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Aim: To identify differential methylation related to prescribed opioid use. Methods: This study examined
whether blood DNA methylation, measured using Illumina arrays, differs by recent opioid medication use
in four population-based cohorts. We meta-analyzed results (282 users; 10,560 nonusers) using inverse-
variance weighting. Results: Differential methylation (false discovery rate <0.05) was observed at six
CpGs annotated to the following genes: KIAA0226, CPLX2, TDRP, RNF38, TTC23 and GPR179. Integrative
epigenomic analyses linked implicated loci to regulatory elements in blood and/or brain. Additionally,
74 CpGs were differentially methylated in males or females. Methylation at significant CpGs correlated
with gene expression in blood and/or brain. Conclusion: This study identified DNA methylation related
to opioid medication use in general populations. The results could inform the development of blood
methylation biomarkers of opioid use.
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Opioid use and dependence are major public health concerns. Opioid medications are prescribed to treat moderate-
to-severe pain because they bind to opioid receptors to reduce pain intensity [1]. Approximately 70% of drug
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overdose-related deaths in the USA involve opioids, including prescription opioids [2]. Improved understanding of
biological responses to prescription opioids could reduce these adverse consequences.

DNA methylation is an epigenetic mechanism that can influence gene expression without changing the under-
lying genetic sequence. Epigenome-wide association studies (EWAS) have shown that DNA methylation in blood
can be altered by substance use such as cigarette smoking [3] and alcohol consumption [4]. The extensive methylation
signals for these substances have led to the development of biomarkers of habitual use [4,5].

Some small to moderately sized studies (n ≤ 370) have reported methylation alterations related to opioid
dependence, defined by the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, criteria [6–8],
or to opioid use [9,10]. Candidate gene studies of the OPRM1 gene reported hypermethylation related to opioid
dependence or use [6,7,9–11]. An EWAS identified three CpG probes meeting genome-wide significance related
to opioid dependence [8]. To date, there have been no large-scale meta-analyses of genome-wide blood DNA
methylation and opioid medication use.

Sex differences in pain and analgesia have been reported [12,13]. A recent large study found that men had a greater
risk than women for opioid overdose after their initial prescription [14]. In one study of opioid prescriptions to
treat noncancer-related pain, men were more likely than women to escalate into higher-dose treatments and die
of opioid-related causes [15]. Two of the five candidate gene methylation studies focusing on the OPRM1 gene
were limited to men (n < 120) [6,11], and the sole EWAS reporting three CpGs of genome-wide significance was
conducted only in women (n = 220) [8]. No studies have reported well-validated DNA methylation alterations
related to opioid use using large-population studies or exploring whether associations between opioid use and DNA
methylation differ by sex.

This study focused on the use of opioid medications and excluded illicit opioid use. Because any intake of opioid
medications could provide an individual a chance to become a chronic user or develop a misuse disorder, generating
an accurate biomarker to help identify individuals exposed to opioid medications is essential in opioid- and/or
health effects-related research.

We conducted a coordinated, epigenome-wide association meta-analysis across five datasets (10,842 individuals
comprising 282 opioid users and 10,560 nonusers), including four of European ancestry and one of African
ancestry, from cohorts in the USA and Scotland to identify CpGs differentially methylated in relation to recent
opioid medication use. Additionally, we explored whether opioid-related differential methylation differs by sex. To
examine the functional implications of identified CpGs, we evaluated associations with nearby gene expression in
blood (n = 3684) and brain (n = 515) and overlaps with histone marks and transcription factor (TF) binding motifs.
This study of blood DNA methylation in general population studies could contribute to biomarker development
and an improved understanding of the epigenomic mechanisms of response to opioid medications.

Materials & methods
Study population
This meta-analysis included 10,842 adults (≥30 years old) from five datasets, within the framework of the
Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. Participating studies included the
Agricultural Lung Health Study (ALHS), Framingham Heart Study (FHS), Generation Scotland (GS Set1 and
Set2), and Genetic Epidemiology Network of Arteriopathy (GENOA). Study participants were mainly of European
ancestry (91% of the 10,842 adults). African-ancestry individuals were from GENOA. Each study was approved
by its institutional review board. All study participants provided written informed consent.

Recent opioid medication use
The harmonized definition across studies categorized any recent use of opioid medications as exposed (users). In
brief, ALHS participants, enrolled between 2009 and 2013, were asked at home visits to provide all prescription
and nonprescription medications used in the last 7 days and field technicians recorded the medication names, which
were coded using the Slone Drug Dictionary [16], which links drug names to active ingredients and drug classes
based on Pharmacologic-Therapeutic Classification from the American Hospital Formulary Service. Recent opioid
use was classified based on any use of full opioid agonists in the past 7 days versus no use. In the FHS, participants
were asked to bring all prescription and nonprescription medications taken regularly in the past month in their
original containers to the study visit. Medication names were converted into Anatomical Therapeutic Chemical
codes. Recent opioid use (users vs nonusers) was based on any use of full opioid agonists in the past month. In
GS, participants reported prescription and nonprescription medications they regularly took. Any use of opioid
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medications was employed to define recent opioid use. In GENOA, participants were asked “During the last month,
have you used any medication that was prescribed or recommended by a physician?”; if they responded "yes”, they provided
the names of the medications. The Medi-Span Therapeutic Classification was used to identify pharmacologic classes
of prescriptions. Participants reporting any use of opioid medications were categorized as recent opioid users. In
each study, participants who did not report any use of opioids were categorized as unexposed (nonusers).

DNA methylation
We measured genome-wide methylation in blood, collected at the time of the medication questionnaires, using
Illumina methylation arrays. FHS used the Illumina HumanMethylation450 BeadChip (450K array; Illumina,
Inc., CA, USA) and the other studies used the newer MethylationEPIC BeadChip (EPIC/850K array; Illumina,
Inc.). Each study performed preprocessing and quality control filtering, including the removal of methylation values
based on detection P, exclusion of poor-quality CpGs and samples, probe-type bias normalization and correction
for batch effects. Additionally, we excluded CpGs previously reported as potentially problematic [17], including “ch”
probes, probes having an SNP in the extension base or color channel issues, and cross-reactive probes. Autosomal
CpGs that passed these quality control steps were included in association analyses.

Differential methylation in relation to opioid use
Each study assessed associations of recent opioid medication use (opioid users vs nonusers) as the predictor with
methylation, ranging between 0 (unmethylated) and 1 (methylated) as the response, using robust linear regression
to account for potential heteroskedasticity and lessen the impacts of influential outliers on association results. To
further reduce potential impacts of extreme outliers, we used winsorization (0.25% on both sides) [18]. Each study
adjusted for potential confounders, including age, sex, BMI, smoking (never/former/current as dummy variables),
smoking pack-years, ancestry principal components based on genome-wide genetic variants and estimated cell-type
proportions (monocyte, B cell, natural killer cell, CD8+ T cell, CD4+ T cell and granulocyte) [19]. Additionally,
the studies adjusted for analytic batch, study site and any study-specific selection factor or accounted for family
relationships where appropriate. We meta-analyzed study-specific results using inverse-variance weighted fixed-
effects models [20,21], including 778,492 CpGs analyzed in two or more datasets.

Additionally, we explored whether differential methylation related to opioid use differed by sex using studies
having more than 15 opioid users in both sex groups, which limited the analysis to ALHS and FHS. Because
large-sample statistics were used, we set a threshold of 15 in the exposed group within each analysis based on
prior experience in consortium epigenomic meta-analyses. We analyzed the data separately in males and females
using robust linear regression, adding a product term for opioid use × sex to a model with both main effects
in all participants and with the same covariates as above. We meta-analyzed the results using inverse-variance
weighting [20,21], including the 394,524 CpGs overlapping between EPIC/850K array (ALHS) and 450K array
(FHS).

To account for multiple testing, we set a genome-wide significance threshold of a Benjamini–Hochberg false
discovery rate (FDR) of 0.05 [22]. Unless otherwise noted, CpGs of genome-wide significance refer to those with
FDR < 0.05.

We also evaluated differentially methylated regions (DMRs) in relation to opioid use using the comb-p method [23]

implemented in the ENmix R package [24]. EWAS meta-analysis results were used as the input. Comb-p combines
irregularly spaced adjacent p-values to identify regions containing consecutive low p-values [23]. Regional p-values
were corrected for multiple testing using Šidák (default option) [25]. We set a threshold of Šidák P < 0.05 for
significant genome-wide DMRs. The DMR analysis complements individual CpG level analysis, as the method
aggregates signals across multiple nearby CpGs and a DMR of statistical significance does not necessarily contain
a CpG having genome-wide significance.

Functional & biological implications
Using the eFORGE integrative epigenomic approach [26,27], we explored whether our top 1000 CpGs (default
option) were enriched in regulatory elements from the Roadmap Epigenomics Consortium [28] across over 20
tissue types. To evaluate overlaps between the significant CpGs and TF binding motifs in the brain, we used
eFORGE-TF [26]. Additionally, we examined enrichment of TF motifs in implicated loci (±250 bp) using MEME
Suite [29].
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To further evaluate the biological context of the methylation findings, we tested enrichment of pathways using
robust rank aggregation [30] and preranked gene set enrichment analysis [31], which account for differing numbers
of CpGs per gene on the methylation arrays. We used the methylRRA function in the methylGSA [32] R package
and reported pathways enriched at nominal significance (p < 0.05). Pathways were from the Kyoto Encyclopedia
of Genes and Genomes gene sets via the org.Hs.eg.db [33] R package.

Opioid-related CpGs & nearby gene expression: cis expression quantitative trait methylation
analysis
To evaluate functional impacts of genome-wide significant CpGs, we assessed whether methylation at identified
CpGs was associated with expression of nearby (±250 kb) genes: cis-expression quantitative trait methylation
(eQTM). Linear regression was used to examine associations between methylation (predictor) and the expression
of nearby genes (response). To identify cis-eQTMs in blood, we used paired DNA methylation (450K) and gene
expression (Affymetrix Human Exon 1.0 ST GeneChip Platform) from FHS [34] (n = 3684). For cis-eQTMs in
the brain, we used paired DNA methylation (450K) and gene expression (Illumina HiSeq) from ROS/MAP [35]

(n = 515). We set a threshold of FDR < 0.05 for statistical significance.

Opioid-related CpGs & nearby genetic variants: cis methylation quantitative trait loci analysis
To examine whether genome-wide significant CpGs in all participants showed associations with nearby (±500 kb)
genetic variants, we used the GoDMC database (N = 32,851 individuals) [36] of methylation quantitative trait loci
(meQTL).

Look-up of previously reported opioid-related methylation in our data
Because few data exist on genome-wide DNA methylation and opioid use, we attempted to validate findings from
a study using saliva samples [10] in our analysis of blood. We looked up CpGs reported (p < 0.0001) from a recent
EWAS of prescription opioid use [10]. We also examined whether CpGs previously related to opioid dependence [8]

were related to opioid use in our data. Additionally, we interrogated CpGs annotated to the OPRM1 gene in
our data because candidate gene studies reported hypermethylation related to opioid addiction and use [7,10].

Additional analyses
We considered potential residual confounding by substances known for their impact on genome-wide blood DNA
methylation. Although we had adjusted for smoking status (never/past/current) and lifetime intensity (pack-years),
to evaluate possible residual confounding by smoking, we examined whether CpGs identified for opioid use (FDR
< 0.05) in our data overlapped with CpGs associated with current smoking in a previous large EWAS meta-
analysis [3]. For alcohol use, we were not able to harmonize and adjust for alcohol consumption due to minimal
information on alcohol use in the ALHS, one of the larger studies. However, we investigated whether CpGs
identified (FDR < 0.05) in our meta-analysis overlapped with CpGs related to heavy alcohol consumption in a
previous EWAS meta-analysis [4]. Because we included one African-ancestry study (GENOA) in our meta-analysis
of all participants, we conducted a leave-one-out meta-analysis to verify that our findings (FDR < 0.05) were not
driven by this single study of non-European ancestry.

Results
This meta-analysis included 10,842 participants from five datasets (Table 1). On average, participants were 58 years
old. About 3% (282/10,842) reported recent use (up to 30 days) of opioid medications, and this proportion
did not differ by sex (males: 83/3,108; females: 117/3,348). We visualized meta-analysis results in Miami plots
(Figure 1) [37] and quantile-quantile plots (Supplementary Figure 1) with λ ranging between 1.1 and 1.3, suggesting
minimal inflation.

We identified six CpGs differentially methylated in relation to recent opioid medication use (FDR < 0.05;
Table 2). Of the six CpGs, four showed higher methylation in opioid users compared with nonusers. The CpGs
annotated to six different genes: RUBCN (KIAA0226), CPLX2, TDRP, RNF38, TTC23 and GPR179. We did not
observe significant heterogeneity across studies in the genome-wide significant findings (Supplementary Figure 2).
Leave-one-out meta-analysis results confirmed that signals at the six CpGs were not driven by GENOA, a study of
African ancestry (Supplementary Table 1).
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Figure 1. In a Miami plot, each dot represents -log10(P) of a single CpG. Each plot has two panels: upper for
association results with positive regression coefficients and lower for association results with negative regression
coefficients, with -log10 (p) on the Y axis and 22 chromosomes on the X axis. Horizontal lines depict p cutoffs for
statistical significance after multiple-testing correction: Bonferroni and Benjamini–Hochberg false discovery rate.
CpGs having uncorrected p > 0.05 were not displayed. (A) Epigenome-wide association study (EWAS) meta-analysis
results in all participants. (B) EWAS meta-analysis results in males only. (C) EWAS meta-analysis results in females only.
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Table 1. Characteristics of participating studies.
ALHS FHS GS Set1‡ GS Set2‡ GENOA‡

All Males Females All Males Females All All All

Ancestry European European European European African

Country USA USA UK UK USA

Characteristics, mean ± standard deviation or N (%)

N total 2286 1173 1113 4170 1935 2235 1864 1566 956

N exposed† (%) 130 (6%) 53 (5%) 77 (7%) 70 (2%) 30 (2%) 40 (2%) 36 (2%) 20 (1%) 26 (3%)

Age, years 63 ± 11 63 ± 11 62 ± 11 59 ± 13 59 ± 13 59 ± 13 51 ± 11 54 ± 10 58 ± 10

BMI, kg/m2 30 ± 6 30 ± 5 30 ± 7 28 ± 5 29 ± 5 27 ± 6 27 ± 5 27 ± 5 31 ± 7

Smoking status

– Never 1523 (67%) 680 (58%) 843 (76%) 1790 (43%) 742 (38%) 1048 (47%) 935 (50%) 813 (52%) 573 (60%)

– Former 667 (29%) 429 (37%) 238 (21%) 1940 (47%) 952 (49%) 988 (44%) 585 (31%) 527 (34%) 223 (23%)

– Current 96 (4%) 64 (5%) 32 (3%) 440 (11%) 241 (12%) 199 (9%) 344 (18%) 226 (14%) 160 (17%)

Pack-years among
ever smokers

18 ± 21 21 ± 23 12 ± 17 12 ± 19 12 ± 20 12 ± 19 18 ± 17 16 ± 17 21 ± 18

Methylation array EPIC/850K 450K EPIC/850K EPIC/850K EPIC/850K

N CpGs analyzed 817,235 817,235 817,235 473,864 473,864 473,864 841,753 773,860 838,270

� inflation factor 1.23 1.11 1.16 0.92 1.27 0.79 0.87 0.97 1.12

†N exposed to opioid medications.
‡Excluded from meta-analyses stratified by sex due to individuals exposed to opioids being ≤15 in either males or females. GS Set1 included 697 males and 1167 females, and GS
Set2 contained 671 males and 895 females. Of GENOA participants, 276 were males and 680 were females.

Table 2. Six CpGs differentially methylated (false discovery rate < 0.05) in relation to opioid medication use
(Nexposed = 282; Nunexposed = 10,560).
Chromosomal
position

Probe Effect† Standard error‡ p-value Direction§ Gene name¶ Mean methylation#

3: 197459812 cg07255038 0.0057 0.0011 3.21 × 10-7 ++-++ KIAA0226 0.8602

5:175223982 cg07295964 -0.0016 0.0003 8.23 × 10-8 —+- CPLX2 0.0388

8:528687 cg23406159 0.0061 0.0012 1.46 × 10-7 +++++ TDRP 0.7650

9:36479098 cg09409129†† 0.0016 0.0003 3.65 × 10-7 +?–+ RNF38 0.9187

15:99789777 cg13401703 -0.0109 0.0021 2.01 × 10-7 -+–+ TTC23 0.2523

17: 36499760 cg23186467†† 0.0059 0.0012 3.63 × 10-7 +?+++ GPR179 0.7501

†Regression coefficient from statistical models.
‡Standard error of regression coefficient.
§Direction of associations. Order of studies is ALHS, FHS, GS Set1, GS Set2 and GENOA.
¶Gene name listed on the Illumina annotation. When no gene names were reported on the Illumina annotation, the authors used Zhou et al. [16] and Homer v4.9.1 [50] to
annotate genes.
#Weighted average methylation across participating studies.
††CpG present only on the EPIC array; 212 exposed/6,460 unexposed.

In sex-stratified meta-analyses, we found 74 CpGs related to opioid use (FDR <0.05): 68 CpGs in males (top
30 CpGs in Table 3; all 68 CpGs in Supplementary Table 2) and six CpGs in females (Table 4); one additional
CpG, cg07295964 (CPLX2), significant in females but not males, was also identified in the meta-analysis of all
participants. The directions of associations were skewed toward positive in both sexes. Although none of the
sex-specific findings showed genome-wide significant interactions between opioid use and sex, 51% showed at least
nominal evidence of interaction (Pinteraction < 0.05; Supplementary Table 2 & Tables 3 & 4), much more than
expected by chance (Penrichment < 2.2 × 10-16).

In regional analyses of all participants, 20 regions were differentially methylated in relation to opioid use (Šidák
P < 0.05; Supplementary Table 3). One DMR (Chr15:99789621-99790022) included a significant genome-wide
CpG (cg13401703). Sex-stratified analyses identified 24 DMRs for males and 15 for females (Supplementary
Table 4). One additional region, Chr6:31650734-31651291 (LY6G5C), identified in females but not males
showed genome-wide significance in analysis of all participants. Just four DMRs identified in sex-stratified analyses
contained a significant genome-wide CpG (Supplementary Table 5). Table 5 displays the top ten DMRs in all
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Table 3. Top 30 differentially methylated CpGs (false discovery rate < 0.05) in relation to opioid medication use in
males (Nexposed = 83; Nunexposed = 3025), sorted by chromosomal location.
Chromosomal
position

Probe Effect† Standard error‡ p-value Direction§ Gene name¶ Mean
methylation#

Pinteraction
††

1:32083031 cg11573219 0.0287 0.0052 3.76 × 10-8 ++ HCRTR1 0.3369 0.0001

1:42385662 cg16145216 0.0328 0.0065 4.78 × 10-7 ++ HIVEP3 0.3683 0.0816

1:156094519 cg17453456 0.0251 0.0045 2.30 × 10-8 ++ LMNA 0.3100 0.0744

1:240655362 cg01176047 0.0147 0.0028 2.07 × 10-7 ++ GREM2 0.8172 0.2044

2:208635723 cg18866599 -0.0013 0.0002 3.27 × 10-8 -+ FZD5 0.0463 0.0002

3:29494928 cg26400275 0.0057 0.0010 3.75 × 10-8 ++ RBMS3 0.8773 0.0911

3:58508149 cg23652987 0.0091 0.0019 8.95 × 10-7 ++ ACOX2 0.8186 0.9107

4:47841314 cg02955940 0.0082 0.0017 1.24 × 10-6 ++ CORIN 0.8380 0.7118

4:74486177 cg07136054 -0.0010 0.0002 7.42 × 10-8 -+ RASSF6 0.0398 8.62 × 10-6

5:68788113 cg16151977 -0.0038 0.0007 2.72 × 10-7 – OCLN 0.0537 0.0111

5:178424364 cg14800603 0.0125 0.0025 5.14 × 10-7 ++ GRM6 0.8196 0.2742

5:179246250 cg25991122 -0.0016 0.0003 3.19 × 10-7 – SQSTM1 0.0529 0.0318

5:180633772 cg25566730 -0.0004 0.0001 2.16 × 10-7 – CTC-338M12.1, TRIM7 0.0319 0.0020

6:6005992 cg19060550 -0.0011 0.0002 4.51 × 10-7 -+ NRN1 0.0355 0.0036

6:27513092 cg11497372 -0.0015 0.0003 5.52 × 10-9 – AL021918.1 0.0723 0.0022

6:28911926 cg15088539 -0.0068 0.0014 6.85 × 10-7 – LINC01556 0.0828 0.0017

6:150311552 cg25106322 -0.0010 0.0002 8.41 × 10-7 -+ RAET1K 0.0389 0.0002

7:2106321 cg12098228 -0.0078 0.0016 6.87 × 10-7 – MAD1L1 0.0882 0.5122

8:97505764 cg13096260 -0.0010 0.0002 6.57 × 10-7 – SDC2 0.0690 0.0004

9:139871049 cg00563932 0.0199 0.0041 1.09 × 10-6 ++ PTGDS 0.4954 0.0080

10:79212324 cg18659450 0.0056 0.0011 4.84 × 10-7 ++ KCNMA1 0.8915 0.6008

11:33279091 cg04704963 0.0015 0.0003 2.00 × 10-7 ++ HIPK3 0.0291 0.0190

12:52603903 cg09627757 0.0050 0.0011 2.38 × 10-6 ++ LOC283404 0.8854 0.2494

12:63025730 cg08244085 0.0109 0.0022 5.70 × 10-7 ++ MIRLET7I 0.1085 0.0009

12:100967381 cg13069247 -0.0025 0.0005 4.92 × 10-7 – GAS2L3 0.0659 0.0095

12:102513805 cg06192289 0.0032 0.0007 1.14 × 10-6 ++ NUP37, C12ORF48 0.0771 0.0259

12:130524707 cg08968978 0.0142 0.0029 1.24 × 10-6 ++ LOC100190940 0.8470 0.6107

16:68024755 cg03384419 0.0027 0.0006 1.66 × 10-6 ++ DPEP2 0.9156 0.0380

16:68624584 cg10486655 -0.0010 0.0002 2.21 × 10-6 -+ RP11-615I2.1,
RP11-615I2.6

0.0442 0.0008

17:20905737 cg11691341 0.0071 0.0015 1.60 × 10-6 ++ USP22 0.8771 0.3097

†Regression coefficient from statistical models.
‡Standard error of regression coefficient.
§Direction of associations. Order of studies is ALHS and FHS.
¶Gene name listed on the Illumina annotation. When no gene names were reported on the Illumina annotation, the authors used Zhou et al. [16] and Homer v4.9.1 [50] to annotate
genes.
#Weighted average methylation across participating studies.
††P for interaction between opioid use and sex.

participants and by sex.
Integrative epigenomic analyses using eFORGE identified enrichment for active transcriptional histone mark

H3K36me3, which recruits DNA repair machinery upon damage to maintain genomic stability [38], in several
tissue types, including blood and brain (Supplementary Figure 3), supporting potential functional implications. In
TF binding motif analyses using eFORGE-TF, we found an overlap with the motif V ZID 01, corresponding to
the transcription factor ZBTB6, in brain (p = 0.00002). An additional TF motif analysis using Analysis of Motif
Enrichment [39] identified the motif ZBT18 HUMAN.H11MO.0.C near all six significant CpGs but only 22 of
100 random nonsignificant CpGs (p = 0.01).

Pathway analysis identified enrichment for 19 gene sets, including the chemokine signaling pathway, a mechanism
related to pain modulation. Most pathways were related to metabolism and inflammation (Supplementary Table 6).
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Table 4. Seven CpGs differentially methylated (false discovery rate <0.05) in relation to opioid medication use in
females (Nexposed = 117; Nunexposed = 3231), sorted by chromosomal location.
Chromosomal
position

Probe Effect† Standard error‡ p-value Direction§ Gene name¶ Mean
methylation#

Pinteraction
††

1:14033779 cg10375300 0.0070 0.0014 2.80 × 10-7 ++ PRDM2 0.8890 0.1614

3:3840360 cg12136608 -0.0009 0.0002 2.49 × 10-7 -+ LRRN1 0.0382 0.0049

5:139485587 cg10872490 0.0035 0.0007 1.29 × 10-7 +- LINC01024 0.9049 0.0023

5:175223982 cg07295964‡‡ -0.0019 0.0004 3.37 × 10-7 – CPLX2 0.0375 0.2006

7:157955692 cg02161503 0.0088 0.0017 1.11 × 10-7 ++ PTPRN2 0.8582 0.5626

12:55029660 cg19880901 0.0044 0.0008 1.35 × 10-7 ++ LACRT 0.8754 0.9825

13:114085732 cg03049340 0.0048 0.0009 2.31 × 10-7 ++ ADPRHL1 0.8734 0.0022

†Regression coefficient from statistical models.
‡Standard error of regression coefficient.
§Direction of associations. Order of studies is ALHS and FHS.
¶Gene name listed on the Illumina annotation. When no gene names were reported on the Illumina annotation, the authors used Zhou et al. [16] and Homer v4.9.1 [50] to annotate
genes.
#Weighted average methylation across participating studies.
††P for interaction between opioid use and sex.
‡‡CpG showing genome-wide significance in meta-analysis of all participants.

By linking the significant CpGs (FDR < 0.05 in either the all-participants or sex-specific analyses) to transcrip-
tome data, we identified CpGs related to the expression of nearby (±250 kb) genes: cis-eQTMs. In blood (FHS,
n = 3684) [34], three CpGs showed genome-wide significant associations with gene expression (FDR < 0.05). At
nominal significance (p < 0.05), 29 CpGs showed associations (Supplementary Table 7). In brain (ROS/MAP,
n = 515), four of 45 CpGs having one or more nearby transcripts were related to nearby gene expression at FDR
< 0.05, and 11 (24%) showed nominally significant (p < 0.05) associations with expression (Supplementary
Table 8). Six CpGs were related to the expression of nearby genes in both blood and brain.

In the GoDMC database [36] of paired genetic and Illumina450K methylation data in 32,851 individuals, of the
six CpGs significant in all participants, cg13401703 (TTC23) was associated with two nearby (both within 145
kb) genetic variants (meQTLs): chr15:99642518 and chr15:99932797.

Given the paucity of data on epigenome-wide blood DNA methylation and opioid use, we looked up findings
from a recent EWAS [8] (N = 220) of opioid dependence. Of the three CpGs meeting genome-wide significance
in the previous study, two were marginally related to opioid use in our data (P = 0.07 for cg21381136; P = 0.04
for cg17426237). Of the remaining 499 CpGs reported at a threshold of p < 0.0001 and available in the data, 69
(14%) were related to opioid use at p < 0.05 (Penrichment = 4.09 × 10-14; Supplementary Table 9). Because several
candidate gene studies reported higher methylation at the OPRM1 gene with opioid dependence and use [6,7,9–11],
we interrogated 61 CpGs annotated to the gene available in our data after CpG filtering. Of these, four were at
least nominally (p < 0.05) associated with opioid use in our meta-analysis of all participants. Another three met
p < 0.05 in sex-stratified meta-analyses. Finding these seven CpGs is slightly more than would be expected by
chance (Penrichment = 0.032; Supplementary Table 10).

Although the meta-analysis results were adjusted for smoking, we assessed possible residual confounding by
smoking by examining whether the opioid-related CpGs, in either overall or sex-stratified analyses, were associated
with current smoking in a previous large Illumina450K EWAS meta-analysis [3]. Of the 78 CpGs (450K) available
for look-up, only 11 were associated with current smoking (Supplementary Table 11). We also addressed potential
residual confounding by alcohol consumption, which we did not adjust for in the meta-analyses due to limited
alcohol intake data in ALHS, by looking up the significant CpGs in a previous large 450K EWAS meta-analysis
of heavy alcohol use [4]. Of the 78 CpGs available for look-up, only nine CpGs were related to heavy alcohol con-
sumption (Supplementary Table 11). Just four CpGs were associated with both smoking and alcohol consumption
in these look-ups. None of the four genome-wide significant 450K CpGs in analyses of all participants were related
to smoking or alcohol consumption.

Discussion
To our knowledge, this is the first large-scale, epigenome-wide association meta-analysis of blood DNA methylation
and recent opioid medication use in general population studies. We identified several CpGs significantly differen-
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Table 5. Top ten differentially methylated regions related to opioid medication use (Šidák p < 0.05), sorted by
chromosomal location.
Chromosome Start† (bp) End (bp) Šidák P N CpGs‡ Minimum P§ Annotated gene¶

All participants

1 243876785 243877024 0.0011 3 5.77 × 10-5 AKT3

5 134526123 134526269 0.0001 4 2.73 × 10-6 C5ORF66

6 29648160 29648756 3.86 × 10-8 20 0.0022 ZFP57

6 31650734 31651291 5.18 × 10-10 18 0.0015 LY6G5C

6 31683050 31683352 1.78 × 10-6 6 2.59 × 10-6 LY6G6E, LY6G6D

15 99789621 99790022 2.33 × 10-11 8 2.01 × 10-7 TTC23

16 450836 451040 1.71 × 10-7 3 2.98 × 10-5 DECR2

17 76037034 76037364 0.0002 5 0.0031 TNRC6C

17 81060148 81060259 1.99 × 10-5 3 0.0002 AC144831.1

22 38092718 38092989 0.0010 8 0.0021 TRIOBP

Males only

1 42385580 42385941 1.49 × 10-8 3 4.78 × 10-7 HIVEP3

6 28911872 28912166 1.02 × 10-5 8 6.85 × 10-7 LINC01556

6 31543539 31543686 4.91 × 10-6 8 0.0017 TNF

6 84140682 84140997 6.75 × 10-5 7 0.0004 ME1

7 73720807 73721031 1.22 × 10-5 3 4.09 × 10-5 CLIP2

8 22735110 22735478 6.16 × 10-6 5 0.0019 PEBP4

17 17465161 17465476 1.65 × 10-5 5 0.0002 PEMT

17 80859885 80860250 7.14 × 10-7 3 3.38 × 10-5 TBCD

17 80870528 80870577 0.0002 2 4.87 × 10-6 TBCD

21 40759533 40759694 7.15 × 10-7 5 0.0009 WRB

Females only

1 236686563 236686804 1.54 × 10-7 4 8.32 × 10-5 LGALS8, LGALS8-AS1

6 11779816 11779941 0.0011 3 5.45 × 10-6 C6ORF105

6 29521012 29521272 0.0008 11 0.0011 OR2I1P

8 39172019 39172120 0.0004 6 0.0020 ADAM5P

11 2020278 2020560 0.0003 10 0.0008 H19

11 70517293 70517411 0.0005 3 0.0001 SHANK2

17 75143117 75143184 0.0010 2 3.14 × 10-5 SEC14L1

17 76037034 76037562 3.75 × 10-9 6 0.0001 TNRC6C

19 19281174 19281474 0.0009 7 0.0012 LOC729991-MEF2B, MEF2B

21 35831870 35832180 0.0009 9 0.0015 KCNE1

†Physical position (base pair), National Center for Biotechnology Information human reference genome assembly Build 37.3.
‡Number of CpGs in the region.
§Minimum p-value among uncorrected p-values of CpGs in each region.
¶Gene name listed on the Illumina annotation. When no gene names were reported on the Illumina annotation, the authors used Zhou et al. [16] and Homer v4.9.1 [50] to
annotate genes.

tially methylated in relation to opioid use in all participants. Additionally, we found CpGs showing differential
methylation specific to men or women. Our findings were novel, meaning CpGs and genes identified in this
study were not previously reported in studies of DNA methylation and opioids. Notably, our findings included
CpGs related to the expression of nearby genes (cis-eQTM) in blood and brain. Integrative epigenomic results
linked our methylation findings to enrichment of an active histone mark and an overlap with a transcription factor
motif, suggesting functional implications. Pathway analysis results highlighted the chemokine signaling pathway,
an emerging therapeutic option for pain management [40,41]. In addition to identifying novel methylation signals
in relation to opioid use, our data provide the first validation of some previous opioid-related methylation findings
in the general population. Extending knowledge from previous studies that focused on opioid dependence, this
comprehensive investigation of blood DNA methylation and opioid medication use in the general population will
help elucidate molecular mechanisms and population-level impacts of these commonly prescribed medications.
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Notably, the opioid-related CpGs identified in the analyses of all participants implicate genes linked to brain
development or brain disorders. Three of the six genes identified, KIAA0226, CPLX2 and GPR179, contain
one or more CpGs associated with fetal brain age (n = 179 samples), suggesting a role in fetal brain development
(Supplementary Table 12) [42]. A genetic mutation in KIAA0226 (RUBCN) was related to the developmental disorder
ataxia [43,44]. Genetic variants in the CPLX2 gene have been related to cognitive function in schizophrenia [45].
Genetic variants in TDRP have been associated with attention deficit hyperactivity disorder [46]. Another of the
differentially methylated genes, RNF38, has been shown in animal studies to be regulated by the serotonin system
in the brain [47,48], which modulates behaviors and psychological functions. Finally, the gene TTC23, which
was highlighted in our differential methylation analysis and in our analysis linking methylation to nearby gene
expression, was linked to schizophrenia in a recent EWAS [49].

Integrative epigenomic analyses highlighted enrichment of an active transcriptional histone mark, H3K36me3,
in both blood and brain. This suggests that the blood findings could help inform epigenomic mechanisms in brain.
Additionally, the TF ZBTB18 of the motif ZBT18 HUMAN.H11MO.0.C, common across all six significant
CpGs in the overall analysis, has been shown in mice to play a pivotal role in normal brain development through
the time-sensitive repression of several proneurogenic genes [50].

We also performed sex-specific analyses because some previous reports suggested differential effects of opioids by
sex and some methylation studies analyzed only one sex. We found CpGs showing significant associations in males
or females, suggesting some sex differences in the effects of opioids on methylation. We acknowledge that none of
the identified CpGs showed genome-wide significant interactions. However, much larger sample sizes are needed
to fully examine interactions, and sex-specific methylation findings may shed light on sex differences in opioid use
and health effects.

Data on blood DNA methylation and opioid use are sparse. Several studies have examined DNA methylation
in relation to opioid dependence. These studies differed from ours because they compared individuals with opioid
dependence with individuals exposed to opioids but not dependent [8], analyzed data with small-to-moderate sample
sizes [9] or were restricted to either women [8] or men [11]. Most used candidate gene approaches [6,7,9–11], except for
one EWAS [8] of opioid dependence in 220 European-ancestry women. Two candidate gene studies (both n ≤ 123)
examined methylation of the OPRM1 gene in relation to opioid use: long-term (for at least 1 year prior to sample
selection) opium use using blood samples [11] and short-term prescription opioid use using saliva samples [10].
Compared with studies of individuals with opioid dependence in clinical settings, our study of opioid medication
use in the general population and molecular impacts has value for deeper understanding of the population-level
impacts of opioid medication use.

When studying the biological effects of opioid use, the primary tissue of interest is brain. However, data on DNA
methylation in brain are understandably very limited. When developing biomarkers, blood, an easily accessible
tissue, is useful. To help interpret the blood methylation at implicated CpGs, we evaluated correlations between
methylation in blood and brain [51]. Of four CpGs differentially methylated in relation to opioid use in all
participants and available in the blood and brain methylation correlation tool [51] (450K), methylation in blood at
cg13401703 (TTC23) was highly correlated with methylation at four brain regions (Pearson correlation: 0.63 to
0.71; Supplementary Figure 4). The observed high correlation suggests that these findings in blood may indicate
methylation alterations in the brain.

This study has some limitations. Although the authors attempted to harmonize the definition of recent opioid
medication use, it differed by study, and the exact time course or dosage of ingestion was unknown. This is because
this meta-analysis combined data from population-based studies in which inventories of recently used medications
were available. In ALHS, we asked about medications in the past 7 days, the shortest period of any of the studies.
The reported recent use in our participating studies is likely a mix of short- and long-term use. Longer use would
be predicted to have greater impacts on DNA methylation, and the study may have missed these or underestimated
them. However, in ALHS, we did not visit participants with abdominal or chest surgery in the past 3 months, which
will have reduced short-term postoperative prescriptions. There were no data to investigate whether the reasons for
taking opioids differ between sexes, which might contribute to sex-specific findings. The study participants were
predominantly older individuals. Indications for time-limited prescription opioid use are likely to change over the
life course. The participating studies are population-based studies of free-living people. Blood was collected during
visits specifically conducted for the study – not during visits to the hospital. Population-based studies of older
people will include people with various age-related conditions. However, we find that if participants are feeling
acutely ill on a given day or so chronically disabled that participation is difficult, they will not agree to the study
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visit. It is standard in population-based studies not to exclude people based on chronic disease or age. However, it
is standard to carefully adjust for age in all analyses. We were not able to replicate these meta-analysis findings in
an independent population, as the analysis included as many population-based studies as we were able to identify
with the available data. Instead, we provide evidence of validation for some previously reported methylation signals
related to opioid dependence or use in our data.

This study has several strengths. To our knowledge, this is the largest study of genome-wide DNA methylation
and opioid medication use. We carried out sex-specific analyses and included studies of African ancestry and
European ancestry. We identified several DMRs. By linking our methylation findings to transcriptome in blood
and brain, we found CpGs with potential functional impacts. Integrative epigenomic results link our data to
regulatory elements, including histone marks and TF motifs, in blood and/or brain. Because this meta-analysis
included individuals participating in population-based studies not enriched for opioid dependence, the results are
particularly useful for the development of biomarkers of opioid medication use.

Publication bias is an issue for meta-analyses involving published studies. However, this is a de novo meta-analysis
where none of the individual studies had previously published on this association. Therefore, publication bias is
not an issue in this study.

In population-based studies, it is expected there will be a low proportion of opioid users and thus that most of
the participants are in the unexposed group. The power of the study comes primarily from the number of exposed,
but the imbalance with the expected large proportion of unexposed in these studies is not a source of bias.

To better understand health effects of an exposure, objective measures of exposure are useful. Some epidemiologic
studies may have asked participants to self-report use of opioid medications but likely have limited information
on duration or dosage. Where available, linkage to prescription registries can be used but lack information on
what is actually taken. Furthermore, participants may be reluctant to acknowledge the use of opioids, leading to
underreporting. Given that many studies have EWAS data but limited data on medication use, a well-validated
biomarker of opioid use would increase the usefulness of existing studies to elucidate the full range of the health
effects of this exposure. In clinical settings, objective biomarkers could improve the identification of individuals
using these medications and help clinicians manage opioid prescriptions and alternative treatment options for
chronic pain.

Conclusion
In summary, this large-scale epigenome-wide association study of blood DNA methylation and recent opioid
medication use extends the literature by greatly increasing the sample size and including general-population studies
with recent genome-wide DNA methylation arrays in two ancestries. This epigenome-wide meta-analysis identifies
loci that have not previously been linked to opioid use. The findings could serve as a resource that can be leveraged
for the future development of epigenomic biomarkers of opioid use and to extend our understanding of the effects
of these drugs.

Summary points

• This is the first epigenome-wide association meta-analysis of opioid medication use and blood DNA methylation.
• The study identified several CpGs differentially methylated in relation to opioid medication use in all participants.
• There were many differential methylation signals specific to males or females.
• Using integrative epigenomic tools, we found the differential methylation signals overlap with regulatory

elements in blood and/or brain.
• Methylation levels at significant CpGs were correlated with the expression of nearby genes in blood and/or brain,

furthering functional relevance.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.futuremedicine.com/doi/

suppl/10.2217/epi-2022-0353

Author contributions

M Lee and SJ London conceived and designed the study. M Lee, R Joehanes, DL McCartney and M Kho completed study-specific
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