e.g., sensorimotor learning; Froemke et al., 2007) or brain injury
(e.g., brain trauma or addiction; Robinson and Kolb, 2004; Nudo,
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2011). While specific homeostatic neural plasticity mechanisms
have not been used to account for complex learning, current the-
ories of reinforcement- and context-based learning and memory
commonly rely on the autoregulation of feedback loops.

A homeostatic framework could apply to the autoregulation of
prediction analyses, which in turn will impact regulation of future
decisions and memories. Such a framework includes variables
that are monitored by sensors and then regulated by controllers,
and thus it likely involves multiple, interactive, and hierarchi-
cally organized (auto-regulated) information loops analogous to
what was described by Buzsaki (2013). At the cellular or synap-
tic levels, homeostatic plasticity mechanisms (Turrigiano et al.,
1998; Marder and Goaillard, 2006; Turrigiano, 2011) may regulate
cell excitability around a neural activity set point such that neu-
rons retain maximal responsivity to future inputs. This process
enables neurons to achieve a balance between synaptic stability
and flexibility. Changes in calcium flux appear to be an impor-
tant part of the sensing system that determines the current level
of firing. It is hypothesized here that a prediction error, or mis-
match signal, may result in higher or lower firing rates, at which
time controller mechanisms should be engaged to bring the fir-
ing rates back to set point levels. Indeed reward prediction errors
are illustrated by transient and significant reduced or elevated
neural firing depending on the valence of the error (Schultz et al.,
1997). Future research should focus on understanding the enabling
and restorative mechanisms of prediction error signals. Of par-
ticular interest are mechanisms by which cortical memory may
impact the threshold for signaling prediction errors. One corti-
cal area of interest is the prefrontal cortex given (a) its intrinsic
recurrent circuitry and detailed excitatory and inhibitory extrinsic
connections (as reviewed in Arnsten et al., 2012) with both hip-
pocampal/temporal lobe and reward valuation systems, and (b)
given its role in attention and working memory (e.g., Fuster, 2006,
2008, 2009). That is, prefrontal cortex may orchestrate and coor-
dinate the level of neural excitability in different prediction error
brain areas according to homeostatic principles and in this way,
bias the nature of the outputs of connected brain areas accord-
ing to experience and recent outcomes of decisions. Prefrontal
cortex also has strong functional connections with other cortical

memory areas (e.g., parietal and temporal cortex), and is thus
strategically positioned to influence long-term memory updating
based on prediction error analyses. In this way the most recent
memories can be fed forward to hippocampus for future context
evaluation.

Although it is reasonable to assume that the prefrontal cor-
tex controls or biases neural signaling in distal prediction brain
regions, it should be noted that other sources of control of cell
excitability may arise via direct interconnections amongst the mul-
tiple prediction detection areas of the brain. For example, a predic-
tion error signal from the hippocampus could be transmitted to
midbrain-striatal neurons along pathways that do not necessarily
include the prefrontal cortex. Indirect support for this idea come
from observations that conditions that produce error messages in
the hippocampus change reward responses of dopamine neurons
(Puryear et al., 2010; Jo et al., 2013), phasic theta comodulation
is observed between hippocampus and striatum (DeCoteau et al.,
2007a) during decision tasks, and comodulation of neural activity
has been reported between prefrontal cortex and parietal cortex
(Diwadkar et al., 2000). However, the identification of such cor-
relations does not necessarily mean that this is the source of the
comodulation or neural synchrony. Finding the source of neural
regulation remains a challenge for the general field of systems
neuroscience, one that may soon have answers with continued
development of new methodologies such as optogenetic analyses.

In sum, homeostatic regulatory processes may contribute to
the automatic and continuous self-regulatory nature of predic-
tion error analysis, and ultimately decision making and episodic
memory. Such a naturally adaptive mechanism optimizes the con-
tribution of different types of prediction error signals to future
decisions and actions according to the pattern of recent successes
and failures in prediction.
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